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Abstract. This paper” studies differences in estimating length (and also trajec-
tory) of an unknown parametric curve v : [0,1] — IR™ from an ordered collection
of data points ¢; = 7(¢;), with either the ¢;’s known or unknown. For the ¢;’s uni-
form (known or unknown) piecewise Lagrange interpolation provides efficient length
estimates, but in other cases it may fail. In this paper, we apply this classical algo-
rithm when the ¢;’s are sampled according to first a-order and then when sampling
is e-uniform. The latter was introduced in [20] for the case where the ¢;’s are un-
known. In the present paper we establish new results for the case when the ¢;’s are
known for both types of samplings. For curves sampled e-uniformly, comparison
is also made between the cases, where the tabular parameters ¢;’s are known and
unknown. Numerical experiments are carried out to investigate sharpness of our
theoretical results. The work may be of interest in computer vision and graphics,
approximation and complexity theory, digital and computational geometry, and
digital image analysis.

1 Introduction

For k > 1, consider the problem of estimating the length d(v) of a C* regular
parametric curve 7 : [0,1] = IR" from ordered (m + 1)-tuples

Qm = (qo,ql,---;Qm)

of points ¢; = «y(t;) on the curve 7. In this paper the tabular parameters
t;’s are assumed to be either known or at least distributed in some specific
manner.

The problem is easiest when the ¢;’s are chosen uniformly, namely ¢; = #
(see [15] or [26]). In such a case it seems natural to approximate v by a curve
~r that is piecewise polynomial of degree r > 1. The following result can be

proved (see [20]):
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Theorem 1. Let v be C™2, with the t;’s be sampled uniformly. Then a
piecewise-r-degree Lagrange polynomial %, determined by Q,, satisfies

B _ JO(=) if r > 1 is odd
d(yr) —d(v) = {O(#) if r > 1 is even, @
and
Sl =0 1 2
I =l = O—p) 2

As usual, O(a,, ), means a quantity whose absolute value is bounded above
by some constant multiple of a,, as m — oo. Both asymptotic estimates
appearing in (1) and (2) are sharp (see [20]), namely there exist C"*?2 regular
curves v which, when sampled uniformly, yield lower bounds of convergence
rates such as specified in the upper bounds (1) or (2).

Consider samplings of the following type.

Definition 1. We say that sampling {t;}1, is of a-order, for some 0 < a <
1, if t; < tiy1 and the following holds
tiv1 —t; = (W) . (3)

The second part of the present paper is mainly concerned with the case,
where a = 1.

We may ask whether Theorem 1 extends, either to an arbitrary sampling
(3), or to some subclasses of (3) for both the ¢;’s known or unknown. More
specifically, we examine the existence of some 1,82 > 0 yielding

AG) = () = O(=5) and |y =F,lloo = O(—) (4)

Subsequently, the comparison and the analysis of underlying difference be-
tween internal and ezternal parameterizations (the ¢;’s known versus un-
known) will follow. Those two issues are treated in this paper in detail and
some new results for internal parameterization are established.

Evidently, the knowledge of explicit distribution of the tabular points
t;’s, provides extra information to the problem in question (including the
order of the points in Q). Thus, as expected and proved later in this paper a
nonuniform case (3) together with internal parameterization yields a better
result than its external parameterization counterpart. The latter is in contrast
with the uniform case where the corresponding convergence rates coincide -
see Theorem 1. Note that if the ¢;’s are unknown, the order of points in Q,,
is also assumed to be given.

This work is relevant to some computer vision problems: tracking an ob-
ject or its center of mass from satellite or video images, finding the boundary
of planar objects (for example in medical image analysis or automated pro-
duction line) or handling any data (such as a sequence of video images)



parametrized by one parameter in decompressing, interpolation, or noise rec-
tification processes.

There is another context of possible applications outside the scope of ap-
proximation theory. Recent research in digital and computational geometry
and digital image analysis concerns analogous work for estimating lengths
of digitized curves. Depending on the digitization model [11], v is mapped
onto a digital curve and approximated by a polygonal curve %, whose length
is an estimator for d(y). Approximating polygons #,, based on local config-
urations of digital curves do not ensure multigrid length convergence, but
global approximation techniques yield linearly convergent estimates, namely
d(v) —d(fm) = O() [1], [13], [14] or [25]. Recently, experimentally based re-
sults reported in [4], [5], [6], and [12] confirm a similar rate of convergence for
v C IR3. In the special case of discrete straight line segment in IR? a stronger
result is proved, for example, [8], where O(#) errors for asymptotic length
estimates are established.

Our paper focuses on curve interpolation and asymptotical analysis is
based on the number of interpolation points. On the other hand digital mod-
els assume curve approzimation and the corresponding asymptotics is based
on the size of image resolution. So strict comparisons cannot be made yet.
However, as a special case we provide upper bounds for optimal rates of
convergence when piecewise polynomials are applied to the digitized curves.
Related work can also be found in [2], [3], [9], [10], [22], and [24]. There is
also some interesting work on complexity [7], [23], and [27].

The layout of the present paper is as follows. The first part is mainly
expository with some extension of standard result for 1-order case to a-order
one (see Theorems 1 and 2). The second part discusses essential differences
in estimating length and trajectory of v between both cases with the interpo-
lation times ¢;’s either known or unknown. In particular the above difference
for e-uniform sampling (constituting a special case of 1-order sampling) is
empahsized in Theorem 3 and Theorem 4. Finally, as Theorem 4 also indi-
cates, if the ¢;’s are known, the results in Theorem 2 covering also e-uniform
case (as a special 1-order one) can be strengthened.

2 Preliminaries

Let || - || be the Euclidean norm in IR", where n > 1, with < -,- > the
corresponding inner product. The length d(v) of a C* parametric curve (k >
1) v:10,1] = IR" is defined as

d(y) = / (6 e |

where 4(t) € IR" is the derivative of v at ¢t € [0,1]. The curve 7 is said to
be regular when 4(t) # 0, for all t € [0,1]. A reparameterization of v is a
parametric curve of the form yo ¢ : [0,1] = IR", where ¢ : [0,1] — [0,1] is



a C* diffeomorphism. The reparameterization 7 o ¢ has the same image and
length as . For simplicity we assume here that v is C°°. Let v be regular:
then so is any reparameterization y o ¢. Recall that a regular curve =y is said
to be parameterized proportionally to arc-length when ||7(t)|| is constant for
t € [0,1].

We want to estimate d(v) from ordered (m + 1)-tuples

Qm = (fIO;fI1>Q2; . 7qm) € (Rn)erl;

where ¢; = v(t;), whose parameter values t; € [0,1] are either known or
unknown and sampled in some reasonably regular way.
We are going to discuss different ways of forming ordered samples

O=t)<t1 <t <...<t,, =1

of variable size m + 1 from the interval** [0,1]. The simplest procedure is
uniform sampling, where t; = # (where 0 < ¢ < m). Uniform sampling is
not invariant with respect to reparameterizations, namely order-preserving
C* diffeomorphisms ¢ : [0,1] — [0, 1]. A small perturbation of uniform sam-
pling is no longer uniform, but may approach uniformity in some asymptotic
sense, at least after some suitable reparameterization. We define now a special

subclass of (3) (see also [20]), namely a special type of 1-order sampling:

Definition 2. For 0 < e < 1, the t;’s are said to be e-uniformly sampled
when there is an order-preserving C* reparameterization ¢ : [0,1] — [0,1]
such that
i 1
ti=¢(—) +0(—7) -

Note that e-uniform sampling arises from two types of perturbations of uni-
form sampling: first via a diffeomorphism ¢ : [0,1] — [0, 1] combined subse-
quently with added extra distortion term O(#) In particular, for ¢ the
identity, and ¢ = 0 (¢ = 1) the perturbation is linear (quadratic), which
constitutes asymptotically a big (small) distortion of a uniform partition of
[0,1]. The extension of Definition 2 to € > 1 could also be considered. This
case represents, however, a very small perturbation of uniform sampling (up
to a ¢-shift) which seems to be of less interest in applications. As mentioned
the perturbation of uniform sampling via ¢ has no effect on both d(y) and
geometrical representation of . The only potential nuisance stems from the
second perturbation term O(—).

Finally, note that e-uniform sampling is invariant with respect to C'*°
order preserving reparameterizations v : [0, 1] — [0, 1]. So suppose in all the
following, without loss of generality, that 7 is parameterized proportionally
to arc-length.

We shall need later the following lemma (see [16]; Lemma 2.1):

** In the present context there is no real gain in generality from considering other
intervals [0, T'].



Lemma 1. Let f : [a,b] — R™ be C', where | > 1 and assume that f(to) = 0,
for some to € (a,b). Then there exists a C'~! function g : [a,b] — R" such

that f(t) = (t = to)g(t).

Proof. For each i-th component of f = (fi, fa,..., fn) consider F; : [0,1] - IR
Fi(u) = fi(tu + (1 — u)tp). By the Fundamental Theorem of Calculus

fi(t) = F;(1) — F;(0) = (t — to)/o filtu+ (1 —u)to) du .

Take g = (91,92,---,9n), Where

gilt) = / F(tu+ (1 — u)to) du

This proves Lemma 1. 0O
df

The proof of Lemma 1 shows also that g = O(g;), namely the uniform

norm of g is bounded by a constant multiple of the uniform norm of ‘;—J:. Here
f may depend on some other parameter m — oo. If f has multiple zeros
tg < t1 < ... <t then k + 1 applications of Lemma 1 give

f@) = (¢ =to)(t = t)(t —t2) ... (¢ = t)h(2) (5)

where h is C'=(+1) and h = O(%d).

3 Internal and External Clocks for a-order Samplings

We begin with some results for estimating d(y) and vy when piecewise-r-
degree Lagrange interpolants are used with internal parameterization applied
to arbitrary sampling of a-order (for proof see Appendix 1). When a = 1
formula (6) is well-known.

Theorem 2. Let v be C™12 and let the t;’s be given explicitly and sampled
according to a-order. Then a piecewise-r-degree Lagrange polynomial 5,., de-
termined by Q,, yields

~ 1 - 1
d(¥r) —d(v) = O(— =) and |1y = Trlle = O(—2rmgy) - (6)

Remark 1: Note that, if o < $ then formula (6) does not guarantee
convergence for d(y) estimation. On the other hand, the most interesting
case when a = 1 renders convergence for arbitrary » > 0 integer.

For the general case when the t;’s are unknown and sampling is of a-order,
Lagrange interpolation for length estimation can behave badly. For example,
consider the most interesting case when a = 1. From now we shall call the
derivation of 72 as a QS-Algorithm (Quadratic Sampler). The next example
shows that for the ¢;’s unknown with o =1 in (3) and r = 2, the formula (4)
may not hold even if v is well approximated.



Example 1. Consider the following two families of the ¢;’s distributions:

% if i even ,
t; = %+$ifiodd&i:4k+1, (7)
L Lifjodd &i=4k+3,
i (1)t
ti=—4-—2— 8
¢ m+ 3m ' (8)

with to = 0 and ¢, = 1. In order to generate synthetically sampling points
Q, assume temporarily that the ¢;’s distributions from (7) and (8) are known
and that the analytic formulae for regular curves semicircle and cubic curve
Vsy Ve : [07 1] - ]R2

wt+ 1
T+ 1

) (9)

are given. Consequently, upon deriving initial data Q,,, the QS-Algorithm
is used merely with Q,,. As it turns out with uniform estimate ¢; = i/m
of the t;’s, QS-Algorithm yields a good trajectory estimation in either cases
(see Figure 1). Note also that for synthetic generation of curve samplings
proportional to arc-length parameterization is not needed. Only the existence
of the latter (assured by the regularity of ) is used to prove both Theorems
2 and 4.

~s(t) = (cos(w(1 — t)),sin(w(1 —t))) and ~.(t) = («t, (

0.5 T 0.5 T

0.2 -0.2
(a) (b)

1.2 1.2
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Fig. 1. (a) 72 for a semicircle s and (7). (b) 72 for a semicircle 75 and (8). (c) 72
for a cubic curve v, and (7). (d) 72 for a cubic curve . and (8)

On the other hand the length estimation by QS-Algorithm (used with
t; = i/m) for d(vs) = 7 and d(.) = 3.3452 yields a dual result (see Table 1),
where piji_) = |d(7)—d(72)| and 577 defines an estimate of $; (see (4)) found



by linear regression applied to the pairs of points (log(m), — log(pg"fw))), with
m running from 6 to 200. O

Table 1. d(v) estimation by QS-Algorithm with the ¢;’s unknown

curves: semicircle 7, cubic curve .
samplings: (7) (8) (7) (8)
ﬁg?,?): 1.44 n/a” 1.99 n/a”
Pty 3.45x107*  0.1288  6.36x10"° 0.1364

* not applicable: lim,, - d(7,) exists but is not equal to d(v).

In contrast, if the t;’s for both samplings (7) and (8) are known, then
QS-Algorithm yields a better result for (4) (see Table 2). In the next section
we discuss a similar problem of estimating d(v) with either internal or ex-
ternal parameterizations used and applied to the special subclass of 1-order
samplings, namely the so-called e-uniform ones.

Table 2. d(v) estimation by QS-Algorithm with the ¢;’s known

curves: semicircle s cubic curve 7.
samplings: (7) (8) (7 (8)
Bith: 3.99 4.02 3.99 2.99
PatYy: 4.52x107°  2.26x10"'"  5.54x107° 1.39x10"°

In the last example, among all, the sharpness (6) for length estimation
was confirmed when a = 1, r = 2 with internal clock available. The validity
of (6) can in fact be similarly verified for all r integer and o = 1. The next
example tests the case for some 0 < a < 1, r = 2,3 and the t;’s known.
Example 2. Consider the following a-order samplings t; = (i/m)%, for 0 <
a < 1. For 7, and v, defined in Example 1, the QS-Algorithm yields:
Similarly, for r = 3 (here 43 forms a piecewise cubic spline) and for -, and
for a quartic curve 7y, (t) = (nt, (Z551)*) (where ¢ € [0,1]) for which d(v,,) =
3.3909, the results are shown in Table 4. Note that v, was replaced here by
g4, as otherwise piecewise cubic spline ¥3 coincides with +y, thus yielding error

equal zero.

The convergence rates in Table 3 (or in Table 4) are faster than the

corresponding 3y from Theorem 2 for » = 2 (or r = 3), namely: szl/z =1



Table 3. d(v) estimation: r = 2 and the ¢;’s are known «-order samplings

curves: semicircle 7, cubic curve 7.
samplings: «a =1/2 a=1/3 a=1/2 a=1/3
Bitn: 2.46 1.61 2.09 1.43

Pty 7.32x1077  0.71x107"  1.10x1077  6.03x107°

Table 4. d(v) estimation: r = 3 and the ¢;’s are known «-order samplings

curves: semicircle 7 quartic curve 7y,
samplings: «a =1/2 a=1/3 a=1/2 a=1/3

Bitn: 2.46 1.60 2.64 1.81
Pty 4.65x107°  2.41x107°  1.74x107% 1.18x107°

(or B2 = 1.5) and BOY* = 1/3 (or B27® = 2/3), respectively. As it
stands now it remains an open problem whether for 0 < o < 1 and arbitrary
r Theorem 2 indeed provides sharp estimates. 0O

In the next section we will establish sharp estimates for the special sub-
class of 1-order sampling, namely for e-uniform with internal (when r > 0)
and external parameterizations (when r = 2) used.

4 Internal & External Clocks for e-Uniform Samplings

In this section we shall discuss the performance of QS-Algorithm (r = 2)
for e-uniformly sampled C"*2 curves. Note that both examples of 1-order
samplings (7) and (8) are also 0-uniform samplings. As shown in Example 1
Lagrange interpolants for length estimation can behave badly for 0-uniform
sampling and external parameterizations (where ti=1i /m is used to approx-
imate ¢;). The more elaborate algorithms of [17], [18] or [19] are needed for
this case to correctly in parallel estimate both v and the ¢;’s distribution.
However, for ¢ > 0 and QS-Algorithm the following can be proved (see [20]):

Theorem 3. Let the t;’s be unknown and sampled €-uniformly, where e > 0,
and suppose that v is C*. Then QS-Algorithm used with t; = i/m yields

~ 1 - 1
d(Y2) = d(vy) + O(W) Ay = Pellee = O(m) . (10)

The estimates from Theorem 3 are sharp (see [20] and [21]). Note that for
€ = 0 the proof of Theorem 3 fails and in fact as shown in Example 1 dual
outcomes are possible.



Whereas Theorems 1, 2 permit length estimates of arbitrary accuracy
(for r arbitrary large or r > L — 2, respectively) Theorem 3 refers only to
piecewise-quadratic estimates, and accuracy is limited accordingly. The proof
of Theorem 3 shows that if r > 2 and the ¢;’s are unknown, then any conver-
gence result for 7, and #; = i/m requires ¢ to be large. The latter would force
the sampling to be almost uniform which does not constitute the most inter-
esting case. Note also that if » = 1 a piecewise linear interpolation provides
the same quadratic convergence rates (see proof of Theorem 3) independently
whether the t;’s are known or unknown. Equal convergence rates result from
the existence of exactly one (and the same for the ¢;’s known and unknown)
linear interpolant passing through two points in IR".

Note that if the ¢;’s are known for e-uniform sampling (for which a = 1)
by sharpness of Theorem 1 and 2 the following hold r + 1 < 8y <r +2 (if r
iseven) and r+1< 8 <r+1lie. 8 =r+1(if r is odd). It turns out that
for e-uniform samplings (a subclass of 1-order sampling (3)) a tighter result
than claimed by Theorem 2 can be proved at least for r even (for a proof
which constitutes a new result see Appendix 2).

Theorem 4. If sampling is e-uniform, € > 0 and v € C™2 then with the
t;’s known explicitly piecewise-r-degree Lagrange interpolation yields

_ _ O(#) if r > 1 is odd
d(y,) —d(y) = {O(m) if r > 1 is even, (1)
and
- _0 1 12
IFr = oo = O(—7) - 12)

Remark 2: Note that Theorem 4 can be applied to the extended defini-
tion of e-uniform samplings namely: —1 < & < 0, for which in fact t; = O(#)
satisfying (3) with 0 < @ < 1 and a = 1 + €. Then formula (32) is replace-
able by O(W) and as a(r +2) < r + 2 we would have (33) of order
O(W) This consequently yields the same length estimates as Theorem
2 with 0 < a < 1. There is still, however need for Theorem 1 as not all order
preserving samplings (3) are of the form ¢; = O(==)

Next we test the sharpness of the theoretical results in Theorem 4 with
some numerical experiments which assume the #;’s to be known.

Example 3. Experiments as in the previous section were performed with
Mathematica on a 700 MHZ Pentium III with 384 MB RAM. We show first

the sharpness of (11) for r = 2 and ~. sampled according to e-uniform sam-
pling:

B i (_1)i+1
=t e (13)

with d(vy.) = 3.3452. We use a similar notation in Table 5 as in Example
1. Note that computed rates 33?3) nearly coincide with those asserted by



Table 5. d(v) estimation: r = 2 and the ¢;’s known from (13)

computed (; for v

e 2 1 1/2 1/3 1/10 5/100 1/100 0

Bily 400 401 348 332 3.09 3.04 3.00 3.00

the Theorem 4, namely: for ¢ = 2,1,1/2,1/3,1/10,5/100,1/100, and 0 we
have 85=2 = 4, B7=L = 4, g7°'/% = 35, g7='/% = 10/3, g7/"0 = 3.1,
=5/100 — 305, g77H/10 = 301, and B? = 3, respectively. Similar sharp
results can be obtained for » = 4 and (13) with ¢ = 0,0.5,2 yielding 8, =
4.91,5.31, 5.88, respectively. Here the cubic curve (9) is replaced by a quintic
curve g, () = (nt, (7:—1'11)5), with ¢ € [0,1] and d(v,,) = 3.4319. Otherwise a
piecewise quartic spline 7, coincides with . thus yielding error equal zero.
The computed estimates are slightly less than (11) with » = 4 (they should
be at least 5, 5.5, and 6, respectively) as only a small number of interpolation
points was considered before reaching machine precision during integration.
Of course, the asymptotical nature of Theorem 4 requires m to be sufficiently
large. Finally, for r = 3 and 7, we have for £ = 1,0.5,0 the following val-
ues /1 = 3.99,4.02, and 3.92, respectively. The latter coincides with a = 4
claimed by Theorem 4 which strongly confirms the sharpness of the last the-
orem also for r odd. O

5 Conclusions

We examined here a class of a-order and e-uniform samplings for piecewise
Lagrange interpolation to give length (and trajectory) estimates converging
to d(7), including investigation of convergence rates for both internal (with
the t;’s known) and external (with #; = i/m taken as estimates of ¢;) param-
eterizations. Our results are confirmed to be sharp or nearly sharp for both
classes of samplings.
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7 Appendix 1

In this Appendix we shall prove Theorem 2. Part of the proof from this
section shall be used also in Appendix 2 to justify Theorem 4.

Proof. Suppose that 7 is C*, where k = r + 2 with » > 1, and (without loss

m

of generality) that m is a multiple of r. Then Q,, gives = (r + 1)-tuples of
the form

(QO;fh; s 7q1‘)7 (qraqurl; R 7q27‘)7 R (quraqur+1; .. ;qm) .

The j-th (r + 1)-tuple is interpolated by the r-degree Lagrange polynomial
Pl (tgi—1yr,tjr] = R", here 1 < j < 2

Pg(t(j—l)r) =dq@G—1)rs-- > P%? (tjr) = Qqjr -

Clearly, each P/ is defined in terms of a global parameterization ¢ € [ti—1)r> Lir]-
A simple inspection shows that

f= Pﬂ —7: [t(j—l)ratjr] - R"
is C™*2 and that it satisfies
fG-1r) = fEG-1yr41) = ... = f(tjr) =0

Note also that PJ depends implicitly on m and thus f (and later h) should
be understood as a sequence of f,,, while m varies. By Lemma 1 and (5) we
have

F@) = (¢ =t-1)0) (¢ = t-1)r41) - (£ = ) B(D) (14)



where h : [t(;_1)p,tj,] = R" is C'. Still by proof of Lemma 1

dr+1f B dr"'—l’)/

h’(t) = O( der+17 der+1

)=0(1), (15)

because deg(P7) < r and % is O(1). Thus by (3), (14), and (15) we have
r dt

£ = O

for t € [t(,_1);,tr;]. This completes the proof of the second formula in (6).
Furthermore, differentiating function h (defined as a (r + 1)-multiple in-
tegral of f("t1) over the compact cube [0, 1]"+?; see proof of Lemma 1) yields

dr+2f dr+2’)/
h(t) = O( dtr+2 = dtr+2

)=0(1), (16)

as deg(PJ) < r. Thus by (3), (14), and (16) f = O(=%) and hence for
t e [t(j—l)r;tjr]

1

mCYT‘

() = PI(t) = f(t) = O(

) - (17)

Let VH-YL (t) be the orthogonal complement of the line spanned by +(t). Since
[|7(t)|| = d(v) (as v can be parameterized proportionally to arc-length)

Py = ST 25 4y (18)

where v(t) is the orthogonal projection of PJ(t) onto Vi-(t). As Pi(t) =

F() + (1) and [[3(8)]| = d(7), by (18) we have

olo) = o) - <LOH 250
The latter combined with (17) yields v = O(=&=). Hence as by (17) and (18)
B = OO 200 1

d(v)?

and as < ¥(t),v(t) >= 0, the Binomial Theorem yields

(19)



Note that by (17) |2 <f(dt()ﬂ’;)’§t)> + O(mzlar )| < 1 holds asymptotically. Integra-
tion by parts with (19) renders

[ aen-mena= [ L0120 0

ti—1)r ti—1)r d()
b < f(1),51) >
= — — P D T dt+ O(————) . 20
/t(j—m d(v) (ma(2r+1)) (20)

Since v is compact and at least C® by (15), (16), and h = O(1) we have
<A(1),5(t) >=0(1), <h(t),7?(t) >=0(1) and < h(t),5(t) >=O(1).
Hence, by (14) and Taylor’s Theorem applied to r(t) =< h(t),5(t) > at
t=1t3-1)r, we get

.. 1
< f(0,5() >= (¢ = tg-yr) ... (¢t = tgr)(a + O(2)) (21)

where a is constant in ¢ and O(1). Note that it is important that a is of order
O(1) as it varies with m changed. Thus by (20) and (21) we arrive at

[ apion-mond=ot_ ).

ti—1)r

As already defined take ¥, to be a track-sum of the P7, i.e.

m_q . 1
d(Pl) = d(y) + O(w) :

This proves the Theorem 1. 0O

8 Appendix 2

In this Appendix we justify Theorem 4.

Proof. The second formula (12) results directly from Theorem 2 by setting
a = 1 (as each e-uniform sampling with ¢ > 0 is also a 1-order sampling).
Furthermore, upon repeating the argument from Theorem 2 up to (21) we
obtain

< SOA() >= (¢ = tgny) - (6~ 1)@+ O(-) (22)

where a is constant in ¢ and O(1). Upon substitution ((j_1)r,t(j—1)r41, - tjr)
= (to,t1,...,t,) let x; : R"T' = IR be defined as

Xi(h):/r(t—to)...(t—tr) dt | (23)

to



where i = (j—1)r, ty = ¢(EE)+hy, (for 0 < k <r) with h = (ho, 1, ..., hy) €
R™! satisfying hy, = O(#), for each 0 < k < r. By Taylor’s Theorem and
e-uniformity there exists § > 0 such that for each h € B(0,) c R"**

Xi(h) = xi(0) + Drxi(§(h))(h) , (24)

with £(h) = (&(h), & (R),. .., & () € B(0,6) positioned on the line between
0c R and h = O(=1+=) (and thus here § = O(3=)). Furthermore, the
integral (23) at h = 0 upon integration by substitution reads
m 7 1+ .
xi(0) =/ (@(s) = ¢(=)) - (8(s) — ¢(——))¢(s) ds . (25)

i m m

Again, Taylor’s Theorem applied to each factor of the integrand of (25) com-
bined with compactness of [0,1] and ¢ being a diffeomorphism yields

i+r
m

xi(o>=b/ (s = L +ho) (s — L 4 R ((0) + O

1
—)d
i m m m)) 5
where b = [[,_, #(:££) is constant in s and O(1) and hy, = O(-L) (for
0 <k <r). Furthermore,
itr

i i+
xi(0) = ¢ i (s—a)(s— - )d8+0(mr+3

) (26)

where ¢ = b¢(0) is constant in s and O(1). Again, as previously, it is vital that
both b and ¢ are of order O(1), since they vary with m. A simple verification
shows that the integral in (26) either vanishes for r even or otherwise is of
order O(——). Hence

B O(#) ifr>1isodd,
xi(0) = {O(ﬁ) ifr>1iseven. 27

In order to determine the asymptotics of the second term in (24) let

Filts s o) = (= 9(--) = ho) .. (¢ = ("

) = hr) . (28)

As [¢(£) + ho, ng((H'T)) + h,] is compact and f;(t,h) is C* we have

aXz /¢(lv+nr)+hr a}v'z
h) = t,h)dt, for 1<k<r-1. 29
=[G (29)
Similarly,
i /¢(HTT)+hr afN-i . i
h) = t,h)dt — fi(p(—) + ho, h) . 30
=] G AT o) (30)



Note that by (28) the second term in (30) vanishes. Thus formulae (29)
extend to k = 0 and similarly to £ = r. Hence by the Mean Value Theorem
the second term in (24) satisfies

Dpxi(¢ Z hy /

= Y 00 — o) + .0 - oo L

k=0

d(EED)+e(h) afl
O,y a

o(%)+éo(h)

(t,§(h))
(31)

with t € Ze = [¢(5) +&o(h), 6(5L) +&,(h)] and, where as in (24) h € B(0,6)
and ¢(h) € B(0,0) is positioned on the line between 0,k € IR""*. By Taylor’s
Theorem ¢(“L) — ¢(L) = O(=+) and
1
[ (h) = & (h)] < 2[|h]l = O(—7) -
Similarly, for each 0 <1 <r we have t — d)(%) —&(h) = O(%) and thus as

t € I¢ by (28) we have af’ L(t,&(h)) = O( -L.). Hence the asymptotics in (31)
coincides with

Dixi€m)(h) = 3 000 ) = O~y . (32)

m’f’
k=0
Coupling (27) and (32) with (24) renders
O(=1t) ifr>1isodd,

mr+2
1 . .
O(m) 1f7"221s even .

i) = { (33)

Thus putting (33) into (23) and combining the latter with (20) and (22) yields
t; ‘s S
g i ~ < f@),90) > 1
(IEZ @ =17 @1) dt:/ — T D T+ O(——)
/t(j 1)r " t(j 1)r d(’}/) 2T+1

< (1)) >
=— —— =" dt+ 0

/t(jl)r d() ( ZTH)
O(==) ifr>1isodd,

_{O(m) ifr22iseven.

Hence as d(3,) = Ej%:gld(Pj"), we finally obtain

~\_ [O(=51) if r > 1is odd,
d(y) = d() = {O(%) if r > 2is even.

mr+itmin{l,e}

This completes the proof of Theorem 4. O



