Skip to main content

Distance Map Based Enhancement for Interpolated Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2616))

Abstract

Distance maps have many applications in computer vision, pattern recognition, morphology and robotics. In this paper, an approach of Distance Map based Image Enhancement (DMIE) is proposed for improving the quality of interpolated images. In DMIE, edge detection is performed after images are interpolated by conventional interpolation schemes. A unidied linear-time algorithm for the distance transform is applied to deal with the calculation of Euclidean distance from pixels to edges in the image. The intensities of pixels that are located around edges are adjusted according to the distance to the edges. DMIE produces a visually pleasing sharpening of edges in interpolated images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kenneth R. Castleman. Digital Image Processing. Prentice Hall, Inc., 1996.

    Google Scholar 

  2. M. Unser, A. Aldroubi, and M. Eden. Fast B-spline transforms for continuous image representation and interpolation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):277–285, March 1991.

    Article  Google Scholar 

  3. M. Unser, A. Aldroubi, and M. Eden. B-Spline signal processing: Part I-Theory. IEEE Transactions on Signal Processing, 41(2):821–833, February 1993.

    Article  MATH  Google Scholar 

  4. M. Unser, A. Aldroubi, and M. Eden. B-Spline signal processing: Part II-Efficient design and applications. IEEE Transactions on Signal Processing, 41(2):834–848, February 1993.

    Article  MATH  Google Scholar 

  5. K. P. Hong, J. K. Paik, H. J. Kim, and C. H. Lee. An edge-preserving image interpolation system for a digital camcorder. IEEE Trans. Consumer Electron., 42(3):279–283, August 1996.

    Article  Google Scholar 

  6. K. Jensen and D. Anastassiou. Subpixel edge localization and the interpolation of still images. IEEE Trans. IP, 4(3):285–295, March 1995.

    Google Scholar 

  7. X. Li and M. T. Orchard. Edge-directed prediction for lossless compression of natural images. IEEE Trans. IP, 10(6):813–817, October 2001.

    MATH  Google Scholar 

  8. X. Li and M. T. Orchard. New edge-directed interpolation. IEEE Trans. IP, 10(10):1521–1527, October 2001.

    Google Scholar 

  9. R. R. Schultz and R. L. Stevenson. A bayesian approach to image expansion for improved definition. IEEE Trans. IP, 3(3):233–242, May 1994.

    Google Scholar 

  10. G. Ramponi. Warped distance for space-variant linear image interpolation. IEEE Trans. IP, 8(5):629–639, May 1999.au][11]_P. F. Zeng and T. Hirata. Distance map based image enhancement. (submitted).

    Google Scholar 

  11. P. F. Zeng and T. Hirata. Interpolatory edge detection. Machine Graphics and Vision, 10(2):175–184, 2002.

    Google Scholar 

  12. T. Hirata. A unified linear-time algorithm for computing distance maps. Information processing letters, 58:129–133, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. N. Kolountzakis and K. N. Kutulakos. Fast computation of Euclidean distance maps for binary images. Information processing letters, 43:181–184, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Chen and H. Y. H. Chuang. A fast algorithm for Euclidean distance maps of a 2-D binary image. Information processing letters, 51:25–29, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Thurnhofer and S. K. Mitra. Edge-enhanced image zooming. Opt. Eng., 35:1862–1869, July 1996.

    Article  Google Scholar 

  16. G. Ramponi. A cubic unsharp masking technique for contrast enhancement. Signal Processing, 67:211–222, 1998.

    Article  MATH  Google Scholar 

  17. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1998. 97

    Google Scholar 

  18. J. Canny. A computational approach to edge detection. IEEE Transactions on PAMI, 8(6):679–698, November 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, P., Hirata, T. (2003). Distance Map Based Enhancement for Interpolated Images. In: Asano, T., Klette, R., Ronse, C. (eds) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol 2616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36586-9_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-36586-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00916-0

  • Online ISBN: 978-3-540-36586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics