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Abstract. In this paper a method is presented that decreases the necessary num-
ber of evaluations in Evolutionary Algorithms. A classifier with confidence in-
formation is evolved to replace time consuming evaluations during tournament
selection. Experimental analysis of a mathematical example and the application
of the method to the problem of evolving walking patterns for quadruped robots
show the potential of the presented approach.

1 Introduction

The high number of fitness evaluations in evolutionary algorithms is often expensive,
time-consuming or otherwise problematic in many real-world applications. Especially
in the following cases, a computationally efficient approximation of the original fitness
function reducing either the number or duration of fitness evaluations is necessary: (i)
if the evaluation of the fitness function is computationally expensive, (ii) if no mathe-
matical fitness function can be defined, (iii) if additional physical devices must be used.
Several approaches have been suggested to reduce the number of fitness evaluations
in EA. If the fitness function is a mathematical function, approximations by interpola-
tion between individuals in search space build a meta-model of the fitness function (see
e.g. [2, 8]). In more complex cases, the fitness of an individual may be inherited from
their ancestors to save evaluations (see e.g. [11]). Another approach tries to minimize
the number of evaluations by clustering the individuals around ”representatives” which
determine the fitness of a subset of the population [9]. Statistical and information theo-
retical results are used in e.g. [3] to reduce the number of fitness evaluations in GP. An
comprehensive collection of works in this field can be found in [7].

The article is organized as follows. The next section introduces the idea of using the
result of a classifier to discriminate between better and worse individuals during tour-
nament selection. Section 3 introduces the confidence level for classifications. Section
4 investigates the influence of the meta-model on two different problems. Section 5 de-
scribes the evolution of a classifier with GP based on data from a real world experiment
and section 6 presents and discusses the results of the evolution of gait patterns for four-
legged robots using the meta-model approach. Finally, section 7 gives our conclusion
and hints to future works.
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2 Tournament Selection by Classification

In this section, a new method will be illustrated which replaces time consuming fitness
evaluations of individuals in tournaments by classifications during evolution.

During a tournament, T individuals are compared pairwise on the basis of their
fitness values and divided into two sets TW and TL. TW can be considered the class
of winners, TL the class of losers. In a subsequent step, all losers will be replaced by
varied copies and recombinations of winners. Whether or not an individual remains in
the population can formally be seen as the result of a classification C of the comparisons
V :

C : V −→ {0,1} (1)

The comparisons V (i, j) are divided into two classes, depending on which of the indi-
viduals i, j has the better fitness according to a given fitness criterion f .

C : V = (i, j) −→ 0 ⇔ f (i) > f ( j)
C : V = (i, j) −→ 1 ⇔ f ( j) ≥ f (i) (2)

The fitness f (i) of an individual i is usually computed by an evaluation E (see eq. (3))
that assigns a real number as a fitness value to i. A simple comparison using <,>,≤,≥,
separates superior and inferior individuals afterwards. Thus, tournament selection is
based on phenotypic information.

E : i −→ IR. (3)

However, the sets TW and TL can be also be obtained as a result of classification (2):

V = (i, j) ∈ 0 ⇔ i ∈ TW , j ∈ TL

V = (i, j) ∈ 1 ⇔ i ∈ TL, j ∈ TW (4)

Any classification C that divides the tournament T in two sets TW ,TL with TW ∪TL = T
and |TW | = |TL| is—from a formal point of view—a valid classification. If a classifica-
tion C′ can be given that has the same characteristics as C, but with a reduced runtime,
i.e. with a reduced need for evaluation E , the overall runtime of the algorithm will be
reduced accordingly. In other words, a comparison V between two individuals, each re-
quiring the evaluation E , can be replaced by a classification with substantially smaller
runtime.

Therefore, on the one hand, C′ has to operate on other criteria than C and, on the
other hand, can be seen as a model of the classification C. An ideal classifier C′ can now
be written as

C′ : V −→C(V ), (5)

and is nothing else but a function that calculates the outcome of the classification C(V )
solely from V , i.e. from i and j. C′ thus operates on genotypic information, the informa-
tion coded in the genome, instead of operating on phenotypic information like C which
uses E . The quality of any given classification C′ on a set of comparisons V can easily
be calculated as the sum of misclassifications:

quality(C′) = ∑
V

|C(V )−C′(V )|. (6)
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quality(C′) at the same time is the definition of a fitness function for any machine
learning algorithm applied to the problem of creating an adequate substitute C′ for C.
The ratio of correct classifications and number of comparisons is a quality measure for
C′ and is known as hit rate.

3 Confidence Level

If a classifier C′ is the result of a learning process, it is likely that the quality of C′ is not
optimal. This implies that there will be some misclassifications on the set V . Another
observable quantity, the confidence k (k ∈ [0,1]) of a classification, is of particular use
here. A classification with high confidence level k indicates a more reliable result than
a classification with a low k-value. However, a certain error probability pe (pe ∈ [0,1])
will always remain. Introducing a confidence level kV (kV ∈ [0,1]) for C′ yields

C′ : V −→< {0,1},kV > . (7)

This ensures a confidence level kV for every single classification of C′. Based on kV a
decision can be made whether to accept the result of the classification (kV > k) or not
(kV ≤ k). If the classification is rejected, two evaluations E are necessary to complete
the comparison.

4 Influence on the Performance of the EA

This section is devoted to the investigation of the influence of the introduced method
on the overall performance of EA. Therefore it is assumed that a classification C′ exists
for the two example problems used in this section.

It is difficult to quantify the influence of a certain number or percentage of mis-
classifications that allow individuals with inferior quality (real fitness) to persist in the
population. Evolutionary algorithms are instances of beam search exploring regions of
the search space that are defined by the composition of the population. The best route
towards the global optimum is a priori unknown due to several reasons like e.g. the
initialization of the population, application sequence of variation operators, random
number effects, etc. It is therefore impossible to state that persisting individuals with
worse fitness values (those misclassified as winners) have only negative influence on
the EA’s performance.

The following example shows experimentally the influence of certain combinations
of confidence level k, error probability pe and runtime ratio r between evaluation and
classification on the performance of a Genetic Algorithm (parameters of the GA are dis-
played in Table 1) with two different fitness functions. The functions to be maximized
are defined in (8) and (9).

f1(i) =
9

∑
l=0

il, (8)

f2(i) =
{

100 · i9 ,if i5 + i6 ≥ 1
(i0 + 10i3)2 − (i1 + i2 + i4)3 else.

(9)
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Table 1. Parameters of the GA used and for the computation of runtime.

Parameter Value
Objective Maximize eq.( 8) (eq. (9))
Number of runs 100
Population size 100
Length of individuals 10 Bit
Prob. of mutation 70%
Prob. of crossover 30%
Initialization random
Selection scheme Tournament (size = 4)
Termination criterion Av. fitness of population > 80% of max. fitness
Runtime of C (tC) 0.1 s
Speed factor s [1, . . . ,1000]
Runtime of E (tE ) tE = s · tC
Minimum confidence level k [0.7, . . . ,1.0]
Error prob. pe {0.05,0.1,0.2,0.3}
Duration of start phase 50 (eq. 8), 400 (eq. 9)
(approx. 25% of standard runtime)
Standard runtime (tS) 200 Tournaments (eq. 8),

1528 Tournaments (eq. 9)
Learning time tL for C′ 10.0s

The first function just maximizes the number of ones in the genome, whereas the latter
is a discontinuous nonlinear function of the elements of the individual i.

The fitness is always calculated for each individual. After a starting phase during
which no classification takes place, individuals with better fitness values replace infe-
rior ones with a probability pr (see eq. (10)). With probability pp (see eq. 11), inferior
individuals remain in the population. It is furthermore assumed that the confidence lev-
els kV of C′ are uniformly distributed in [0,1], resulting in a probability of pE = k that a
classification has a confidence level of less than k, meaning that the evaluation E of the
individual is necessary. This method simulates the outcome of a classification C′ with
an error probability pe.

pr = (1− pe)(1− k) (10)

pp = pe(1− k) (11)

Saving Runtime

To compute the overall runtime needed for the experiment, the number of evaluations
and classifications during the evolution are counted. During the starting phase, only
evaluations take place and their runtime is added to the total runtime. In the second
phase, the runtime for a classification C is added for every comparison. If the confidence
level kV of C is less than k, the runtime for two more evaluations is added. Learning C′
is assumed to need a certain time tL. Every parameter needed for the computation of the
total runtime is given in Table 1.
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Fig. 1. Comparison of run time ratios (z-axis) of different combinations of confidence level (x-
axis) and speed factor (y-axis). The lighter the colors, the smaller is the ratio. Dark regions in-
dicate run time ratios ≥ 1, light regions indicate run time rations ≤ 0.85. Fitness function is eq.
(8).

Basis for the experimental analysis is the average time of 100 identical runs (except
for the random seed) until the average fitness of the whole population reaches 80% of
the a priori known maximum fitness. This value is divided by the standard run time, the
average runtime of 100 runs of an unmodified GA. The runtime ratio r is computed as
follows:

r =
1

100

100

∑
i=0

ni
C · tE + ni

C · tC + tL
tS · tE , (12)

with ni
C,ni

E the number of classifications and evaluations in run i. A ratio of one or
smaller indicates that the parameter combination yields a runtime that is equal to or
less than that of the standard algorithm. In Figure 1 the results are shown. It is clearly
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Fig. 2. Comparison of run time ratios using eq. (9).

visible that a smaller confidence level k reduces the runtime of the algorithm, whereas
a smaller speed factor between classification and evaluation increases the runtime. On
the other hand, increasing the speed factor to values above 300 or more does neither de-
crease runtime nor compensate for higher confidence levels. Contrariwise, if the speed
factor falls below a certain threshold, decreasing the confidence level does not reduce
the runtime any more. A common characteristic is the increasing runtime due to increas-
ing error probability pe. Nevertheless it is astounding that a 30% error of classification
still gives run time ratios r ≤ 1 for a significant set of parameter combinations. If the
fitness function is more complex, the picture changes moderately. In Figure 2 the run
time ratios are displayed according to the results using eq. (9). A more inhomogeneous
behavior with different parameter combinations is visible, but the overall tendency to-
wards lower run time ratios due to higher speed factors and lower confidence levels can
be seen. Again, the run time saving reduces with increasing error probability.
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Fig. 3. Average saving of evaluations of all experiments in %. Left: Experiments using eq. (8).
Right: Experiments using eq. (9).

Saving Evaluations

If the focus is on the amount of saved evaluations and not on the absolute amount of
saved runtime, the saving is independent from the speed factor. The development of
the number of saved evaluations depending on confidence level and error probability
is shown in Figure 3. Each data point represents the average saving of evaluations of
3,700 experiments. A direct consequence of a high confidence level combined with the
assumption of uniform distributed kV values is that only a small percentage of classifica-
tions reaches this level resulting in nearly no saving. Decreasing the level of confidence
increases the possibility of a successful classification and reduces the number of eval-
uations needed. A higher error probability reduces the savings. This observations are
independent from the fitness function.

It is astounding that even with high error probabilities and complex fitness functions
a 10% reduction of the number of evaluations is possible (see figure 3, right). Another
interesting observation is that with a complex fitness function higher error probabilities
reduce the number of evaluations more than with a simple fitness function. The reasons
for this phenomenon are not yet entirely clear and need to be investigated in the future.
The given example does not have enough explanatory power to justify more general
conclusions.

Whether or not a classifier is able to reduce either the runtime of the algorithm or
the number of evaluations can be reduced to the question if such a classifier exists.
That the answer is positive, even for a complex genotype-phenotype-relation, will be
demonstrated in the following section.

5 Evolving a Classifier with Genetic Programming

The data used for the evolution of C′ have been saved during the manual evolution
of control programs for a quadruped robot (see section 6). In this section a retroactive
analysis of the experimental data was carried out to investigate the possibilities of online
evolution of classifiers with GP [1]. The result of every comparison of every tournament
was saved in the form
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Table 2. Performance of classifier variants with k = 0.65. Lower error rates are achieved by using
only data from recent generations.

all last 5 last 2
above conf. level 63,8% 70,0% 60,0%

eq. (14) variance 0.02 0.02 0.02
misclassifications 51,7% 39,0% 32,7%

variance 0.02 0.01 0.03
above conf. level 90,3% 69,0% 78,5%

eq. (15) variance 0.01 0.03 0.03
misclassifications 54,1% 35,0% 34,7%

variance 0.02 0.02 0.02

V ′ =< i1, i2,c > (13)

with c ∈ {0,1,2}. A new class, class 2, was introduced to discriminate between clear
(one individual has a significantly better fitness: class 0 or 1) and undetermined (indis-
tinguishable fitness: class 2) comparisons. A classifier for each of the three classes was
evolved using DISCIPULUS1, a fast machine code GP system with linear representation.
The three classifiers are combined using eq. (14), resulting in that class ci which has the
highest confidence level kV .

C′(V ′) = < c,kV > with c = ci|kV = max(kV (ci)) , i = 0,1,2 (14)

Taking into consideration that a low confidence level kV in favor of a certain class at the
same time stands for a high confidence level 1− kV in favor of the other classes we use
eq. (15) to combine the results alternatively.

C′(V ′) = < c, p > with c = ci|k′V (ci) = max
(
k′V (ci)

)
, i = 0,1,2 (15)

k′V (ci) = max


kV (ci),

∑
c j 	=ci

(1− kV(c j))

2


 , i, j = 0,1,2 (16)

Training and validation set are composed in three different variants. (i) All data are
used, 50% training, 50% validation. (ii) Data from the last five generations are used
(50%-50%) (iii) Only data of the last two generations are used (50%-50%). The evolved
classifiers are then used to predict the outcome of the comparisons in the actual gener-
ation.

In Table 2, the results of a series of experiments are shown. The three variants of
training/validation set formation are each evaluated with both versions of result com-
bination. If the overall classification result follows eq. (14), the average saving of eval-
uations is slightly higher with simultaneously similar classification rates. Obviously,
using only the results of recent generations for the evolution of classifiers leads to bet-
ter classification results. It seems that ignoring earlier data sharpens the classification

1 DISCIPULUS is a trademark of AIM Learning Inc. The free academic version was used with
standard GP settings for classification problems, no changes were made by the authors [5].
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Fig. 4. The four-legged Sony Aibo robot used in the experiments. The robot has 20 degrees of
freedom.

results. This might might be caused by the fact that the fitness of a classifier is based on
a uniform classification rate on all elements of the training set, a fact that neglects the
changing structure of the population during an evolutionary process.

This example demonstrates that it is possible to generate classifiers with GP based
on genotypic information alone that are able to replace the time consuming evaluations
normally necessary for tournament selection in Evolutionary Algorithms. The next sec-
tion shows an online application of this technique.

6 Application

The method introduced above is now tested with a real world problem, the evolution of
gaits for walking robots. The used robot is a Sony Aibo, a four-legged robot (figure 4)
which has successfully been used for similar experiments before [4]. Here, a set of 16
parameters of an inverse kinematic transformation [10] has to be evolved describing
gait patterns for four-legged walking robots (Sony Aibo robots). The parameters of the
GA can be found in Table 3.

The evaluation of the individual is done manually due to reasons inherent in the
problem of evolving control programs for real walking robots: it is on the one hand
difficult to mathematically formulate a sufficiently precise fitness function, on the other
hand, once you have such a function, it is difficult to set up all necessary measuring
devices to get detailed information about the actual state of the experiment. Using a
simulated robot here reduces the wear out but entails other problems instead [13, 6].
Therefore, a interactive evolution2 with tournament selection was started, during which
the experimenter just had to decide which of two individuals had better fitness (this

2 Interactive evolution embedds human intuition, preference, subjectivity, cognition, perception,
and sensation into an EA. An introduction into the field of interactive evolution can be found
e.g. in [12].
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Table 3. Parameter setting of the GA for the Evolution of gait patterns.

Parameter Value
Objective maximize forward walking speed
Population size 26
individual size 16
Terminal set IR
Prob. of crossover 0.5
Prob of mutations 0.2
Prob. of reproduction 0.3
Selection scheme Tournament (size = 4)
Initialization Standard parameter set (GT2002) with added noise
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Fig. 5. Left: The fitness of the best individual of the population with manual and meta-model evo-
lution. Right: Percentage of classifications per generations. The meta-model evolution reaches a
similar fitness with only approx. 53% of evaluations needed in the manual evolution. The whole
population is evaluated manually every five generations to extract reliable information about con-
vergence (therefore p1,2,3,4,5,10,15,20,25 = 0.)

is, in fact, a realization of eq. (2) with subsequent mapping (4)). In order to get an
unbiased overview over the performance of the individuals, the whole population is
evaluated manually every five generations and the forward speed of each individual is
measured. This first experiment was carried out to have a basis to compare the results
of the meta-model evolution with.

To evolve 25 generations takes 650 manual evaluations and yields the results shown
in Figure 5. The best-of-run individual, when executed on the robot, reaches a speed of
11 cm/s (see Figure 5).

In a second evolutionary experiment, starting from generation five of the manual
evolution, a meta-model for every generation was created by evolving classifiers with
DISCIPULUS as presented in section 5. The manually evaluated tournaments of the past
five generations together formed the training and validation set (75%-25% here, because
of the small amount of reliable fitness cases, i.e. manually evaluated ones) for the evolu-
tion. The evolved three classifiers (for every class 0,1, and 2) were used to compute the
outcome of each of the 13 comparisons V (using eq. (15)) to combinate the particular
results. If the confidence level kV of the overall classification C′ was smaller than the
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minimal value k, which was set to 0.65 here, both individuals of the comparison were
executed on the real robot and the result was manually determined. This comparison
was afterwards added to the training set for the next generation. The better individuals,
either determined by classification or manually, formed the set TW . After the variation
step, Individuals of TW replace the worse individuals in TL.

In Figure 5, the best-of-generation individuals are displayed, showing a better per-
formance (the best-of-run individual reaches a maximum speed of approx. 13 cm/s).
It is remarkable that the evolution just uses 306 manual evaluations, summing up to a
total saving of approx. 53%. The number of classifications per generation are shown
in Figure 5, too.

Carrying out the manual evolution took about 8 hours, the meta-model evolution
took about twice the time, due to the time consuming 48 evolutions of classifiers for
every single class (see eq. 14) and every generation. The next step will be to reduce this
time, probably by adapting recent classifiers to the only slightly changed training and
validation sets.

7 Discussion

Using a meta-model of the fitness function in form of a classifier for tournament selec-
tion is able to reduce the number of evaluations during evolution and the total runtime
of experiments significantly. The method presented here seems to be resilient against
misclassifications permitting worse individuals to persist in the population. However,
the classifiers have to be generated by another machine learning algorithm, raising an-
other computationally intensive problem to be solved. The number and nature of exper-
iments shown here do not give sufficient background for more general statements, but
the method seems to be powerful enough to be investigated further in the future.
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