
Landscape State Machines: Tools for Evolutionary
Algorithm Performance Analyses and

Landscape/Algorithm Mapping

David Corne1, Martin Oates1,2, and Douglas Kell3

1 School of Systems Engineering, University of Reading,
Whiteknights, Reading RG6 6AY, United Kingdom

d.w.corne@reading.ac.uk
2 Evosolve Ltd, Stowmarket, Suffolk, United Kingdom,

moates@btinternet.com
3 Department of Chemistry, UMIST, Manchester, United Kingdom

dbk@umist.ac.uk

Abstract. Many evolutionary algorithm applications involve either fitness func-
tions with high time complexity or large dimensionality (hence very many fit-
ness evaluations will typically be needed) or both. In such circumstances, there
is a dire need to tune various features of the algorithm well so that performance
and time savings are optimized. However, these are precisely the circumstances
in which prior tuning is very costly in time and resources. There is hence a need
for methods which enable fast prior tuning in such cases. We describe a candi-
date technique for this purpose, in which we model a landscape as a finite state
machine, inferred from preliminary sampling runs. In prior algorithm-tuning tri-
als, we can replace the ‘real’ landscape with the model, enabling extremely fast
tuning, saving far more time than was required to infer the model. Preliminary
results indicate much promise, though much work needs to be done to establish
various aspects of the conditions under which it can be most beneficially used.
A main limitation of the method as described here is a restriction to mutation-
only algorithms, but there are various ways to address this and other limitations.

1 Introduction

The study of fitness landscapes [14] in the context of evolutionary search strives to
understand what properties of fitness landscapes seem correlated with the success of
specific evolutionary algorithms (EAs). Much progress has been made, with a number
of landscape metrics under investigation as well as sophisticated statistical techniques
to estimate landscape properties [1,5,7,9,11,13]. Meanwhile, much effort has also
gone into constructing landscapes with well understood properties in attempt to yield
hypotheses and guidelines which may apply to ‘real’ landscapes [4,6,8,11,12]. For the
most part, a striking aspect of such investigations has been the ability of EAs consis-
tently to undermine predictions [1,6,10]. Correlation between proposed metrics or
landscape features and evolutionary algorithm difficulty tends to be weak, or bothered



by the presence of convincing counterexamples. Here we present an alternative ap-
proach to exploring landscapes and algorithm performance on them. We model a
landscape as a finite state machine, whose states represent fitness levels and state
transition probabilities characterize mutation. Such a model can be approximately
inferred from sampling during an EA (or other algorithm) run, and then used for test-
driving a range of algorithms under consideration to apply to the ‘real’ landscape.

This promises to be valuable in cases where good results are at a premium, but fit-
ness evaluations on the ‘real’ landscape are prohibitively expensive, precluding inten-
sive a priori algorithm comparison and/or parameter tuning; in contrast, a fitness
evaluation on a landscape state machine (LSM) is computationally trivial. The success
of this technique for algorithm comparison depends on the degree to which the LSM
approximation captures those features of the real landscape which are salient in terms
of algorithm comparison. Viability also depends on whether sufficiently useful LSMs
can be inferred without incurring undue cost in prior search of the real landscape. We
start to investigate these questions, and conclude that the technique is promising.

2 Landscape State Machines

What we call a landscape state machine (LSM) is simply a finite state machine (FSM)
which models certain aspects of a search landscape. To be specific, given a search
space E, an operator M (which takes a point Es ∈ , and returns another point from E)

and an associated transition matrix T (such that ijt gives the probability of yielding
point Ej ∈ after applying M to Ei ∈ ). An LSM model of this landscape is a set of
states and arcs (S, A), such that S corresponds to a partition of the set E, and A corre-
sponds to an abstraction of T. In the extreme, the LSM can model a landscape pre-
cisely, with precisely one state for each point in E, and A corresponding precisely to T.

In the general case, one state in the LSM will map onto many points in E. We will
normally expect the mapping between S and E to be such that each state s corresponds
to a set of points in E with equivalent fitness. More generally, we may define an
equivalence relation R, which partitions E into c of equivalence classes cEE ,...,1 . The
states in the LSM can then correspond precisely to the equivalence classes. In the case
that the equivalence relation R forces equality in both fitness and genotype, the LSM
model becomes the exact model described above. More generally, and as we later do
in section 4, we might define R in such a way that states may be associated with a
partition of the fitnesses into bands (e.g. all points with fitness between 0.2 and 0.3
might define an equivalence class).

2.1 Examples and Motivation

Before we discuss the uses of this simple LSM concept, an example will serve to clar-
ify and motivate the issues involved. Consider the simple MAX-ONES problem, in
which a candidate solution is a binary string of length L, and the fitness of a candidate
(which is to be maximised) is the number of 1s it contains. Further, imagine we are



interested in addressing this problem with an EA, and will employ the single-gene bit-
flip mutation operator (but no other operator). That is, when we mutate a candidate
solution, a single bit is chosen at random and its value is flipped.

The LSM in Figure 1 is model for this landscape when L = 5. There are six distinct
fitnesses in this case, and we can identify each state is with the entire set of points
whose fitness is i. It should be clear that the arc probabilities are simply derived in
this case, and indeed we could easily calculate the corresponding LSMs for this land-
scape whatever the value of L. For example, if L was 1000 then the arc leading from

217s to 218s would have probability 1/783, which is the chance of the mutation opera-
tor flipping one of the ‘0’ bits of a candidate represented by 217s .

S0 S1 S2 S3 S4 S5

1 0.8 0.6 0.4 0.2

0.2 0.4 0.6 0.8 1

Fig. 1. A landscape state machine for the MAX-ONES function with L = 5, assuming single-
gene flip mutation

Such a landscape model becomes practically useful when we consider the following
scenario. Suppose that one wishes to compare the performance of each of m different
EAs on MAX-ONES, using only single-gene bit-flip mutation. Also suppose each
algorithm eschews any elements or operations (other than the fitness function) which
require genotypic knowledge. E.g. phenotypic crowding may be employed, but not
genotypic crowding. The space of algorithms which remain is certainly not overly
restricted. E.g. we may wish to compare 1000 algorithms, each of which is a popula-
tion-based evolution strategy, for all combinations of 10 different population sizes, 10
different selection schemes, and 10 different population-structure strategies (e.g. in-
cluding islands-based schemes with a variety of migration strategies).

To properly compare these m EAs, we need t runs of each algorithm, and will typi-
cally run each trial of each algorithm for a baseline fixed number of fitness evalua-
tions, e. The total number of fitness evaluations will be m.t.e, which can easily come
to several billions or more on applications of interest. In the case of MAX-ONES the
fitness calculation is inexpensive, but consider, for example, the requirement to meas-
ure these algorithms' performance when L=1,000,000. An intriguing fact is as follows.
For algorithms of the type outlined, and landscapes which we can precisely model
with an LSM, we can replace the landscape by the model, yet predict the resulting
comparative algorithm performance with full statistical accuracy. As long as we use a
suitable initial distribution of initial fitness labels for the initial population, we can
expect the statistical properties of comparative algorithm performance on the de-



scribed LSM model, of MAX-ONES to precisely (in statistical terms) match perform-
ance on the MAX-ONES landscape itself.

It is worth clarifying at this point what we mean by "replace the landscape with the
model". To run an EA on an LSM, we simply replace the notion of a candidate solu-
tion with that of a state in the LSM. The initial population is simply a state number,
and (assuming state numbering is mapped into a simple way onto fitnesses), and selec-
tion operates in the normal way. Evaluation is trivial, since the state number corre-
sponds to fitness. Finally, when an individual (state) is mutated, the child state is cho-
sen probabilistically according to the transitions emanating from the parent state.

By using LSM models for differential algorithm performance analysis, it could be
possible to significantly reduce development times. The ability to replace a landscape
with an LSM model allows, among other things, the possibility of the following
method for use in developing EA-based solutions to an optimisation problem:

1. Derive an LSM model of the landscape in question;
2. Run many candidate algorithm designs on the LSM model;
3. Choose a suitable algorithm design given the results of step 2.
4. Use the chosen design for further development on the real landscape.

Steps 2–3 exploit the fact that an LSM model can be searched far more speedily
than the real landscape. To the extent that the dynamics of an algorithm's search on the
LSM accurately reflect its dynamics on the real landscape, the information gleaned in
steps 2–3 will support an appropriate step 4 choice.

Where precise LSMs can be inferred, the problem is undoubtedly a toy one, but the
LSM technique still may uses. E.g., with perfect statistical accuracy we can accurately
investigate the relative performance of a wide range of EAs on MAX-ONES with
L=1,000,000,000, without ever needing to store or evaluate a single 1Gb genome. The
thought that this may be possible on more interesting and realistic landscapes is ap-
pealing, but the LSM model in such cases will invariably be an approximate model. It
remains to be seen whether approximate LSMs of interesting landscapes retain the
possibility to enable accelerated appropriate choice of algorithm design.

3 Approximate LSMs

Consider the LSM in Figure 2, which models the order 3 deceptive trap function with
L = 6, again assuming single-gene bit-flip mutation. Note that the use of this particular
mutation operator is not a restriction on the method, it just simplifies illustration. In
contrast, the restriction to mutation only is a limitation which, though not insurmount-
able, is beyond the scope of a first description of the concept of LSMs and is the topic
of ongoing work. Now, Figure 2 is an accurate LSM in the sense that any arc repre-
sents the correct proportion of mutations from the sending state which will arrive at
the receiving state. State labels correspond precisely to fitnesses, e.g. state 4s repre-
sents all genomes with fitness 4, and the arc to state 5s indicates that a mutation of a
point of fitness 4 is likely to yield a result of fitness 5 with probability 0.33. However,



in an important way, it is less helpful than the earlier LSM in capturing the landscape
features of importance in exploring search algorithm performance. This is simply
because there is high ‘profile variance’ within some states, which we now explain.

S2

0.66 0.5

0.33 0.16

0.33 0.6 0.42 0.43 0.5

0.33

0.06

0.25

0.25

0.43

0.14

0.5 1.0

S3 S5S4 S6 S7 S8

0.083

Fig. 2. An LSM for the order 3 deceptive problem with L = 6 and single-gene bit-flip mutation

The 'profile' of Es ∈ is the vector of its transitions sjt for all j. The profile ele-

ments correspond precisely to sja in the case when the LSM has one state for each
point in E. In the previous MAX-ONES LSM, the vector of arcs from any state pre-
cisely matches the profile of every point ‘contained’ in that state. But in general the
vector of arcs will be a weighted average of these profiles. Consider the state corre-
sponding to a fitness of 6 in Figure 2. Two kinds of points in this landscape have fit-
ness 6. One is exemplified by the point 000110, with one chunk of three genes fully
unset, contributing 4, and a second chunk with 2 bits set, contributing 2. The six
points of this type each have the profile (0.0, 0.5, 0.0, 0.33, 0.0, 0.16, 0.0) – that, is
chance 0.0 of a mutant yielding a fitness of 2, chance 0.5 of a mutant yielding a fitness
of 3, and so on. The other kind of point with fitness 6, of which there is just one, is
111111, whose profile is: (0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0). The profile of 6s in Figure
2 represents these two profiles weighted and combined. A precise LSM for this prob-
lem would have two different states corresponding to a fitness of 6, one for each of the
two corresponding genotypes. The LSM of figure 2, however, is an approximate LSM
for this particular problem, since the dynamics of an algorithm running on it will not
exactly reflect the dynamics of that algorithm on the real problem.

In general (and which we do in section 4), LSMs will be inferred from data ob-
tained from preliminary sampling runs on the real landscape. Given the general case of
no prior landscape knowledge, we will neither know the correct number of states for
the LSM to use, nor the number of different profiles that may be shared by points with
a given fitness. LSMs inferred by sampling will thus be highly approximated models
of the precise LSM for that landscape. In the experiments which follow, we use the
simplest kind of basic LSM framework in which (as in figures 1 and 2) each state
represents a given fitness level, and there is only one state per fitness level.



4 Empirical Experience

Given that exact LSM models would clearly be very valuable, but approximations are
inevitably all we are able to expect in reality, we need to investigate the degree to
which an inferred LSM model for test-drive algorithm comparison purposes is at all
useful, and get some insight into how this depends on the amount of prior sampling
done, and on the underlying difficulty of the modeled landscape.

To underpin these analyses we use a simple metric for the utility of an LSM model.
Suppose we wish to understand the relative performance of m different algorithms on
a landscape P. We would naturally address this by performing several trials of each
algorithm on P, and then obtain a rank-ordering of the algorithms. By performing
algorithm comparisons trials on the LSM, with all other aspects of the experimental
setup being the same, we yield another such rank ordering. We can then equate the
quality of the LSM model with the distance of this rank ordering from that obtained on
the real landscape. E.g. if algorithm A is in position 3 in one rank-order, and in posi-
tion 5 in another, it contributes 2 to the total distance between the orderings. Clearly,
if an LSM model scores 0, it precisely predicts the comparative performance of the
tested algorithms on the real problem.

We now explain the design of our initial experiments in which we seek to explore
LSM utility for approximate LSM models. We first set out, for easy reference, the
algorithms and problems used, and later set out the experiments themselves.

4.1 Algorithms, Problems, and Preliminary Sampling

The algorithms tested are the following ten. In each case, the basic algorithm was a
standard generational EA with elitism (a single best in the population is automatically
entered into the next generation), using tournament selection (with replacement). The
mutation operator in all experiments is gene-wise mutation with a probability of 0.001.
That is, when a chromosome is mutated, each gene is mutated independently with that
probability. This is unlike the single-gene bit-flip mutation operator used previously in
illustrations, and leads to a more complicated LSM which is a greater challenge to
approximate. The algorithms compared differ in tournament size and population size,
and also number of generations (but the latter varied simply to ensure comparable
fitness evaluations in each case).

A. Population size 10, tournament size 1 (random selection), 500 generations.
B. Population size 10, tournament size 2, 500 generations.
C–F. Population size 20. 235 generations, tournament sizes 1, 2, 3, 5 respectively.
G–J. Population size 50. 91 generations, tournament sizes 3, 5, 7, 10 respectively.

This choice of algorithms is ad hoc and pragmatic, but reflects a suitable collection of
potential parameterizations of an EA which might be tested, given the requirement for
reasonably fast convergence, and given no prior empirical or theoretical knowledge of
the problem in hand.



We use a different EA for preliminary sampling (in order to infer the LSMs used in
the algorithm comparison tests). This is the same basic EA, but with a population size
of 200 and random selection, run for either 50,000 or 100,000 evaluations. This is
again an ad hoc choice; later we briefly discuss potentially better, or ways to choose,
preliminary sampling techniques. Here we simply note that one salient aspect of this is
the number of evaluations. If the ‘real landscape’ algorithm comparison would con-
sume e evaluations, the number of evaluations consumed in preliminary sampling, p,
should be suitably less than e. As we will see, p is 450,000 in the ensuing tests.

The optimization landscapes we explore are MAX-ONES problem with L = 1000,
and NK landscapes with N = 1000, and with K set at 5 or 10. For each landscape the
following is done: we run the preliminary sampling EA once on the real landscape,
building two LSMs for each, one corresponding to the data gleaned up to 50,000
evaluations and another from the data gleaned up to 100,000 evaluations.

We infer the LSM as follows. Every (parent fitness, child fitness) pair correspond-
ing to a mutation is recorded. With general real-world application in mind (in which
there is no prior knowledge of the number of fitnesses), we chose instead to fix the
number of states in the LSM at 200, and thus map the information gleaned, in every
experiment, onto a 200-state LSM. The (parent) fitnesses sampled were simply scaled
uniformly between 0 and 200; then, a state in the LSM was created to correspond to
each interval [x, x+1] for x from 0 to 199. Each state therefore corresponded to a
number (in some cases 0) of fitnesses, and arc labels were calculated accordingly. A
final point worth noting is that we also remembered the fitnesses of the initial popula-
tion of the sampling run, and scaled them to yield a list of the corresponding states.
The LSM trials then used this list of states to build its initial populations. E.g. for a
trial run with a population of size 10, the initial population of the algorithm trial on the
LSM would be generated by sampling uniformly 10 times from this list.

4.2 Experiments

The aim of these experiments was to gain some preliminary insight into how useful an
inferred LSM might be in discriminating the performance of several algorithms. The
experimental protocol for a given problem P was as follows:

1. Run the preliminary sampling EA on P in order to harvest data for the LSM.
2. Infer an approximate LSM for P from the data gathered in step 1.
3. Run an algorithm comparison study on P, with the aim of discriminating the

relative performances of several chosen EAs.
4. Run the same algorithm comparison study on the LSM inferred for P, estab-

lishing the algorithms’ relative performance on the LSM.
5. Compare the ordering of algorithms given by step 4 with that given by step 5.

In step 3, mirroring the typical shape of a real-world study which desires enough trial
runs for a chance of statistical confidence, yet still needs to be parsimonious in time
and resources, we run ten trials of each of the algorithms A–J described in section 4.1.
We record the result (best fitness found) in each trial, and a rank ordering is then de-



termined by running t-tests. The same is done in step 4, however this time relative
performance is determined by speed of convergence. As we will further discuss later,
for various understandable reasons the algorithms would typically converge to the
optimum of the LSM (i.e. state 200) before their evaluation limits were reached, and
so we could not discriminate in step 4 solely in terms of highest state attained.

A reminder of the object of all this is as follows: given conditions under which such
experiments might be successful (i.e. the rank ordering found in step 4 is significantly
close to that found in step 3), and supposing we have the task of choosing an algo-
rithm to use in anger on a real problem, step 3 would not be necessary. We could skip
to step 4, discover the algorithm which performs best on the LSM, and take this to be
a suitably accurate prediction of which algorithm would perform best on the real land-
scape. Alternatively, we might use the results of step 4 to home in on a smaller selec-
tion of choices for tests on the real landscape. The conditions under which this scheme
may be successful are easy to state: having an LSM which perfectly captures the land-
scape. What is to be determined is whether an approximate LSM can capture enough
of the salient details of the landscape to produce accurate predictions in step 4.

4.3 Results

Table 1 shows the rank orderings identified in step 3 by running algorithms A–J on
each of the three problems addressed here. Table 2 gives the rank ordering of algo-
rithms identified by experiments on the appropriate inferred 200-state LSMs following
50,000 evaluations of the preliminary sampling EA. This table also provides measures
of the distance between the LSM-inferred ordering and the real (Table 1) ordering.
Associated with each algorithm is its distance d from its position in the corresponding
Table 1 ordering, and the sum of these distances is also given. Table 3 provides the
same information for the 100,000 evaluation LSMs. A brief summary of the main
findings of these preliminary experiments is as follows.

Accuracy of the 50,000-evals LSM for MAX-ONES. The rank order of algorithms
obtained by experiments on the 50,000-evals approximate LSM for MAX-ONES is
nearly identical to that obtained from experiments on the real MAX-ONES landscape.
This augurs very well for the method, since it seems that with 50,000 evaluations’
worth of effort, we have predicted with near-perfect accuracy, and in a fraction of the
time (since running the LSM experiments is extremely fast) a rank ordering which
needed approximately 10 times that amount of effort on the real landscape. Even
though MAX-ONES is a simple landscape, this initial result is promising since it
shows that an approximate LSM can be used for this purpose, and predicting compara-
tive algorithm performance remains very difficult, even on MAX-ONES, owing the
complexity of EA dynamics.

Accuracy of the Approximate LSMs on NK with K = 5. The total distance between
the 50,000-evals LSM-obtained ordering and the Table 1 ordering is statistically sig-
nificant, indicating that we can say with confidence that the predictive ability of the
50,000-evals LSM experiments was far better than random. In the 100,000-evals case,
the ordering is even better, and the LSM seems particularly good at distinguishing



which algorithms are particularly unsuited to this landscape, and well able to identify a
collection which should perform well. The improvement in distance as we go from
50,000 to 100,000 evaluations is expected, since more real data has been used in in-
ferring the LSM.

Table 1. Rank-orderings of algorithms A–J on each of the three problems studied, identified
via t-tests on ten trial runs of each algorithm. ‘1’ is best and ‘10’ is worst.

Problem 1 2 3 4 5 6 7 8 9 10

MAX-ONES B F E D A J I H G C

NK, K = 5 F B E D J A I H G C

NK, K = 10 F B E J D I H A G C

Table 2. Rank-orderings of algorithms A–J on each of the three LSMs inferred from 50,000
evaluation preliminary sampling runs. Rankings identified and annotated as in Table 1, but in
this case, algorithms are compared in terms of speed of attaining the final state (state 200),
using highest state attained where necessary. The column below each rank position gives the
distance of the corresponding algorithm from is rank position on that problem in Table 1. The
final column provides the total distance from the Table 1 ordering

Problem 1 2 3 4 5 6 7 8 9 10 Distance

MAX-ONES B F E D J A I H G C

0 0 0 0 1 1 0 0 0 0 2

NK, K = 5 B E D F A J H I G C

1 1 1 3 1 1 1 1 0 0 10

NK, K = 10 F J I H G D C B A E

0 2 3 3 4 1 3 6 1 7 30

Table 3. Rank-orderings of algorithms A–J on each of the three LSMs inferred from 100,000
evaluation preliminary sampling runs. Rankings identified and annotated as in Table 2

Problem 1 2 3 4 5 6 7 8 9 10 Distance

MAX-ONES B F E D A J I H G C

0 0 0 0 0 0 0 0 0 0 0

NK, K = 5 B E F D A J I H G C

1 1 2 0 1 1 0 0 0 0 6

NK, K = 10 B E I D F J H A G C

1 1 3 1 4 2 0 0 0 0 12



Accuracy of the Approximate LSMs on NK with K = 10. The total distance be-
tween the 50,000-evals LSM-obtained ordering and the Table 1 ordering is better than
the mean of a random distribution of orderings (33), but is not statistically significant,
indicating that we cannot say that the LSM in this case has been able to distinguish
between the algorithms better than a random ordering would have done. However, the
more accurate 100,000-evals LSM is able to obtain an ordering significantly close to
the Table 1 ordering, and certainly provides usefully accurate predictions of the rela-
tive performance of the ten test algorithms on this highly epistatic problem.

Trends against Landscape Ruggedness and Sample Size. In partial summary of the
above observations, it is worth noting that the accuracy of predicted relative perform-
ance decreases with ruggedness of the landscape and increases with the amount of
data obtained from (i.e. the length of) the preliminary sampling run. Both of these
trends were of course very much expected, however what we did not know a priori is
whether significant accuracy could be obtained at all without an unreasonably large
sample size, and on problems with nontrivial ruggedness. These preliminary experi-
ments have shown that significant accuracy can be obtained with a reasonable sample
size and on at least one highly rugged problem.

5 Discussion: Prospects and Research Issues

LSMs have a variety of potentially fruitful uses. For example, in the application of
Directed Evolution [2,3], in which evolutionary algorithms are applied directly to the
generation of novel proteins, one generation can take about 24 hours, and with consid-
erable cost in molecular biology consumables. Similarly, structural design, especially
regarding novel structures, often requires highly costly evaluation functions which
may include fine-grained airflow or stress simulation. In such cases the need for fast
and accurate methods to help design the algorithm is crystal clear.

We have started to explore the viability of inferring them from preliminary land-
scape data, with a view to obviating the need for algorithm choice and/or tuning runs.
The results so far are encouraging, particularly given the following points. First, an
arbitrary and simple LSM structure was used in each case, with no preliminary attempt
to, for example, find the most suitable number of states for each problem. Second, the
preliminary sampling EA was designed only as one of many possible ways to obtain
parent/child fitness pairs for a good spread of fitnesses. Further investigation may
reveal that alternative sampling approaches may be more effective, such as a Markov
Chain Monte Carlo search, or an adaptive EA which explicitly attempts to sample
evenly (or in some other suitably defined way) throughout the landscape. As it turned
out, the prior sampling EA in each case performed rather less well than the better few
of the test EAs in the real experiments; this means that the LSM contained no informa-
tion about a considerable portion of the landscape traversed by these algorithms; it is
therefore encouraging that the LSM was able to do a fair job in each case despite this
fact. Third, there is no reason to expect that some useful accuracy of the LSM-based
predictions would not be maintained if further (e.g. 20, or 50) different suitable algo-
rithms were tested, and hence the ‘true’ potential savings in evaluations are potentially



vary large. Fourth, LSMs can always be augmented by data from further runs on the
real problem, If it turns out that a series of instances in the same problem class can be
suitably modeled by the same approximate LSM (which seems intuitively reasonable),
then each real algorithm run on the problem yields data which can augment the LSM
and hence increase its accuracy for further algorithm choice/tuning experiments. Fi-
nally, an exciting prospect is the augmentation of inferred LSMs with prior knowledge
or reasonable assumptions about the landscape.

There are many research issues here, ranging through the theory and practice of
choosing a sampling method, how best to construct an LSM from given data, and
establishing what confidence to bestow on the predictions of an applied LSM model.

A quite separate use of LSMs arisies from the fact that they can be artificially con-
trived (i.e. we can predefine a transition matrix), yielding a class of ‘toy’ landscapes
which can be tuned in ways interestingly (and in some ways potentially usefully) dif-
ferent from other tunable models such as the NK family. We can construct landscape
state machines, and hence models of real landscapes (although see below), at will. In
so doing, it is not necessarily easy to directly and precisely control factors such as the
degree of epistasis or the sizes of basins of attraction, however we can precisely con-
trol the number of fitness levels, the density of local optima, and how this density
varies as we move around the landscape. The most attractive feature of LSMs in this
sense is that we can describe an extraordinarily wide range of landscapes with them. A
potential application of this is to search through spaces of landscape state machines to
find, for example, landscapes which are particularly suited to one EA rather than an-
other, or to a standard EA rather than hillclimbing, or to simulated annealing rather
than hillclimbing, and so forth. This is an area we plan to explore in future work, how-
ever it is worth pointing out that one important research issue here is whether arbitrary
LSMs correspond to any real landscapes. As it turns out, certain constraints are
needed on the profiles of states in the LSM, but we have not yet fully resolved how to
ensure an arbitrary LSM which meets these constraints is valid (i.e. corresponds to a
realizable landscape over k-ary strings using a standard mutation operator).

7 Conclusions

In this preliminary article we have described a straightforward way to model a search
landscape as a finite state machine, which we call a Landscape State Machine. An
attractive aspect of such a model is that, for certain landscapes at least, the features
relevant to the search dynamics of certain EAs can be fully captured in a very compact
model, and this model can be ‘run’ in place of the ‘real’ landscape (perhaps saving
immense time in fitness computations). Although this is no substitute for locating
optima on the real landscape, it does substitute, with full confidence in the case of
certain pairings of landscapes and algorithms, in the business of determining the rela-
tive performance of algorithms.

The real advantages of LSMs come, however, if the approximations necessary to
model more interesting landscapes (in particular, modeling real landscapes via sam-
pled data) are such that the salient aspects of algorithm performance remain captured



in the models. In some cases LSMs may be accurate enough to enable correct (and
very fast) differentiation between algorithm performances, thus correctly informing
how resources should be applied in the case of the real landscape. Preliminary ex-
periments on MAX-ONES and NK landscapes have demonstrated that the idea is
promising. Further, by searching through spaces of LSMs, in future work we may be
able to take a new look at the question of what kind of problem is easy/hard for an EA.

Acknowledgements

We are pleased to acknowledge the support of the BBSRC (UK Research Council for
Biological Sciences), and Evosolve (UK registered charity no. 1086384). Thanks to
its handy and efficient implementation of NK problems, Peter Ross’ pga code was
used for preliminary sampling and ‘real landscape’ EAs.

References

1. Altenberg, L. Fitness distance correlation analysis: an instructive counterexample. In Th.
Bäck, editor, Proceedings of the 7th International Conference on Genetic Algorithms, pages
57--64. Morgan Kaufmann Publishers, 1997.

2. Arnold, F. (1998). Directed evolution, Nature Biotechnology, 16: 617–618.
3. Arnold, F. (2001). Combinatorial and computational challenges for biocatalyst design.

Nature, 409: 253–257.
4. Barnett, L. Ruggedness and neutrality: the NKp family of fitness landscapes. In C. Adami,

R. K. Belew, H. Kitano, and C. E. Taylor, editors, Alive VI: Sixth International Conference
on Articial Life, pages 18-27, Cambridge MA, 1998. MIT Press.

5. Davidor, Y. (1991): "Epistasis Variance: A Viewpoint on GA-Hardness". In: Foundations of
genetic algorithms, ed. G.J.E. Rawlins, Morgan Kaufmann Publishers, pp. 23–35.

6. Grefenstette, J.J. (1992). Deception considered harmful. Foundations of Genetic Algorithms,
2. Whitley, L. D., (ed.), Morgan Kaufmann, 75--91.

7. Jones, T. and S. Forrest. Fitness Distance Correlation as a Measure of Problem Difficulty
for Genetic Algorithms. In L. J. Eshelman, editor, Proceedings of the 6th Int. Conference on
Genetic Algorithms, pages 184--192, Kaufman, 1995.

8. Kauffman, S.A. and S. Levin. Towards a General Theory of Adaptive Walks on Rugged
Landscapes. Journal of Theoretical Biology, 128:11--45, 1987.

9. Kallel, L., Naudts, B. & Reeves, C. (1998). Properties of fitness functions and search land-
scapes. In Theoretical aspects of evolutionary computing (ed. L. Kallel, B. Naudts and A.
Rogers), pp. 175-206. Springer, Berlin.

10. Naudts, B. and L. Kallel (2000). A comparison of predictive measures of problem difficulty
in evolutionary algorithms, IEEE Transactions on Evolutionary Computation, 4(1):1–15.

11. Reeves, C. R. (1999). Landscapes, operators and heuristic search. Annals of Operations
Research 86, 473-490.

12. Stadler, P.F. Towards a Theory of Landscapes," in Complex Systems and Binary Networks,
(R. Lopez-Pena et al, eds.), Berlin, New York, pp. 77–163, Springer Verlag, 1995.

13. Stadler, P. F. (1996). Landscapes and their correlation functions. J. Math. Chem. 20, 1-45.
14. Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolu-

tion. In Proc. Sixth Int. Conf. Genetics, vol. 1 (ed. D. F. Jones), pp. 356-366.


