
Combinations of Local Search and Exact Algorithms

Irina Dumitrescu and Thomas Stützle

Darmstadt University of Technology, CS Department, Intellectics Group
Alexanderstr. 10, 64283 Darmstadt, Germany�

irina, tom � @intellektik.informatik.tu-darmstadt.de

Abstract. In this paper we describe the advantadges and disadvantages of local
search and exact methods of solving NP-hard problems and see why combining
the two approaches is highly desirable. We review some of the papers existent in
the literature that create new algorithms from such combinations. In this paper
we focus on local search approaches that are strengthened by the use of exact
algorithms.

1 Introduction

Integer and combinatorial optimisation problems maximise or minimise functions of
many variables subject to some problem specific constraints and integrality restrictions
imposed on all or some of the variables. This class of problems comprises many real-
life problems arising in airline crew scheduling, production planning, Internet routing,
packing and cutting, and many other areas. Often, a combinatorial optimisation problem
can be modelled as an integer program [18]. However, these problems are often very
difficult to solve, which is captured by the fact that many such problems are NP-hard [9].

Because of their difficulty and enormous practical importance, a large number of
solution techniques for attacking NP-hard integer and combinatorial optimisation prob-
lems have been proposed. The available algorithms can be classified into two main
classes: exact and approximate algorithms. Exact algorithms are guaranteed to find the
optimal solution and to prove its optimality for every finite size instance of a combi-
natorial optimisation problem within an instance-dependent, finite run-time. If optimal
solutions cannot be computed efficiently in practice, the only possibility is to trade op-
timality for efficiency. In other words, the guarantee of finding optimal solutions can
be sacrificed for the sake of getting very good solutions in polynomial time. A class of
approximate algorithms is that of heuristic methods, or simply heuristics, and seek to
obtain this goal.

Two techniques from each class that have had significant success are Integer Pro-
gramming (IP), as an exact approach, and local search and extensions thereof called
metaheuristics, as an approximate approach. IP is a class of methods that rely on the
characteristic of the decision variables of being integers. Some well known IP methods
are Branch-and-Bound, Branch-and-Cut, Branch-and-Price, Lagrangean Relaxation, and
Dynamic Programming [18]. In recent years remarkable improvements have been re-
ported for IP when applied to some difficult problems (see for example [3] for the TSP).
However, for most of the available IP algorithms the size of the instances solved is rel-
atively small, and the computational time increases strongly with increasing instance

size. Additional problems are often due to the facts that (i) the memory consumption
of exact algorithms may lead to the early abortion of a programme, (ii) high perform-
ing exact algorithms for one problem are often difficult to extend if some details of the
problem formulation change, and (iii) for many combinatorial problems the best per-
forming algorithms are highly problem specific and that they require large development
times by experts on integer programming. Nevertheless, important advantages of exact
methods from IP are that (i) proven optimal solutions can be obtained if the algorithm
succeeds, (ii) valuable information on the upper/lower bounds to the optimal solution
are obtained even if the algorithm is stopped before completion, and (iii) IP methods
allow to prune parts of the search space in which optimal solutions cannot be located.
A more practical advantage of IP methods is that powerful, general-purpose tools like
CPLEX are available that often reach astonishingly good performance.

Local search has been shown to be the most successful class of approximate al-
gorithms. It yields high-quality solutions by iteratively applying small modifications
(local moves) to a solution in the hope of finding a better one. Embedded into meta-
heuristics designed to escape local optima like Simulated Annealing, Tabu Search, or
Iterated Local Search, this approach has been shown to be very successful in achieving
near-optimal (and sometimes optimal) solutions to a number of difficult problems [1].
Advantages of local search methods are that (i) in practice they are found to be the
best performing algorithms for a large number of problems, (ii) they can examine an
enormous number of possible solutions in short computation time, (iii) they are of-
ten more easily adapted to variants of problems and, thus, are more flexible, and (iv)
they are typically easier to understand and implement than exact methods. However,
disadvantages of local search algorithms are that typically (i) they cannot prove opti-
mality, (ii) they cannot provably reduce the search space, (iii) they do not have well
defined stopping criteria (this is particularly true for metaheuristics), and (iv) they often
have problems with highly constrained problems where feasible areas of the solution
space are disconnected. A drawback from a practical point of view is that there are no
efficient general-purpose local search solvers available. Hence, most local search algo-
rithms often require considerable programming efforts, although usually less than for
exact algorithms.

It should be clear by now that IP and local search approaches have their particular
advantages and disadvantages and can be seen as complementary. Therefore, an obvious
idea is to try to combine these two techniques into more powerful algorithms. In this
article we are looking at approaches that strive for an integration of these two worlds.
While the notion of integration is difficult to define, we are thinking of approaches that,
although rooted in one of the worlds, take a significant portion of the other world. For
example, here we exclude obvious combinations like those that use preprocessing and
bound propagation. In fact, only a few articles strive for a real integration of the two
approaches. In what follows we will briefly describe methods that have been proposed
so far. Our paper does not claim to be an extensive survey of the area, but rather a
personal selection of papers that, in our opinion, open new directions of research and
put forward ideas that can easily be applied to new problems.

The link between the approaches we consider in this paper is that given an integer
problem, a local search technique is applied to the problem to solve and an exact algo-

rithm to some subproblems. The subproblems are either solved in order to define the
neighbourhood to explore, to permit a systematic exploration of a neighbourhood, to
exploit certain characteristics of some feasible solutions already discovered, or to find
good bounds on the optimal solutions. We will describe these situations in more detail
in the following sections. For the sake of brevity, in each section we will present in
detail only one method.

2 Defining the neighbourhood to explore

The first method we discuss in this paper combines a local search approach with an
exact algorithm that solves some linear programming subproblems defined in order to
reduce the search space and to define neighbourhoods for the local search algorithm.
The subproblems are relaxations of some kind of an integer programming model of the
initial problem, which are strengthened by the addition of some extra constraints. The
optimal solutions of these subproblems are then used to define the search space and the
neighbourhoods for the local search algorithm.

An example of such a method is given in the paper of Vasquez and Hao [26], pro-
posed for the 0-1 multidimensional knapsack problem.

Given � objects each of a known volume, � knapsacks of given capacities, and a
value associated with each object, the 0-1 multidimensional knapsack seeks to max-
imise the total value of the objects put in the knapsacks such that the capacity of each
knapsack is not exceeded. This problem can be formulated as:

������� 	�

s.t. �
�
�� (1)
���������������� (2)

where 	��� ! � , � �� !#"%$ � , and �&�' !(" ,
)�� * � , with
,+.-/� if the object 0 is in the
knapsack and
 + -1� , otherwise.

The method proposed by Vasquez and Hao starts by solving an LP relaxation of the
integrality constraint (2) plus an extra constraint that ensures that the solution will be a
good initial solution for the local search procedure. The extra constraint is based on the
fact that the LP relaxation of an IP problem can be far away from the integer optimal
solution, while it is clear that the integer optimal solution can have only a certain num-
ber of components that are not zero. This indeed is the extra constraint used by Vasquez
and Hao: 2 �+4365
 + -/7 , where 7�-8�9�;:;:�:<� � . Clearly, the solutions of these problems
will not be integer, however it is hoped that the optimal solution of the original problem
is close to one of the optimal solutions obtained after solving the relaxed problems. In
order not to miss good search areas, every possible 7 needs to be considered, and there-
fore a series of linear programming subproblems need to be solved. Vasquez and Hao
propose a reduction of the number of these problems by calculating some bounds on 7 .
These bounds are the optimal solutions of two new LP problems solved by the simplex
method. The two problems seek to minimise, respectively maximise, the sum of the
components of
 , (2 �+4365
 +), where
 is a feasible solution for the LP relaxation of the
original problem, (�
�
��), such that the value of the objective function evaluated for

is greater than or equal to the value of a known integer lower bound ��� for the original
problem plus one, (�
�� ����� �). While Vasquez and Hao mention that such a lower
bound can be found by using a different heuristic, they do not provide any details about
how they obtained such a bound.

The LP subproblems that remain to be solved after the reduction are solved by the
simplex algorithm. Finally, Tabu Search based on the reverse elimination method [11] is
used to search the reduced solution space defined as a collection of spheres of specified
radii centred at optimal solutions of the LP subproblems solved previously. Vasquez
and Hao propose a formula for calculating the radius of such a sphere, which depends
on the number of integer and fractional non-zero components of the solution that is
the centre of the sphere. The search space is further reduced by limiting the number of
objects taken into configurations; for each 7 , the number of non-zero components of a
candidate solution is considered to be exactly 7 , and only the integer candidate solutions
are kept. In addition to this, only candidate solutions that improve the current best value
of the objective function are kept. The neighbourhoods are defined as add/drop neigh-
bourhoods; the neighbourhood of a given configuration is the set of configurations that
differ by exactly two elements from the initial configuration, while keeping the num-
ber of non-zero elements constant. An extensive computational study could identify
many improved results compared to the best known results at the time of publication;
however, Vasquez and Hao acknowledge large computational time, especially for large
instances.

In conclusion, the paper of Vasquez and Hao is an example of how easily solvable
problems are used to reduce the search space explored by a local search for a difficult
problem. While a branch-and-bound approach would also reduce the search space, the
advantage of the method presented is that the number of subproblems solved is limited
by ���
	 , as opposed to being possibly exponential in the case of branch-and-bound.
However, a drawback of this method is that after reducing the number of subproblems
that need to be solved, no further reduction is possible. While in the case of a branch-
and-bound approach the computation can be stopped early and information obtained
up to that point can still be used, the method of Vasquez and Hao requires finding a
solution for all the subproblems identified.

3 Exploring the neighbourhoods

In this section we present an approach which is extremely useful when the neighbour-
hoods defined are very large and efficient ways of exploring them are needed. When the
local search procedure needs to move from the current solution to a neighbouring one,
a subproblem is solved. The solution of the subproblem will determine the neighbour
that will be used by the local search.

Hyperopt Neighbourhoods. Burke et al. give such a method in the context of
the symmetric and asymmetric Travelling Salesman Problem (TSP) [5, 6] and of the
Asymmetric Travelling Salesman Problem [6]. We recall that the symmetric TSP is
defined on a undirected graph � -
��� � ��� , where � -/�9� ��:;:�:<� � � is the set of nodes,
with the nodes representing cities, and � the set of edges. An edge represents a pair
of cities between which travel is possible. Every edge has an associated cost. The TSP

consists of finding the cheapest tour that visits all cities exactly once. The Asymmetric
Travelling Salesman Problem (ATSP) differs from the TSP simply by being defined on
a directed graph. In this case, the edges of the graph represent ordered pairs of cities
between which travel is possible. The oriented edges are usually called arcs.

Burke et al. [5, 6] propose a local search method based on a hyperopt neighbour-
hood, which we will exemplify using its example application to the ATSP. Given a
feasible tour of the ATSP [6], a hyperedge is a subpath of the current tour, in other
words, a sequence of successive arcs of the tour. Let 0 be the start node and � the end
node of the hyperedge. We denote the hyperedge by � � 0 � � � . The length of a hyperedge
is given by the number of arcs contained. Let � be a feasible tour for the ATSP, consid-
ered to start and end at node 1. We introduce a relation of order ��� on the set of nodes� as follows: for any 0 � � � � , we say that 0������ if 0 is a predecessor of � on the tour,
i.e. � - � �9�;:�:;:<� 0 ��:;:�:<� � �;:�:;:��;� � .

Let � be a feasible tour of the ATSP, and � � 0 5 � 0
	�� 5 � and � � � 5 � �
	�� 5 � two hyper-
edges of length 7 such that 0�	�� 5 ����� 5 and � � 0 5 � 0
	�� 5 ����� � � 5 � �
	�� 5 � -�� with respect
to the nodes contained. It is obvious that the tour � can be described completely by the
four hyperedges � � 0 5 � 0
	�� 5 � , � � 0
	�� 5 � � 5 � , � � � 5 � �
	�� 5 � , � � �
	�� 5 � 0 5 � . Burke et al. de-
fine a 7 -hyperopt move as being a new tour obtained after performing two steps: first,
remove � � 0 5�� 0 	�� 5 � and � � � 5�� � 	�� 5 � from the tour � , then add arcs to � � 0 	�� 5 � � 5 � and
� � � 	�� 5�� 0 5 � such that a new feasible tour is constructed. The set of all 7 -hyperopt moves
is called a 7 -hyperopt neighbourbood.

Obviously, the size of the 7 -hyperopt neighbourhood increases exponentially with7 . Due to the large size of the neighbourhood, instead of exploring the neighbourhood
in a classical manner, Burke et al. propose an “optimal” construction of a 7 -hyperopt
move by solving exactly a subproblem: the ATSP defined on the graph � - ����� � � � � ,
where � � is the set of nodes included in � � 0 5 � 0
	�� 5 � and � � � 5 � �
	�� 5 � and � � the set
of arcs in � that have both ends in � � . However, this approach is bound to be efficient
only when 7 is relatively small. Otherwise, a large size ATSP would have to be solved
as a subproblem.

In [6] Burke et al. provide numerical results for 7)-�� and 7 -�� . They mention
that they solve the subproblems to optimality using a dynamic programming algorithm,
however they do not provide any further details. In [5] Burke et al. consider only the
cases when 7�- 	 and 7 -�� and use enumeration to solve the subproblems.

For a given hyperedge � � 0 5 � 0
	�� 5 � the 7 -hyperopt move to be performed is de-
termined in [5, 6] by evaluating the best 7 -hyperopt move over the set of all possible
hyperopt moves. Therefore every hyperedge that does not intersect with � � 0 5�� 0 	�� 5 � is
considered, and for every such hyperedge a subproblem is solved. It is not clear how
� � 0 5�� 0 	�� 5 � is chosen in the first place or if that hyperedge also changes. This is clearly
an expensive approach from the point of view of the computational time. The authors
improve their method by using a tabu list that bans some hyperedges from being con-
sidered, based on the observation that only the hyperedges that have been affected by
previous moves can provide improving hypermoves.

Burke et al. propose several methods that use the concept of 7 -hyperopt moves
in [6]. They involve either a combination of hyperopt with 3-opt moves or the use
of a local search based on hyperopt moves inside of a variable neighbourhood search

procedure [12]. A numerical comparison between the pure 7 -hyperopt approach and
methods developed on top of it show the latter to be better. Although the 7 -hyperopt
approach appears not to be fully competitive with other approaches for the ATSP [?], we
believe that the 7 -hyperopt approach with further enhancements is a promising direction
of research which deserves to be further investigated.

Very Large Scale Neighbourhoods. A similar idea was developed for the class
of set partitioning problems. Thompson et al. [24, 25] defined the concept of a cyclic
exchange for a local search approach, which transfers single elements between several
subsets, in a “cyclic” manner. A two-exchange move can be seen as a cyclic exchange
of length 2. Thompson et al. showed that for any current solution of a partitioning
problem a new graph can be constructed. Costs are associated with its arcs and the set
of nodes is split into subsets according to a partition induced by the current solution
of the partitioning problem. Finding a cycle that uses at most one node for each subset
in the new graph is equivalent to determining a cyclic exchange move for the original
problem. Exact and heuristic methods [2, 8] that solve the problem of finding the most
negative cost subset disjoint cycle (which corresponds to the best improving neighbour
of the current solution) have been developed, however no work has been yet done on
the integration of the exact algorithms within the local search framework.

Dynasearch. Dynasearch is another example where exponentially large neighbour-
hood are explored. The neighbourhood searched consists of all possible combinations of
mutually independent simple search steps and one dynasearch move consists of a set of
independent moves that are executed in parallel in a single local search iteration. Inde-
pendence in the context of dynasearch means that the individual moves do not interfere
with each other; this means that the gain incurred by a combined move must be the sum
of the gains of the individual moves. In the case of independent moves, a dynamic pro-
gramming algorithm is used to find the best combination of independent moves. So far,
Dynasearch has only been applied to problems, where solutions are represented as per-
mutations; current applications include the TSP [?], the single machine total weighted
tardiness problem (SMTWTP) [?,?], and the linear ordering problem (LOP) [?]. Very
good performance is reported when dynasearch is the local search routine inside an
iterated local search (Section 4) or guided local search algorithm [27].

4 Iterated local search

A successful metaheuristic approach for solving difficult combinatorial problems is It-
erated Local Search (ILS), which consists of running a local search procedure many
times to perturbations of previously seen local optima. An outline of a simple ILS algo-
rithm is given in Algorithm 1.

Algorithm 1 Iterated Local Search

Step 0: Let � be an initial solution.
Step 1: while ���������
	���
 ����	�������	���� is not met do
(i) Let � � be the tour obtained from � after a perturbation.
(ii) Call ��������� ����������� � � � � to produce the tour � � � .
(iii) if � � � is better than � then � - � � � .

enddo
Step 2: Return � .

ILS can be applied in many different ways by, for example, changing the manner
in which information about good solutions is collected (Step 1 (iii)), or the way the
perturbation is performed. In the rest of this section we will show how different types
of subproblems arise when these variations of the ILS are considered.

4.1 Collected Information

The first method focuses on the way the information is collected. An approximate
method is run several times and the best solutions obtained are recorded. A subproblem
is then constructed using the information stored and solved by an exact algorithm. The
solution of the subproblem will be a solution of the original problem. We mention that
this idea can be applied to a large number of problems. We illustrate this method by two
examples.

Tour Merging. The paper we present next is the report of Applegate, Bixby, Chvàtal,
and Cook [4], which is dedicated to the problem of finding near-optimal solutions of the
TSP. Applegate et al. propose the use of an exact algorithm to solve a TSP subproblem
defined by the outcome of multiple runs of a particular ILS algorithm applied to the
original TSP. Applegate et al. propose an approach that makes use of the information
obtained after running ILS several times. Their method is based on the observations that
(i) high quality tours typically have many edges in common and, in fact, the number of
shared edges increases with tour quality and (ii) that very high quality tours share many
edges with optimal tours. Their method, called tour merging, is a two step procedure.

The first step consists of running an ILS like Chained Lin-Kernighan (CLK) [17, 4]
or Iterated Helsgaun (IH) [?] a number of times, keeping the best solution obtained at
each of the runs (both, CLK and IH are currently among the top performing algorithms
for the TSP). In what follows we will denote the set of solutions recorded by � . The
second step consists of solving the TSP on the graph induced by this set of tours �
on the original graph. In other words, a TSP is solved on a restricted graph that has
the same set of nodes as the original graph, but its set of edges consists of the edges
that appear at least once in any of the tours collected. Formally, if the original graph is
� - � �.� ��� , where � is the set of nodes and � the set of arcs, the reduced graph can
be described as � � - ��� � � � � , where � � - ��� � ����� � � � ��� � � � .

It is hoped that this graph will be sparse with low branch-width [19] and also that
it will be a graph that contains at least one (near-)optimal tour for the original TSP.
Clearly, the TSP subproblem will be easier to solve than the original one. The quality
of the tours obtained after running Chained Lin-Kernighan has a direct impact on the
cardinality of the set of edges of the reduced graph. If the reduced graph is not very
sparse, then the TSP subproblem may be computationally expensive to solve. Note that
in tour merging, the subproblem generated is of the same type as the original problem.
Here, the advantage of solving a subproblem comes from the reduced size of the sub-
problem, and therefore a natural direction of research is finding strategies that generate
small subproblems of good quality.

In [4] two possibilities for the second step of the method are considered. The first is
to use a general TSP optimisation code to find the optimal tour with respect to the graph
� � . However, experimental results in [4] suggest that alternative methods could pro-
vide solutions much quicker. In particular, they suggest finding (heuristically) a branch-
width decomposition of the graph � � and exploiting this decomposition by find optimal
tours via a dynamic programming algorithm.

The tour merging approach was tested on a large number of TSPLIB benchmark
problems [4]. The results obtained were very good, optimal solutions being identified
for all problem tested. However the computational time was large.

Heuristic Concentration. A similar idea is put forward by Rosing et al. in [20] for
the � -median problem. Given � , a given positive integer, and a graph that has weights
associated with every node and distances associated with every arc, the � -median prob-
lem consists of finding � nodes in the graph, called facilities, such that the sum of the
weighted distances between every node and its closest facility is minimised. The nodes
that are not facilities are called demand nodes. Rosing et al. propose repeatedly running
a heuristic, with different random starts, while collecting the solutions obtained at each
iteration. In a second step, they propose obtaining a solution for the � -median problem
by solving a subproblem, in fact a restricted � -median problem. This method is called
Heuristic Concentration (HC). The second step of HC starts with a subset of the best
solutions found in the first phase. The facility locations used in these ”best” solutions
form a subset of the set of all nodes, and they will be collected in what the authors
call the concentration set (CS). Finally, a restricted � -median problem, with the facility
locations restricted to those contained into the concentration set, is solved.

Rosing et al. use CPLEX to solve the LP relaxation of the binary integer model of
the reduced � -median problem. In most cases the solution obtained is integer; if not
integer, it is easy to find using branch-and-bound. Numerical results are provided in
both [20] and subsequent papers [21, 22].

We have seen that the two methods presented so far in this section act on the way in-
formation is collected at each iteration of the ILS. Then, after running the ILS, an exact
algorithm is used to solve a subproblem determined by that information. Therefore an
exact algorithm is applied only once, to exactly one problem. Next, we will talk about
a paper that proposes several methods that generate many subproblems.

4.2 Modifying the Perturbation Step

The role of the perturbation in an ILS approach is to make large changes in the current
solution and therefore allow the local search to leave local optima, while still conserv-
ing the good characteristics of a current solution. A good perturbation step is problem
dependent, and should therefore be object of investigation. An idea of obtaining good
perturbations for the ILS is defining a subproblem, usually of similar type with the
original problem, and solve it using an exact algorithm or a good heuristic.

An example of determining a perturbation by using exact algorithms that solve a
subproblem is the paper of Lourenço [15] given in the context of the job-shop schedul-
ing problem.

The job-shop scheduling problem is defined for machines and jobs. Each job con-
sists of a sequence of operations, each with a given processing time, that have to be

performed in a given order on different machines. The goal is to minimise the comple-
tion time of the last job subject to precedence constraints on the operations and addi-
tional capacity constraints saying that no machine can work on two operations at the
same time. The job-shop scheduling problem can be modelled using the well-known
disjunctive graph model [23].

Lourenço describes several variations of the ILS and provides numerical results for
all of them. Firstly, she tests several methods of finding an initial feasible schedule. She
then proposes the use of local improvement and simulated annealing as local search
procedures. Finally, for the perturbation step, several perturbation ideas are put forward
and tested for each of the two local search procedures. Since this is where the sub-
problems we are interested in are generated, we will discuss in some detail how the
perturbation is performed.

The first perturbation procedure proposed by Lourenço involves the modification of
the disjunctive graph corresponding to the current solution of the job-shop scheduling
problem, by removing all the directions given to the edges associated with two random
machines in the disjunctive graph. Then Carlier’s algorithm [7] (a branch-and-bound
method) is applied to one of the machines and the one-machine scheduling problem is
solved. This problem can be seen as a very simple version of the job-shop scheduling
problem: a number of operations need to be scheduled on one machine in the presence
of temporal constraints. The edges corresponding to that machine are then oriented
according to the optimal solution obtained. The same treatment is then applied to the
second machine. Lourenço mentions that this perturbation idea can create cycles in
the disjunctive graph, and suggests a way of obtaining a feasible schedule from the
graph with cycles (see [15] for details). In conclusion, at each iteration of the ILS, two
subproblems are solved in order to construct a new initial solution for the local search
procedure. The subproblems are of a different type than the original problem and of
reduced size. However they belong to the same class of job scheduling problems.

A similar perturbation proposed by Lourenço is making use of the early-late al-
gorithm [14] as an exact method. In order to do that preemption is allowed and two
one-machine with lags on a chain are solved. Lourenço also gives a simple technique
for eliminating cycles. We note that in this case too the subproblems solved are of a
different type compared to the original problem.

The paper we described in this section is an example of how the perturbation can
be determined such that a significant modification of the current solution is performed,
while the main characteristics of the current solution are conserved. This is accom-
plished by modifying only part of the current solution by solving to optimality a sub-
problem of a similar type with the original problem.

5 Lower bounds
Another combination of exact and approximate methods is the usage of lower or upper
bounds obtained from the application of an exact algorithm to a subproblem. Obtaining
good bounds is important, since the bounds are used by the search algorithm to deter-
mine next moves or eliminate possible moves. The example we chose to illustrate this
technique is the Ant Colony Optimisation.

Ant Colony. Ant Colony Optimisation (ACO) [?] is a recent metaheuristic approach
for solving hard combinatorial optimisation problems, which is loosely inspired by the

pheromone trail laying and following behavior of real ants. Artificial ants in ACO are
stochastic solution construction procedures that probabilistically build a solution by
iteratively adding solution components to partial solutions by taking into account (i)
heuristic information on the problem instance being solved, if available, and (ii) (ar-
tificial) pheromone trails which change dynamically at run-time to reflect the agents’
acquired search experience. Of the available ACO algorithms (see [?] for an overview),
the Approximate Nondeterministic Tree Search (ANTS) algorithm [16] is of particular
interest for us here. Since ANTS was first applied to the quadratic assignment problem
(QAP), we present the essential part of the algorithm using this example application.

The QAP can best be described as the problem of assigning a set of objects to a
set of locations with given distances between the locations and given flows between the
objects. The objective is to place the objects on locations in such a way that the sum of
the product between flows and distances is minimal. More formally, in the QAP one is
given � objects and � locations, two ��� � matrices � -�� � +���� and � -�� �	��
 � , where� +�� is the distance between locations 0 and � and ���

 is the flow between objects � and� . Let
 +�� be a binary variable which takes value 1 if object 0 is assigned to location �
and 0 otherwise. Then the problem can be formulated as:

���4� �� +4365
��� 365

�� � 365
��
	 3 5

� +�� � 	
�
 + 	
 �

�

subject to the standard assignment constraints

�� +4365
 +�� - � � � - � ��:�:4� ���
��� 3 5
 +�� - � � 0 - � ��:�:4� ���
 +�� ����������� 0 � � - �9�;:4:�� �

When applied to the QAP, in ANTS each ant constructs a solution by iteratively assign-
ing objects to a free location. Given a location � , an ant assigns a still unassigned object
0 to this location with a probability that is proportional to ����� +�� � � ��� � ��� � ����� +�� ,
where � +�� � � � is the pheromone trail associated to the assignment of object 0 to a location
� (pheromone trails give the “learned” desirability of choosing an assignment), � +�� is the
heuristic desirability of this assignment, and � is a weighting factor between pheromone
and heuristic. Lower bound computations are exploited at various places in ANTS.
Before starting the actual solution process, ANTS first computes the Gilmore-Lawler
lower bound (GLB) [10, 13], which amounts to solving a linear assignment problem by
solving its linear programming relaxation. Along with the lower bound computation one
gets the values of the dual variables � + � 0 - � ��:;:;:;� � and � + � 0 - �9�;:;:�:<� � corresponding
to the assignment constraints. The dual variables � + are used to define a pre-ordering
on the locations: The higher the value of the dual variable associated to a location, the
higher is assumed to be the location’s impact on the QAP solution cost and, hence, the
earlier it is tried to assign an object to that location. The main idea of ANTS is to use
at each construction step lower bound computations to define the heuristic information
of the attractiveness of a adding a specific assignment of object 0 to location � . This is
achieved by tentatively adding the specific assignment � 0 � � � to the current partial so-
lution and by estimating the cost of a complete solution containing that assignment by
means of a lower bound. This estimate is used as the heuristic information � +�� during

the solution construction: the lower the estimate the more attractive is the addition of a
specific assignment. Using lower bounds computations also presents several additional
advantages like the elimination of possible moves if the cost estimation is larger than
the so far best found solution. Additionally, tight bounds give a strong indication of
how good a move is. However, the lower bound is to be computed at each construction
step; hence, the lower bounds should be efficiently computable. Therefore, Maniezzo
did not use GLB during the ants’ construction steps, but exploits the weaker LBD lower
bound, which can be computed in � � � � . For details on the lower bound computation
we refer to [16]. Experimental results have shown that ANTS is currently one of the
best available algorithms for the QAP. The good performance of ANTS algorithm has
also been confirmed in a variety of further applications.

6 Conclusions

The main conclusion of our paper is that there are many research opportunities to de-
velop algorithms that integrate local search and exact techniques and that not much has
been done so far in this area. We have presented a number of approaches that use both
exact and local search methods in a rather complex way, and that, in our oppinion, can
be further improved and extended to a number of different applications than the ones
for which they have originally been developed.

Acknowledgments This work was supported by the “Metaheuristics Network”, a Research
Training Network funded by the Improving Human Potential programme of the CEC, grant
HPRN-CT-1999-00106, and by a European Community Marie Curie Fellowship, contract HPMF-
CT-2001-01419. The information provided is the sole responsibility of the authors and does not
reflect the Community’s opinion. The Community is not responsible for any use that might be
made of data appearing in this publication.

References

1. E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization. John
Wiley & Sons, Chichester, 1997.

2. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms, and Appli-
cations. Prentice Hall, Inc. Englewood Cliffs, NJ, 1993.

3. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of traveling salesman
problem. Documenta Mathematica, Extra Volume ICM III:645–656, 1998.

4. D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding Tours in the TSP. Technical
Report 99885, Forschungsinstitut für Diskrete Mathematik, University of Bonn, Germany,
1999.

5. E.K. Burke, P. Cowling, and R. Keuthen. Embedded local search and variable neighbourhood
search heuristics applied to the travelling salesman problem. Technical report, University of
Nottingham, 2000.

6. E.K. Burke, P.I. Cowling, and R. Keuthen. Effective local and guided variable neighbourhood
search methods for the asymmetric travelling salesman problem. EvoWorkshop 2001, LNCS,
2037:203–212, 2001.

7. J. Carlier. The one-machine sequencing problem. European Journal of Operational Re-
search, 11:42–47, 1982.

8. I. Dumitrescu. Constrained Shortest Path and Cycle Problems. PhD thesis, The University
of Melbourne, 2002. http://www.intellektik.informatik.tu-darmstadt.de/ irina.

9. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of���
-Completeness. Freeman, San Francisco, CA, 1979.

10. P. C. Gilmore. Optimal and suboptimal algorithms for the quadratic assignment problem.
Journal of the SIAM, 10:305–313, 1962.

11. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston, MA, 1997.
12. P. Hansen and N. Mladenovic. Meta-Heuristics: Advances and Trends in Local Search

Paradigms for Optimization, chapter An Introduction to Variable Neighborhood Search,
pages 433–458. Kluwer Academic Publishers, Boston, MA, 1999.

13. E. L Lawler. The quadratic assignment problem. Management Science, 9:586–599, 1963.
14. H.R. Lourenço. A Computational Study of the Job-Shop and the Flow-Shop Scheduling

Problems. PhD thesis, School of Or & IE, Cornell University, Ithaca, NY, 1993.
15. H.R. Lourenço. Job-shop scheduling: Computational study of local search and large-step

optimization methods. European Journal of Operational Research, 83:347–367, 1995.
16. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the

quadratic assignment problem. INFORMS Journal on Computing, 11(4):358–369, 1999.
17. O. Martin, S.W. Otto, and E.W. Felten. Combining simulated annealing with local search

heuristics. Annals of Operations Research, 63:57–75, 1996.
18. G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,

1988.
19. N. Robertson and P.D. Seymour. Graph minors. X. Obstructions to tree-decomposition.

Journal of Combinatorial Theory, 52:153–190, 1991.
20. K.E. Rosing and C.S. ReVelle. Heuristic concentration: Two stage solution construction.

European Journal of Operational Research, pages 955–961, 1997.
21. K.E. Rosing and C.S. ReVelle. Heuristic concentration and tabu search: A head to head

comparison. European Journal of Operational Research, 117(3):522–532, 1998.
22. K.E. Rossing. Heuristic concentration: a study of stage one. ENVIRON PLANN B,

27(1):137–150, 2000.
23. B. Roy and B. Sussmann. Les problemes d’ordonnancement avec constraintes disjonctives.

Notes DS no. 9 bis, SEMA.
24. P.M. Thompson and J.B. Orlin. The theory of cycle transfers. Working Paper No. OR 200-89,

1989.
25. P.M. Thompson and H.N. Psaraftis. Cyclic transfer algorithm for multivehicle routing and

scheduling problems. Operations Research, 41:935–946, 1993.
26. M. Vasquez and J-K. Hao. A hybrid approach for the 0-1 multidimensional knapsack prob-

lem. In Proceedings of the IJCAI-01, pages 328–333, 2001.
27. C. Voudouris. Guided Local Search for Combinatorial Optimization Problems. PhD thesis,

Department of Computer Science, University of Essex, Colchester, UK, 1997.

