
HAL Id: hal-01541493
https://hal.science/hal-01541493

Submitted on 25 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Searching for Maximum Cliques with Ant Colony
Optimization

Serge Fenet, Christine Solnon

To cite this version:
Serge Fenet, Christine Solnon. Searching for Maximum Cliques with Ant Colony Optimization. Ap-
plications of evolutionary computing (EvoCOP 2003), Apr 2003, Essex, United Kingdom. �10.1007/3-
540-36605-9_22�. �hal-01541493�

https://hal.science/hal-01541493
https://hal.archives-ouvertes.fr

Searching for Maximum Cliques
with Ant Colony Optimization

Serge Fenet and Christine Solnon

LIRIS, Nautibus, University Lyon I
43 Bd du 11 novembre, 69622 Villeurbanne cedex, France

{sfenet,csolnon}@bat710.univ-lyon1.fr

Abstract. In this paper, we investigate the capabilities of Ant Colony
Optimization (ACO) for solving the maximum clique problem. We de-
scribe Ant-Clique, an algorithm that successively generates maximal
cliques through the repeated addition of vertices into partial cliques.
ACO is used to choose, at each step, the vertex to add. We illustrate the
behaviour of this algorithm on two representative benchmark instances
and we study the impact of pheromone on the solution process. We also
experimentally compare Ant-Clique with GLS, a Genetic Local Search
approach, and we show that Ant-Clique finds larger cliques, on average,
on a majority of DIMACS benchmark instances, even though it does not
reach the best known results on some instances.

1 Introduction

The maximum clique problem is a classical combinatorial optimization problem
that has important applications in different domains, such as coding theory, fault
diagnosis or computer vision. Given a non-oriented graph G = (V,E), such that
V is a set of vertices, and E ⊆ V × V is a set of edges, a clique is a set of
vertices C ⊆ V such that every couple of distinct vertices of C is connected with
an edge in G, i.e., the subgraph induced by C is complete. A clique is partial if
it is strictly included in another clique; otherwise it is maximal. The goal of the
maximum clique problem is to find a clique of maximum cardinality.

This problem is one of the first problems shown to be NP-complete, and
moreover, it does not admit a polynomial-time approximation algorithm (unless
P=NP) [2]. Hence, complete approaches —usually based on a branch-and-bound
tree search— become intractable when the number of vertices increases, and
much effort has recently been directed on heuristic incomplete approaches. These
approaches leave out exhaustivity and use heuristics to guide the search towards
promising areas of the search space. In particular, [6] describes three heuristic
algorithms obtained as instances of an evolutionary algorithm scheme, called
GLS, that combines a genetic approach with local search.

In this paper, we investigate the capabilities of another bio-inspired meta-
heuristic —Ant Colony Optimization (ACO)— for solving the maximum clique
problem. In Section 2, we describe Ant-Clique, an ACO algorithm for the maxi-
mum clique problem. Basically, this algorithm uses a sequential greedy heuristic,

and generates maximal cliques through the repeated addition of vertices into
partial cliques. ACO is introduced as a heuristic for choosing, at each step, the
vertex to enter the clique: this vertex is chosen with respect to a probability that
depends on pheromone trails laying between it and the clique under construc-
tion, while pheromone trails are deposited by ants proportionally to the quality
of the previously computed cliques. In Section 3, we illustrate the behavior of
this algorithm on two representative benchmark instances: we study the impact
of pheromone, and we show that the solution process is strongly improved by
ACO, without using any other local heuristic nor local search. In Section 4,
we experimentally compare Ant-Clique with GLS [6], a genetic local search ap-
proach, and we show that Ant-Clique finds larger cliques, on average, on a wide
majority of benchmark instances of the DIMACS library, eventhough it does not
reach the best known results on some benchmark instances.

2 Description of Ant-Clique

The Ant Colony Optimization (ACO) metaheuristic is a bio-inspired approach
that has been used to solve different hard combinatorial optimization problems
[3, 4]. The main idea of ACO is to model the problem as the search for a minimum
cost path in a graph. Artificial ants walk through this graph, looking for good
paths. Each ant has a rather simple behaviour so that it will typically only find
rather poor quality paths on its own. Better paths are found as the emergent
result of the global cooperation among ants in the colony. This cooperation is
performed in an indirect way through pheromone laying.

The proposed ACO algorithm for searching for maximum cliques, called Ant-
Clique is sketched below:

procedure Ant-Clique

Initialize pheromone trails

repeat

for k in 1..nbAnts do: construct a clique Ck

Update pheromone trails w.r.t. {C1, . . . , CnbAnts}
until max cycles reached or optimal solution found

Pheromone trail initialization: Ants communicate by laying pheromone on the
graph edges. The amount of pheromone on edge (vi, vj) is noted τ(vi, vj) and
represents the learnt desirability for vi and vj to belong to a same clique.

As proposed in [9], we explicitly impose lower and upper bounds τmin and
τmax on pheromone trails (with 0 < τmin < τmax). The goal is to favor a larger
exploration of the search space by preventing the relative differences between
pheromone trails from becoming too extreme during processing.

We have considered two different ways of initializing pheromone trails:

1. Constant initialization to τmax: such an initialization achieves a higher ex-
ploration of the search space during the first cycles, as all edges nearly have
the same amount of pheromone during the first cycles [9].

2. Initialization with respect to a preprocessing step: the idea is to first compute
a representative set of maximal cliques without using pheromone —thus
constituting a kind of sampling of the search space— and then to select
from this sample set the best cliques and use them to initialize pheromone
trails. This preprocessing step introduces two new parameters: ε, the limit
rate on the quality improvement of the sample set of cliques, and nBest , the
number of best cliques that are selected from the sample set in order to
initialize pheromone trails. More details can be found in [8].

Construction of cliques by ants: ants first randomly select an initial vertex,
and then iteratively choose vertices to be added to the clique —within a set of
candidates that contains all vertices that are connected to every clique vertex:

choose randomly a first vertex vf ∈ V

C ← {vf}
Candidates ← {vi/(vf , vi) ∈ E}
while Candidates 6= ∅ do

Choose a vertex vi∈Candidates with probability p(vi) = [τC(vi)]
α∑

vj∈Candidates [τC(vj)]α

C ← C ∪ {vi}
Candidates ← Candidates ∩ {vj/(vi, vj) ∈ E}

end while

return C

The choice of a vertex vi within the set of candidates is made with respect to a
probability that depends on a pheromone factor τC(vi). A main difference with
many ACO algorithms is that this factor does not only depend on the pheromone
trail between the last added vertex in C and the candidate vertex vi, but on all
pheromone trails between C and vi

1, i.e., τC(vi) =
∑

vj∈C τ(vi, vj).
One should remark that the probability of choosing a vertex vi only depends

on a pheromone factor, and not on some heuristic factor that locally evaluates
the quality of the candidate vertex, as usually in ACO algorithms. Actually, we
have experimented a heuristic proposed in [1], the idea of which being to favor
vertices with larger degrees in the subgraph induced by the partial clique under
construction. The underlying motivation is that a larger degree implies a larger
number of candidates after the vertex is added to the current clique. When using
no pheromone (or at the beginning of the search, when all pheromone trails have
the same value), this heuristic actually allows ants to construct larger cliques
than a random choice. However, when combining it with pheromone learning, we
have noticed that after a hundred or so cycles, we obtain larger cliques without
using the heuristic than when using it.

Updating pheromone trails: After each ant has constructed a clique, pheromone
trails are updated according to ACO: first, all pheromone trails are decreased
1 This pheromone factor τC(vi) is computed in an incremental way: at the beginning,

when the clique C only contains one vertex vf , τC(vi) is initialized to τ(vf , vi); then,
each time a new vertex vk is added to the clique, τC(vi) is incremented with τ(vk, vi).

in order to simulate evaporation, i.e., for each edge (vi, vj) ∈ E, the quantity of
pheromone laying on it, τ(vi, vj), is multiplied by an evaporation parameter ρ
such that 0 ≤ρ≤ 1; then, the best ant of the cycle deposits pheromone, i.e., let
Ck be the largest clique built during the cycle, and Cbest be the largest clique
built since the beginning of the run, for each couple of vertices (vi, vj) ∈ Ck, we
increment the quantity of pheromone laying on it, τ(vi, vj), by 1/(1+|Cbest|−|Ck|).

3 Experimental study of Ant-Clique

As usually in ACO algorithms, the behaviour of Ant-Clique depends on its pa-
rameters, and more particularly on α, the pheromone factor weight, and ρ, the
evaporation rate. Indeed, diversification can be emphasized both by decreasing
α, so that ants become less sensitive to pheromone trails, and by increasing ρ, so
that pheromone evaporates more slowly. When increasing the exploratory ability
of ants in this way, one usually finds better solutions, but as a counterpart it
takes longer time to find them. This is illustrated in figure 1 on two DIMACS
benchmark instances.

On this figure, one can first note that, for both instances, when α=0 and
ρ=1, cliques are much smaller: in this case, pheromone is totally ignored and the
resulting search process performs as a random one so that after 500 or so cycles,
the size of the largest clique nearly stops increasing. This shows that pheromone
actually improves the solution process with respect to a pure random algorithm.

When considering instance gen 400 P0.9 75, we can observe that, when α
increases or ρ decreases, ants converge quicker towards the optimal solution: it
is found around cycle 650 when α=1 and ρ=0.995, around cycle 400 when α=2
and ρ=0.995, around cycle 260 when α=2 and ρ=0.99, and around cycle 200 when
α=3 and ρ=0.985. Actually, this instance is relatively easy to solve, regardless of
the parameter tuning. In this case, one has better choose parameter values that
favor a quick convergence such as α=3 and ρ=0.985.

However, when considering instance C500.9, which is more difficult, one can
see that the setting of α and ρ let us balance between two main tendencies. On
one hand, when favoring exploration, the quality of the final solution is better,
but the time needed to converge on this value is also higher. On the other hand,
when favoring convergence, ants find better solutions during the first cycles,
but after 500 or so cycles, too many of them have converged on over-marked
pheromone trails and the exploration behavior is inhibited. To summarize, one
has to choose parameters depending on the availability of time for solving: for
300 cycles, one has to choose α = 3 and ρ = 0.985; for 800 cycles one has to
choose α=2 and ρ=0.990; and for more available time one has to choose α=2
and ρ=0.995. Note that with α=1 and ρ=0.995, pheromone’s influence is too
weak and convergence is too slow: the system won’t reach optimal solution in
acceptable time.

35

40

45

50

55

60

65

70

75

0 200 400 600 800 1000

C
liq

ue
 s

iz
e

Number of cycles

gen400_p0.9_75

alpha=2 rho=0.995
alpha=2 rho=0.990
alpha=3 rho=0.985
alpha=1 rho=0.995

alpha=0 rho=1 (random)

44

46

48

50

52

54

56

0 500 1000 1500 2000 2500 3000

C
liq

ue
 s

iz
e

Number of cycles

C500.9

alpha=2 rho=0.995
alpha=2 rho=0.990
alpha=3 rho=0.985
alpha=1 rho=0.995

alpha=0 rho=1 (random)

Fig. 1. Influence of pheromone on the solution process: each curve plots the evolution of
the size of the largest clique (average on 5 runs), when the number of cycles increases,
for a given setting of α and ρ. The other parameters have been set to nbAnts=15,
τmin = 0.01, τmax = 4, and no preprocessing. The upper curves correspond to the
DIMACS instance gen 400 P0.9 75 —that is a rather easy one— and the lower curves
to C500.9 — that is more difficult.

4 Experimental comparison of Ant-Clique with GLS

Genetic Local Search: We compare Ant-Clique with genetic local search (GLS)
[6], an evolutionary approach that combines a genetic approach with local search.
GLS generates successive populations of maximal cliques from an initial one by
repeatedly selecting two parent cliques from the current population, recombining
them to generate two children cliques, applying local search on children to obtain
maximal cliques, and adding to the new population the best two cliques of par-
ents and children. GLS can be instanciated to different algorithms by modifying
its parameters. In particular, [6] compares results obtained by the three follow-
ing instances of GLS: GENE performs genetic local search (the population size
is set to 10, the number of generations to 2000, and mutation and crossover rates
to 0.1 and 0.9); ITER performs iterated local search, starting from one random
point (the population size is set to 1, the number of generations to 20000, and
mutation and crossover rates are null); and MULT performs multi-start local
search, starting from a new random point at each time (the population size is
set to 20000, the number of generations, mutation and crossover rates to 0).

Experimental Setup: Ant-Clique has been implemented in C and run on a 350
MHz G4 processor. In all experiments, we have set α to 2, ρ to 0.995, τmin to 0.01,
τmax to 4, and the maximum number of cycles to 3000. We first report results
obtained with 7 ants and no preprocessing. In this case, Ant-Clique constructs
21 000 cliques so that this allow a fair comparison with GLS that constructs
20 000 cliques. We also report results obtained when increasing the number of
ants to 30, and when using a preprocessing step to initialize pheromone trails
(as described in section 2). When a preprocessing step is used, we have set ε to
0.001 and nBest to 300.

Test Suite: We consider the 37 benchmark instances proposed by the DIMACS
organisers and available at http://dimacs.rutgers.edu/Challenge. Cn.p and
DSJCn.p graphs have n vertices; Mann a 27, 45 and 81 graphs respectively have
378, 1035 and 3321 vertices; brockn m graphs have n vertices; genxxx p0.9yy
graphs have xxx vertices and maximum cliques of size yy; hamming8-4 and
hamming10-4 respectively have 256 and 1024 vertices; keller 4, 5 and 6 graphs
respectively have 171, 776 and 3361 vertices; and p hatn−m graphs have n
vertices.

Comparison of Clique Sizes: Table 1 compares the sizes of the cliques found by
Ant-Clique and GLS (note that for GLS, we report the results given in [6] for the
GLS instance that obtained the best average results). On this table, one can first
note that GLS clearly outperforms Ant-Clique on the three MANN instances:
on these instances, ACO deteriorates the solution process, and the average size
of the constructed cliques at each cycle decreases when the number of cycles
increases. Further work will concern the study of the fitness landscape of these
instances, in order to understand these bad results.

When comparing average results of Ant-Clique with 7 ants and no prepro-
cessing with GLS, we note that Ant-Clique outperforms GLS on 23 instances,

Table 1. Results for DIMACS benchmarks. For each instance, the best known result
is presented between parenthesis in first column. The table then displays the results
obtained by Ant-Clique (with preprocessing and 7 ants, without preprocessing and
7 ants, and without preprocessing and 30 ants) and reports the best, average and
standard deviation of the maximum size cliques constructed over 25 runs. Finally, the
table reports results given for GLS in [6]: we display the best, average and standard
deviation for the GLS algorithm that obtained the best average results (I for Iter, G
for Gene and M for Mult). For each instance, best average results are in bold font.

Ant-Clique
Graph with preproc without preprocessing GLS

7 ants 7 ants 30 ants
best avg(sdv) best avg(sdv) best avg(sdv) best avg(sdv)

C125.9(34) 34 34.0(0.0) 34 34.0(0.0) 34 34.0(0.0) 34 34.0(0.0) I
C250.9(44) 44 44.0(0.0) 44 44.0(0.2) 44 44.0(0.0) 44 43.0(0.6) I
C500.9(57) 56 54.3(1.1) 56 55.0(0.8) 56 55.5(0.7) 55 52.7(1.4) I

C1000.9(68) 65 63.5(1.2) 66 63.6(1.4) 67 65.0(1.0) 66 61.6(2.1) G
C2000.9(78) 70 68.5(1.2) 72 68.5(1.9) 73 70.0(1.7) 70 68.7(1.2) I

DSJC500.5(14) 13 12.9(0.3) 13 12.7(0.5) 13 12.9(0.3) 13 12.2(0.4) G
DSJC1000.5(15) 15 14.0(0.5) 15 13.9(0.6) 15 14.0(0.2) 14 13.5(0.5) I

C2000.5(16) 15 14.9(0.3) 16 14.6(0.6) 16 15.0(0.3) 15 14.2(0.4) I
C4000.5(18) 17 15.8(0.6) 16 15.5(0.5) 17 15.9(0.4) 16 15.6(0.5) I

MANN a27(126) 126 125.6(0.3) 126 124.8(0.4) 126 125.5(0.5) 126 126.0(0.0) I
MANN a45(345) 340 338.9(0.7) 338 336.4(0.6) 341 339.2(0.7) 345 343.1(0.8) I

MANN a81(1098) 10921090.6(0.7) 1087 1086.3(0.5) 10921089.4(0.7) 1098 1097.0(0.4) I

brock200 2(12) 12 11.9(0.3) 12 11.9(0.3) 12 12.0(0.0) 12 12.0(0.0)M
brock200 4(17) 17 16.4(0.5) 16 16.0(0.0) 17 16.6(0.5) 17 15.7(0.9)M
brock400 2(29) 25 24.5(0.5) 25 24.4(0.5) 29 24.7(1.0) 25 23.2(0.7) I
brock400 4(33) 33 25.3(3.0) 25 24.1(0.3) 33 25.6(3.3) 25 23.6(0.8) G
brock800 2(21) 21 19.7(0.6) 21 19.6(0.6) 21 19.8(0.5) 20 19.3(0.6) G
brock800 4(21) 20 19.3(0.5) 21 19.6(0.6) 20 19.7(0.5) 20 19.0(0.4) I

gen200...44(44) 44 44.0(0.0) 44 42.6(1.9) 44 43.8(0.8) 44 39.7(1.6) G
gen200...55(55) 55 55.0(0.0) 55 55.0(0.0) 55 55.0(0.0) 55 50.8(6.4) G
gen400...55(55) 52 51.6(0.5) 52 51.5(0.5) 52 51.7(0.5) 55 49.7(1.2) G
gen400...65(65) 65 65.0(0.0) 65 65.0(0.0) 65 65.0(0.0) 65 53.7(7.4) G
gen400...75(75) 75 75.0(0.0) 75 75.0(0.0) 75 75.0(0.0) 75 62.7(12.3) I

hamming8-4(16) 16 16.0(0.0) 16 16.0(0.0) 16 16.0(0.0) 16 16.0(0.0) G
hamming10-4(40) 40 38.3(1.0) 40 38.4(1.5) 40 38.3(1.7) 40 38.2(1.2) I

keller4(11) 11 11.0(0.0) 11 11.0(0.0) 11 11.0(0.0) 11 11.0(0.0) G
keller5(27) 27 26.9(0.3) 27 26.6(0.5) 27 26.9(0.3) 27 26.3(0.6) I
keller6(59) 54 52.0(1.2) 53 51.3(1.2) 55 53.1(1.2) 56 52.7(1.8) I

p hat300-1(8) 8 8.0(0.0) 8 8.0(0.0) 8 8.0(0.0) 8 8.0(0.0) G
p hat300-2(25) 25 25.0(0.0) 25 25.0(0.0) 25 25.0(0.0) 25 25.0(0.0) I
p hat300-3(36) 36 36.0(0.0) 36 36.0(0.2) 36 36.0(0.0) 36 35.1(0.8) I
p hat700-1(11) 11 10.8(0.4) 11 10.8(0.4) 11 10.9(0.3) 11 9.9(0.7) I
p hat700-2(44) 44 44.0(0.0) 44 44.0(0.0) 44 44.0(0.0) 44 43.6(0.7) I
p hat700-3(62) 62 61.6(0.5) 62 61.5(0.5) 62 62.0(0.0) 62 61.8(0.6) I

p hat1500-1(12) 11 10.9(0.3) 12 11.2(0.4) 12 11.0(0.2) 11 10.8(0.4) G
p hat1500-2(65) 65 64.9(0.3) 65 64.8(0.4) 65 64.9(0.3) 65 63.9(2.0) I
p hat1500-3(94) 94 92.9(0.4) 94 92.8(0.5) 94 93.1(0.3) 94 93.0(0.8) I

whereas GLS outperforms Ant-Clique on 8 instances. Then, when increasing the
number of ants from 7 to 30, the average results found by Ant-Clique are im-
proved for 24 instances, whereas they are deteriorated for 2 instances. When
further increasing the number of ants, Ant-Clique can still improve its perfor-
mances on the hardest instances. For example, for keller6 and with 100 ants,
Ant-Clique found a clique of size 59, and in average found cliques of size 54.1
instead of 53.1 with 30 ants and 51.3 with 7 ants. Finally, one can also note that,
when fixing the number of ants to 7, the preprocessing step improves average
solutions’ quality for 18 instances, whereas it deteriorates it for 4 instances.

CPU times: Table 2 reports the number of cycles and the time spent by Ant-
Clique on a 350MHz G4 processor to find best solutions. The table also displays
the time spent by the best of the 3 GLS algorithm on a Sun UltraSPARC-II
400MHz as reported in [6]2.

First, note that, within a same set of instances, time spent by Ant-Clique
grows quadratically with respect to the number of vertices of the graph, whereas
time spent by GLS increases more slowly (even though CPU times are not exactly
comparable, as we used different processors). For instance, when considering
C125.9, C500.9 and C2000.9, that respectively have 125, 500 and 2000 vertices,
Ant-Clique with 7 ants and no preprocessing respectively spent 0.4, 34.9 and
689.3 seconds whereas ITER respectively spent 0.5, 2.7 and 24.8 seconds.

Note also that when increasing the number of ants from 7 to 30, the number
of cycles is nearly always decreased (for all instances but 3) as the quality of the
best computed clique at each cycle is improved. However, as the time needed to
compute one cycle also increases, Ant-Clique with 30 ants is quicker than Ant-
Clique with 7 ants for 15 instances only (those for which the number of cycles
is strongly decreased), whereas it is slowler for 21 instances.

Finally, note that when initializing pheromone trails with a preprocessing
step, instead of a constant initialization to τmax, the number of cycles is nearly
always strongly decreased (for all instances but 2). Indeed, this preprocessing
step shorten the exploration phase, so that ants start converging much sooner.
One can notice that on very easy instances, the best solution is found during
preprocessing, or just after, during the first cycles of the pheromone-oriented
solving step. Also, on the 3 MANN instances, the best solution is always found
during preprocessing as, on these instances, ACO deteriorates solutions qual-
ity. However, if the preprocessing step reduces the number of cycles, it is time
consuming. Hence, Ant-Clique with preprocessing is quicker than without pre-
processing for 24 instances, whereas it is slowler for 13. This result must be
considered with the fact that preprocessing also allowed to improve solutions’
quality for 18 instances, whereas it deteriorates them for 4 instances. Hence, on
the maximum clique problem, preprocessing often boosts the resolution.

2 When considering the SPEC benchmarks (http://www.specbench.org/), these two
computers exhibit approximately the same computing power: for our 350MHz G4
processor, SPECint95=21.4 and SPECfp95=20.4; for the UltraSPARC-II 400MHz,
SPECint95=17.2 and SPECfp95=25.9. Hence, our computer is more powerful for
integer processing, but it is less powerful for floating point processing.

Table 2. Time results for DIMACS benchmarks. For each instance, the table displays
the results obtained by Ant-Clique (with preprocessing and 7 ants, without prepro-
cessing and 7 ants, and without preprocessing and 30 ants) and reports the number
of cycles (average over 25 runs and standard deviation) and the average CPU time
needed to find the best solution (on a 350MHz G4 processor). For ant-Clique with pre-
processing, we successively report the time spent for the preprocessing step, the time
spent for ACO solving, and the total time. The last column displays the time spent by
the best GLS approach (on a Sun UltraSPARC-II 400MHz) .

Ant-Clique GLS
Graph with preprocessing without preprocessing

7 ants 7 ants 30 ants
nbCy(sdv) t P+t S= time nbCy(sdv) time nbCy(sdv) time time

C125.9 93(61) 1.0+0.2= 1.2 219(63) 0.4 140(49) 0.7 0.5
C250.9 356(144) 2.2+2.5= 4.7 888(523) 6.1 467(98) 6.7 2.4
C500.9 974(614) 4.7+24.5= 29.3 1488(654) 34.9 1211(603) 49.9 2.7

C1000.9 1730(672) 12.9+154.6= 167.6 1972(571) 161.2 1712(602) 202.2 12.4
C2000.9 2065(648) 23.8+672.9= 696.7 2281(498) 689.3 2041(487) 749.5 24.8

DSJC500.5 325(614) 0.9+4.5= 5.4 1049(952) 12.9 605(375) 8.8 2.1
DSJC1000.5 495(612) 1.8+24.4= 26.2 1084(910) 50.6 990(645) 51.3 2.3

C2000.5 576(741) 4.2+108.3= 112.5 1130(919) 203.1 869(615) 159.5 2.3
C4000.5 505(745) 7.6+377.2= 384.8 783(826) 551.0 1097(728) 772.3 15.7

MANN a27 0(0) 10.1+0.0= 10.1 187(630) 7.8 171(455) 21.3 15.6
MANN a45 0(0) 67.7+0.0= 67.7 14(14) 4.4 233(508) 231.3 54.4
MANN a81 0(0) 84.6+0.0= 84.6 25(23) 97.0 7(0) 93.6 693.9

brock200 2 322(718) 0.1+0.6= 0.7 265(492) 0.4 80(113) 0.2 2.7
brock200 4 67(197) 0.3+0.2= 0.5 424(124) 0.9 622(748) 2.3 2.8
brock400 2 813(768) 2.2+10.2= 12.3 955(427) 10.6 954(640) 15.1 2.0
brock400 4 208(151) 2.1+2.7= 4.8 945(468) 10.4 806(605) 12.7 1.3
brock800 2 820(986) 1.4+32.3= 33.7 1437(626) 52.1 1227(766) 51.3 5.2
brock800 4 620(512) 1.4+25.4= 26.8 1437(576) 51.9 1270(776) 53.4 4.1

gen200...44 364(165) 1.3+1.7= 3.0 1065(531) 4.7 376(146) 4.3 1.3
gen200...55 4(5) 2.0+0.0= 2.0 203(31) 0.9 134(25) 1.5 1.4
gen400...55 1423(898) 3.3+24.3= 27.7 1382(742) 22.3 1086(503) 35.8 3.8
gen400...65 281(137) 3.8+4.7= 8.5 718(158) 11.1 412(40) 13.2 4.3
gen400...75 49(42) 4.3+0.8= 5.1 555(443) 8.8 289(22) 9.2 4.6

hamming8-4 0(1) 0.7+0.0= 0.7 134(93) 0.5 59(41) 0.3 0.0
hamming10-4 806(493) 7.9+66.8= 74.6 1750(632) 129.9 1167(323) 103.2 5.3

keller4 1(1) 0.5+0.0= 0.5 9(8) 0.0 3(2) 0.0 0.0
keller5 936(775) 4.0+40.1= 44.1 1417(500) 55.7 1063(598) 50.2 4.0
keller6 1489(768)23.6+1180.0=1203.6 2242(375)1682.4 2112(498)1731.3 36.2

p hat300-1 4(4) 0.2+0.0= 0.2 173(164) 0.4 34(31) 0.1 0.4
p hat300-2 25(25) 0.8+0.1= 0.9 300(48) 1.2 190(47) 1.1 0.5
p hat300-3 402(248) 1.9+3.1= 5.0 718(228) 4.9 486(96) 5.5 1.5
p hat700-1 206(274) 0.4+3.0= 3.4 995(375) 14.1 619(310) 9.4 2.6
p hat700-2 206(127) 3.1+5.5= 8.6 551(86) 12.7 452(99) 13.0 1.2
p hat700-3 919(664) 5.9+35.8= 41.7 1106(438) 38.0 1030(347) 50.3 4.5

p hat1500-1 461(745) 1.1+31.7= 32.8 1488(640) 97.0 700(374) 46.3 14.2
p hat1500-2 791(419) 7.0+92.2= 99.2 1181(580) 125.8 790(220) 94.9 12.2
p hat1500-3 945(776) 14.9+152.8= 167.8 1360(596) 214.7 1071(422) 195.1 7.1

5 Conclusion

We have described Ant-Clique, an ACO algorithm for searching for maximum
cliques. We have shown through experiments that this metaheuristic is actually
well suited to this problem: without using any local heuristic to guide them
neither local search technics to improve solutions quality, artificial ants are able
to find optimal solutions on many difficult benchmark instances.

However, Ant-Clique does not reach the best known results on all instances.
The best current approach is Reactive Local Search (RLS) [1], an approach that
combines local search with prohibition-based diversification techniques where the
amount of diversification is determined in an automated way through a feedback
scheme. In the experiments reported here, Ant-Clique has been able to find the
best solution found by RLS on 29 instances over 37.

Hence, further work will first explore the integration within Ant-Clique of
some local search technics such as the one used by RLS. Actually, the best per-
forming ACO algorithms for many combinatorial problems are hybrid algorithms
that combine probabilistic solution construction by a colony of ants with local
search [5, 9, 7]. Also, Ant-Clique performances may be enhanced by introducing
a local heuristic to guide ants. Indeed, as pointed out in Section 2, we already
have experimented a first heuristic, borrowed from [1], that has not given any
improvement. However, we shall further investigate other heuristics.

References

1. R. Battiti and M. Protasi. Reactive local search for the maximum clique problem.
Algorithmica, 29(4):610–637, 2001.

2. I. Bomze, M. Budinich, P. Pardalos, and M. Pelillo. The maximum clique problem.
In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,
volume 4. Kluwer Academic Publishers, Boston, MA, 1999.

3. M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis,
Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

4. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete opti-
mization. Artificial Life, 5(2):137–172, 1999.

5. M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation, 1(1):53–66, 1997.

6. E. Marchiori. Genetic, iterated and multistart local search for the maximum clique
problem. In Applications of Evolutionary Computing, Proceedings of EvoWork-
shops2002: EvoCOP, EvoIASP, EvoSTim, volume 2279, pages 112–121. Springer-
Verlag, 2002.

7. C. Solnon. Ants can solve constraint satisfaction problems. IEEE Transactions on
Evolutionary Computation, 6(4):347–357, 2002.

8. C. Solnon. Boosting ACO with a preprocessing step. In Applications of Evolution-
ary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim,
volume 2279, pages 161–170. Springer-Verlag, 2002.

9. T. Stützle and H.H. Hoos.MAX−MIN Ant System. Journal of Future Generation
Computer Systems, 16:889–914, 2000.

