
Visopt ShopFloor: Going Beyond  
Traditional Scheduling 

Roman Barták 

Charles University, Faculty of Mathematics and Physics 
Institute for Theoretical Computer Science 

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic 
bartak@kti.mff.cuni.cz 

Abstract. Visopt ShopFloor is a generic scheduling system for solving complex 
scheduling problems. It differentiates from traditional schedulers by offering 
some planning capabilities. In particular, the activities to achieve the goal are 
planned dynamically during scheduling. In the paper, we give a motivation for 
the integration of planning and scheduling and we describe how such 
integration is realised in the scheduling engine of the Visopt ShopFloor system. 

1 Introduction 

Planning and scheduling are closely related areas but usually the problems from these 
areas are solved separately using a different technology. The planning task is to 
generate activities to achieve some goal while the scheduling task is to allocate the 
known activities to available resources and time. When both tasks are included in the 
real-life problem then usually the planning component generates the activities in 
advance and the separate scheduling component allocates the activities to the 
resources and time [18]. As we argued in [2], such separation is not appropriate if the 
problem environment is more complex and if the planning decisions are strongly 
influenced by the scheduling decisions (like the introduction of set-up activities with 
by-products). Our proposal how to solve the problems on the edge of planning and 
scheduling is based on the integration of planning and scheduling in a single solver 
[3]. 

In [6] we described our realisation of the integrated planning and scheduling 
system called Visopt ShopFloor. In this paper, we present the unique capabilities of 
this system using a particular example of the problem going beyond traditional 
scheduling. 

The paper is organised as follows. First, we highlight the main features of the 
problem area and we describe one particular benchmark problem that can be solved 
by our system and that the conventional schedulers cannot handle. Then we present 
the technology and the basic ideas behind the solver. The paper is concluded with the 
results of the benchmark problem and we also show some results of real-life models. 
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2 The problem 

Traditional scheduling deals with the problem of allocating known activities to 
available resources and time. Usually, the resources are rather simple; they define a 
limited capacity for processing the activities. Either we have a unary resource, where 
only one activity can be processed at a time - this is sometimes called disjunctive 
scheduling. Or we have a cumulative resource where more activities can be processed 
in parallel provided that the resource capacity is not exceeded - this is called 
cumulative scheduling. Distinction of unary and cumulative resources is important 
because a resource constraint with stronger filtering can be defined for unary 
resources [1]. Despite the widespread use of unary and cumulative resources in 
traditional scheduling applications, neither one cares about alignment or sequencing 
of activities in the resource (we explain these notions later in Section 2.1). 

In addition to the resource constraints restricting the allocation of activities, the 
traditional schedulers allow the definition of precedence constraints between the 
activities. Usually, the activities are grouped into tasks, where a prescribed sequence 
of activities must be followed. Therefore we are speaking about the task-centric 
models [9,2]. Job-shop scheduling [7] is a typical example of the task-centric view of 
the scheduling problem. Constraint-based scheduling [20] is more general by allowing 
precedence relations between arbitrary activities but it still requires knowing the 
activities in advance. 

In the following sub-sections we show that the real-life problems are more 
complex than the above pure schema of the scheduling problems. In particular we 
give examples of the resources with more complex behaviour going beyond the 
unary/cumulative classification. We also explain why a fixed task schema is not 
appropriate to model some production processes. The section is concluded by a 
description of an example problem that contains some of these features. 

2.1 Complex resources 

Unary (machine) and cumulative (store) resources are typical representatives of 
resources but in some production environments like process industries the behaviour 
of resources is more complex. In particular, alignment and sequencing of activities is 
important. In Visopt ShopFloor we are modelling batch production with a complex 
transition scheme. 

Batch production means that the activities can be processed in parallel but if two 
activities overlap in time, they must start and finish at the same times. Such 
overlapping activities form a batch. In addition to the capacity restriction we also 
have a compatibility restriction, i.e., the activities are tagged by a type and only the 
activities of the same type can be processed in parallel. 

In addition to batch production we can model a complex transition scheme. The 
resources are described using states and transitions between the states. At any time, a 
resource is in exactly one state and the state can be changed only according to the 
transition scheme. Moreover, the number of batches processed at each state can be 
limited. We now give some examples how the transition scheme is used to model 
behaviour of a real resource. 
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Let us consider a resource with two modes of production, parallel and serial. There 
is no restriction about the number of batches processed in the serial mode but exactly 
three batches are processed in the parallel mode. The restricted number of batches in 
the parallel mode is due to the following technological reason. Some by-product is 
outputted during the parallel production and this by-product is temporarily stored 
close to the machine. The temporal storage is full after three production batches and 
thus a recycling batch must be processed before the production can continue. 

To make the transition scheme even more complex, we can consider that from time 
to time there must be a cleaning batch inserted. Moreover, cleaning cannot be done 
while some by-product is stored in the resource. We discuss the rules about insertion 
of the cleaning batch later in the paragraph about batch counters. 

The above transition scheme can be easily described via a state transition graph 
where each state is tagged by a minimum and a maximum number of batches 
processed in this state (Figure 1). 

 
 
 
 
 
 
 

Fig. 1. Behaviour of many resources can be described using states with a minimum and a 
maximum number of batches per state (in brackets) and using a transition scheme between the 
states (left). This transition scheme must be followed during batch sequencing (right). 

The transition scheme with the minimum and the maximum number of batches per 
state provides a flexible framework for modelling real-life resources. For example, it 
is easy to describe a learning curve of the worker. Let us assume that the worker 
needs first four batches to learn how to use the machine, i.e., duration of these batches 
is longer than duration of all following batches. We allow tagging the states by 
attributes, like duration and time windows, and these attributes are then applied to all 
batches of the state. Thus, the above worker can be modelled via a state transition 
scheme with two states: beginner and experienced (Figure 2). The batches processed 
in the beginner state are longer than the batches processed in the experienced state. 
 

 
 

Fig. 2. State transitions can describe evolution of the resource, e.g., after a sequence of batches 
of given state, the resource irreversibly changes its state. 

The above described transition scheme allows counting the batches of the same state. 
However, in many situations the users need to count batches of different states, e.g. to 
model insertion of the cleaning batch after a specified number of production batches. 
Thus, in Visopt ShopFloor we introduce the concept of a general batch counter that 
counts the batches across several states (Figure 3). This counter restricts further the 
sequencing of batches. 
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Fig. 3. Batch counters count batches across more states to model situations like forced cleaning 
after eight production (parallel or serial) batches. 

It is hard or even impossible to model the above-described resources in the 
conventional scheduling. The main difficulty here is the transition scheme with the 
batch counters that forbid some transitions while force other transitions. It means that 
sequencing of batches is not arbitrary and the appearance of the batch depends on the 
allocation of other batches [2,17]. Thus the batches cannot be introduced in advance 
and it is more convenient to plan the batches dynamically during scheduling, i.e., to 
integrate planning and scheduling as we proposed in [3]. 

2.2 Resource dependencies 

In the conventional scheduling systems, the direct relations between the activities are 
described via precedence constraints. These precedence constraints can be seen as an 
abstraction of the item flow between the activities - the item must be produced before 
it can be consumed. However, a simple precedence relation is not enough to model 
many real-life dependencies. The item must be produced before it is consumed but 
sometimes the delay between the end of production and the start of consumption 
should not be too long. For example, the item is cooling after its production and some 
minimal temperature is required when the item is consumed. This can be modelled 
easily in constraint-based scheduling where the simple precedence relation is 
substituted by tighter constraints: 

min_delay ≤ consumer_start - supplier_end ≤ max_delay. 

The problem is when we do not know which activities are connected using the above 
precedence constraints, e.g., when there are several process routes for a single item. 
For example, assume that either the item is produced in a parallel mode when two 
machines co-operate and a worker is necessary (Figure 4 left), or the item is produced 
in a serial mode when the item flows from the first machine to the second machine 
and no worker is necessary (Figure 4 right). The structure of the production route is 
different in the above cases, namely different batches are used with different relations 
between them. Conventional scheduling requires one production route (task) to be 
chosen before scheduling (i.e. during planning). We propose to postpone this decision 
to the scheduling stage when more information about the batches is available [3]. 
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Fig. 4. In the real-life factories, the item can be typically produced using more processing 
routes, e.g. via a parallel production when two machines run in parallel and a worker is required 
(left) or via a serial production when the item is pre-processed in the first machine and then 
finished in the second machine (right). 

Another difficulty of the conventional scheduling is modelling many-to-many 
relations between the batches, i.e., the batch has more suppliers and/or more 
consumers, and modelling recycling. In recycling, the set-up batch produces a by-
product that can be used to satisfy some demands. Because the set-ups are not known  
until the production batches are allocated, it is not possible to plan recycling in the 
foregoing planning stage. 

To address the above issues, we propose to describe supplier-consumer 
dependencies between the resources rather than to specify precedence relations 
between particular activities. Each supplier-consumer dependency is specified by the 
supplying and the consuming resource (and their states) and by the delay between the 
end of the supplying batch and the start of the consuming batch. When the 
dependency is established between two batches, the dependency describes also the 
quantity moved between the batches. Therefore a single supplying batch can be 
connected to more consuming batches and vice versa. 

The supplier-consumer dependencies model naturally the item flow in the factory 
so they provide a declarative description of the processes in the factory. We can see 
them as a specimen for the precedence constraints that are posted when the batches of 
given type are introduced dynamically during scheduling (see Section 4). Figure 5 
shows an example how the user describes the processes, i.e. the supplier-consumer 
dependencies using the graphical user interface of Visopt ShopFloor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Visopt ShopFloor graphical user interface describing an item flow. 
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2.3 The task at a glance 

The Visopt ShopFloor system concentrates primarily on the problems going beyond 
traditional scheduling. Let us now summarise the task solved by the Visopt ShopFloor 
by giving a particular benchmark example. 

Let us consider a small factory with two machines, r1 (Figure 3) and r2 (Figure 1), 
producing a single final item. These machines run either in a parallel mode or in a 
serial model (Figure 4). In the parallel mode, the batches of both machines run in 
parallel and a worker is required. One final item is outputted from the batch and 
duration of this batch depends on the experience of the worker (see below). In the 
serial mode, the machine r1 pre-processes the item (3 time units) that is finished in the 
machine r2 (3 time units). There is no delay for moving the item from r1 to r2. 

During the parallel production, a by-product is produced. This by-product can be 
recycled only on the machine r2 and we need three by-products to get a single final 
item. Recycling takes 2 time units and it must be done immediately after the three 
batches of the parallel processing (Figure 1). 

Both machines require cleaning after eight production batches or sooner (Figure 3) 
and the cleaning must be done at the same time on both machines. At the beginning, 
both machines are clean.  

The worker, who is necessary for parallel processing, is a beginner. After four 
production batches, the worker becomes experienced (Figure 2). The parallel 
production takes 3 time units for the beginner and 2 time units for the experienced 
worker. Moreover, the worker is available only in the following time windows (0..10), 
(30..40), (60..70). 

The task is to plan/schedule production starting from time 0 in such a way that 5 
final items are ready in time 20 and additional 25 items are ready in time 100. 

As we can see from the above example the goal of the system is to find out the 
batches that are necessary to satisfy the demands (planning) and to allocate these 
batches to available resources (scheduling). A plan/schedule for a given time period is 
returned to the user. 

In this paper we discuss only feasibility issues, but the Visopt ShopFloor does 
optimisation based on cost as well. The conventional schedulers use some objective 
function like makespan, tardiness, or earliness to define quality of the schedule. 
However, in real-life environment the schedule quality is usually subjective, 
evaluated by the plant persons. To model these subjective criteria we use the cost 
parameters attached to batches, transitions, dependencies etc. The total cost is then 
used to guide scheduling, for details see [6]. 

3 The technology 

Traditional scheduling technology is either based on special scheduling algorithms [7] 
or some general schema like constraint-based scheduling [20] is applied. If the 
activities are known in advance then it is quite natural to model the scheduling 
problem as a constraint satisfaction problem (CSP). However if the planning 
component is present then the static approach is hardly applicable due to variability of 
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possible plans [16]. Some approaches try to fit the planning problem into the static 
concept of CSP via dummy activities [8,17] but it works only when the planning 
branching does not lead to many different structures of the plan. Other researchers 
propose to use some generalised concept of CSP that provide more dynamic features 
like Dynamic CSP [14] or Structural CSP [15]. 

In the Visopt ShopFloor system, we solve the scheduling problems where the 
appearance of the activity depends on allocation of other activities. In terms of CSP it 
means that the existence of some variables and constraints depends on assigning a 
value to another variable. Moreover, the variable/constraint disappears from the 
system only when the original assignment is withdrawn, i.e., during backtracking. 
Having this in mind we decided to use the existing technology of Constraint Logic 
Programming (CLP) in the way this framework was originally defined [10], i.e., the 
constraints are used to reduce the search space of the logic program. 

Opposite to the standard CSP technique (i.e., define the variables and the 
constraints first and then do labelling) we propose to interleave the labelling stage 
with the introduction of new variables and constraints. Basically, it means that we 
model the planning decisions (branching) using the disjunctive constraints 
(constructive disjunction). When some element of the disjunction is selected then the 
system automatically introduces other variables and constraints corresponding to the 
selected planning branch. This gives us the freedom to define different sets of 
variables and constraints in different branches of the search tree, i.e., to explore 
different plans. Thus planning decisions are resolved during scheduling. 

4 The solver 

The Visopt ShopFloor system consists of two independent parts: the ShopFloor 
graphical modelling environment and the scheduling engine (see Figure 6). 

In the ShopFloor, the user specifies completely the problem to be solved. In 
particular he or she describes the available resources, i.e., their states and transitions, 
the item flow, i.e., the supplier-consumer dependencies (see Figure 5), and the 
customer orders (demands). Data can be entered and modified manually or they can 
be extracted automatically from the databases of ERP systems. The ShopFloor 
module generates the problem description in the form of a text file called a factory 
model that is passed to the solver. 

The factory model contains a complete description of the problem (resources, 
dependencies, and orders) in a human readable form. It means that the factory model 
can be explored, prepared, and modified in an arbitrary text editor. This file is the 
only input to the scheduling engine. 

The scheduling engine (the solver) first generates a constraint model from data 
(from the factory model) and then it searches for the solution. The solver has a 
modular architecture so it is possible to add a new module describing a new type of 
resource. Also, the search strategy is a separate module so it can be exchanged by a 
new strategy. The scheduling engine returns the plan/schedule into the ShopFloor that 
displays it in the form of a Gantt chart. 
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Fig. 6. The Visopt ShopFloor system architecture consists of two independent modules: the 
graphical modelling environment (left) and the scheduling engine (right). 

4.1 The constraint model 

The traditional static constraint models are defined by the set of variables, their 
domains, and by the set of constraints restricting possible combinations of values. As 
we discussed in Section 3, we need a more dynamic approach to CSP, namely, the 
variables and the constraints are introduced as search progresses. There exist some 
static approaches to overcome difficulties with the unknown set of 
variables/constraints based on dummy variables and deactivated constraints [8,17]. 
Unfortunately, such approaches lead to huge models so they cannot be used to model 
the problem completely statically. Nevertheless, we use the dummy variables partially 
to do look-ahead for planning decisions (via constructive disjunction, see Section 3) 
and to realise the idea of active decision postponement [11]. 

The constraint model in the Visopt solver is a piece of code responsible for 
introduction of variables and constraints. The basic idea is as follows: at the 
beginning we introduce only the objects that are known, i.e., the customer orders. As 
these customer orders should be satisfied, we also start dependencies to the resources 
that can produce the ordered items. When the actual supplier is found (this is usually 
decided during labelling), we need to find suppliers for this supplier etc. To 
summarise it: if there is a planning decision, i.e. the decision about what objects 
should be part of the plan/schedule, we introduce all of them (via dependencies). 
Together with these objects, the relevant constraints are posted so we can exploit the 
power of constraint propagation. Let us now describe some details about what 
variables and what constraints are used. 

The slot representation 
Opposite to most scheduling systems that use the task-centric model of the problem, 
we decided to apply the resource-centric model because it simplifies modelling of the 
complex transition schemes [2]. It means that the batches are grouped per resource 
rather than per task. Of course, we do not know the batches in the resource at the 
beginning so we use a chain of empty slots to represent the schedule for each 
resource. Opposite to the slots used in the timetabling applications, the slots in our 
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system may slide in time and they may have variable duration. The only restriction is 
that the ordering of slots must be preserved (due to the transition constraints). 

Each slot has some attributes like the start time, the end time, and the duration 
represented as finite domain variables. Also, there is a special variable describing the 
type of the batch (the state) that can be filled in the slot. When this state variable 
becomes a singleton we know the batch in the slot - we say that the slot is filled by the 
batch. This may introduce other variables that are specific for the particular batch, e.g. 
quantities of consumed and produced items. Naturally, all the slot variables are 
connected via constraints describing the time windows etc. and these constraints can 
be posted even if the batch in the slot is not known yet. Moreover, there can be also 
constraints between the neighbouring slots to describe the transition scheme. 

To model the minimum and the maximum batches per state we introduce a special 
variable called a serial number that "counts" the batches of the same state. This 
variable participates in the transition constraints so it may force the state change when 
the maximum number of batches is reached or it may forbid the state change when the 
minimum number of batches is not reached. Figure 7 illustrates this mechanism, for 
technical details see [5]. The same mechanism is used to model the batch counters. 

 
 
 
 
 
 
 
 

 

Fig. 7. The transition scheme (top left) is modelled using the serial numbers and the special 
transition constraints defined over the transition table (top right). 

As we mentioned above the slots are also introduced dynamically which saves some 
memory. In fact, a new slot is attached to the end of the slot list when there is a 
demand to the resource but there is no free slot to satisfy this demand. Note however, 
that it does not mean that the new slot will be filled by the coming batch that caused 
its introduction. Perhaps some waiting (not yet allocated) batch or a future batch 
overhauls it or the slot will stay empty if we find later that the batch is not necessary. 
Still, the ordering of slots is fixed so it is not possible to introduce a new slot in-
between two existing slots. Thus, deciding to which slot the batch is allocated 
corresponds to the decision about the absolute ordering of batches in the resource. 
This view is similar to the idea of permutation based scheduling presented in [21]. 
The main difference of our approach is that we can solve problems where the 
appearance of the batch depends on allocation of other batches. In particular, the 
structure of the batches in the resource depends on the demands from other resources 
as well as on the transition scheme for the resource. 

Notice that although we do not know the batches in the resource, thanks to the slot 
representation we can post many constraints in advance and thus to use the power of 
constraint propagation. The main reason for using the slot representation is modelling 
complex transition schemes. 
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Dependencies 
The slots of different resources are connected via dependencies modelling the 
supplier-consumer relations. Because the dependency is closely related to the item we 
cannot introduce the dependency until we know the item and its quantity. As 
described in the previous section, the variable specifying the item quantity is 
generated as soon as we know the batch - the state - in the slot. At the same time we 
can start the dependencies from the given slot. 

Assume that we have an input item defined for the batch in the slot. Dependencies 
should connect this batch with all the supplying batches. It is possible to post the 
dependency to every slot that can be filled by the supplying batch. However, this 
eager method has huge memory consumption when applied to large-scale problems 
with hundreds or thousands of slots. Thus, we use a more lazy method that posts a 
minimal number of dependencies covering the required quantity. Typically, these 
dependencies go to the first "free" slot of every possible supplying resource. If we 
find later that the slot cannot be filled by the supplying batch then we move the 
dependency to the next slot and so on (see Figure 8). This is realised by setting the 
quantity in the dependency to zero (so the constraint connecting the slot times 
"evaporates") and by introducing a new dependency going to the next slot. If no 
supplying batch is found in the resource then the dependency to the resource is finally 
made empty and the supplying batch must be found in another resource. Other 
dependencies can be introduced as soon as we find that the dependencies generated so 
far are not enough to cover the requested quantity (e.g. because some of them have 
been made empty). 

 
 
 
 
 

Fig. 8. The dependency generator introduces the dependencies to the first possible slot (from 
left) of each candidate supplier. If the slot is not dependent (x) then the dependency is moved 
to the next free slot etc. 

For each slot, the system maintains the links to all non-empty dependencies going to 
this slot. These links are used during scheduling for decision about which batch will 
be filled in the slot (see Section 4.2). Of course, we also know all the dependencies 
going to a particular resource so we can post special ordering constraints between the 
dependencies [12]. Because, every dependency defines a demand for one batch, these 
constraints decide about the ordering of the batches in the resource. Note finally that 
these global constraints must be open to accept incoming batches [4]. 

4.2 The search strategy 

The Visopt constraint model is responsible for introduction of all variables and all 
constraints. The scheduling strategy then decides about the batches in the slots and 
about the connections between the slots. Recall that the slots are introduced from left 

xx  Possible supplying batches 
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to right and the dependencies are started first from the orders. Thus, the labelling 
procedure must be aware of this ordering. 

In the Visopt scheduling engine, we are closing the slots (decide about the batch 
types in the slots) in slices going from left (past) to right (future). We call processing 
the slice a scheduling step. The decision whether the slot belongs to the slice or not is 
done using the time variables in the slot. In the slice, the slots are closed in the order-
to-purchase ordering. 

When the slot is selected, the second problem is which batch should be filled in the 
slot. This decision is naturally based on the dependencies going to the slot. The 
labelling strategy first selects the "best" dependencies and then it connects them to the 
slot. This is done via setting the quantity variable in the dependency to be greater than 
zero (the maximum value is tried first). The relation "better" between the 
dependencies is defined using the time of the dependency (the earliest time is 
preferred), using the cost information (the smallest cost is preferred), and using other 
heuristic criteria. Recall that when some dependencies are fixed to the slot, the 
incompatible dependencies are moved automatically to the next possible slot (see 
Figure 9). Thus, the decision about the ordering of dependencies is equivalent to the 
decision about the ordering of batches in the slots. After selecting the dependencies in 
the slot, the labelling strategy assigns a value to the state variable. In the end of each 
scheduling step, the time variables in the closed slots are labelled - the earlier times 
are preferred. 

 
 
 
 
 
 

 

Fig. 9. The basic decision of the scheduling strategy is which dependencies will go to a 
particular slot, i.e., which batch will be filled in the slot (left). Then the incompatible 
dependencies are moved automatically to the next slot (right). 

As described in the above paragraphs, the scheduling strategy is based on depth-first 
search (backtracking). Because the variable ordering is selected carefully, the 
scheduling strategy knows nothing about the dynamic character of the constraint 
model. Every time the labelling procedure attempts to assign a value to the variable, 
the variable is present in the system. Still, notice that the structure of the variables is 
different in different branches of the search tree (because different dependencies are 
introduced). This dynamic character complicates the usage of more advanced search 
techniques like the limited discrepancy search. 

So far we have enhanced the base backtracking mechanism by user defined 
backjumping. We have developed this new search algorithm using the following idea. 
If we cannot satisfy the demand in a given scheduling step then we leave this demand 
open (no batches for the demand are closed) and we try to satisfy it in the next step. 
This is realised by jumping to a pre-selected variable after failure, unassigning this 
variable and continuing with labelling of the other variables. This unassigned variable 
will be tried in the next scheduling step again. This algorithm is similar to graph-

KK--11  KK--11  KK  
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directed backjumping, the main difference is that the back jump is realised only for 
some pre-selected variables. 

5 The results 

The Visopt ShopFloor scheduling engine is completely implemented in SICStus 
Prolog (currently we use the version 3.8.7). It has been tested in several pilot projects 
in one of the biggest chemical enterprises in Europe, in one of the biggest and famous 
candy producers in The Netherlands, and in one of the biggest dairies in Israel among 
others. We are not aware of any other scheduling system that can model and solve the 
problems described in this paper, so we cannot compare our solver to existing 
schedulers. In this section we first show the plans produced by our solver for the 
problem from Section 2.3 and then we summarise the results of some real-life models. 

The problem from Section 2.3 requires both planning, i.e., deciding which batches 
are necessary to satisfy the demands, and scheduling, i.e., allocating the batches to 
available resources. Recall, that there are three different ways of producing the final 
item, namely parallel production, serial production, and recycling. Moreover, there is 
a complex transition scheme describing the resource including insertion of a cleaning 
batch after a specified number of the production batches. Last but not least, there is a 
worker that influences the timing of the parallel production. 

Figure 10 shows a Gantt chart of the plan produced by our solver (3 seconds on  
1.7 GHz Mobile Pentium 4). We can see that this plan satisfies all the production 
rules, in particular using the recycling and the cleaning batches. Also the duration of 
the parallel batches decreases when the worker became experienced (roughly at time 
35). 

 
 
 
 
 
 
 
 
 

Fig. 10. The Gantt chart of the plan for the problem from Section 2.3 

We have relaxed the restriction about parallel cleaning for both machines to see if the 
production can be more efficient. Figure 11 shows that the resulting plan is shorter 
because the cleaning batches can be scheduled asynchronously (planning took 3 
seconds on 1.7 GHz Mobile Pentium 4). 

cleaning 

parallel with recycling 
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Fig. 11. The Gantt chart of the plan for the problem from Section 2.3 where the cleaning is 
asynchronous. 

To show the size and the complexity of the real-life problems we have prepared a 
summary of some pilot problems solved by the Visopt ShopFloor system. These test 
problems are based on the real-life production lines so the actual models and the plans 
are confidential. Thus we can present only some global parameters of the models. In 
particular, Table 1 shows the model size and the runtime results. For each model we 
include the number of resources, the total number of states in the resources, the 
number of orders together with the ordered quantity, the number of items, and 
duration of the scheduled period. The ordered quantity corresponds roughly to the size 
of domains of the quantity variables - we track every quantity unit in the production. 
The schedule duration corresponds to the size of the domains for the time variables - 
it shows the resolution of scheduling (e.g. 10.080 time units means a one week 
production with a minute resolution). The solution is characterised by the runtime and 
by the solution size measured in the number of batches and in the number of 
dependencies. 

Table 1. Model and solution size for some test problems. Runtime is measured in seconds on a 
Mobile Pentium 4 1.7 GHz. 

model solution  
res. states orders 

# / quantity 
items duration 

time units 
runtime 

sec. 
batches dependencies 

1 19 334 1 / 144000 47 10080 105 1000 1441 
2 28 115 1 /  50 34 8640 79 256 310 
3 22 677 9 / 7600 56 3168 40 651 898 
4 57 704 256 /196748 45 840 77 990 1428 
5 34 574 45 / 88485 294 11520 2339 5807 10175 

 
For comparison, the state of the art schedulers handle about 20.000 batches [personal 
communication to Wim Nuijten from ILOG] but all these batches are known in 
advance. In planning, the size of plans is measured in tens of actions [13]. As Table 2 
shows we can handle problems with hundreds to thousands batches. However, when 
the number of batches increases, the large memory consumption becomes a limitation. 
Thus in the model 5 there is a trade off between the memory consumption and the 
runtime. This observation confirms our claim that such problems cannot be handled in 
a fully static way using the dummy activities because then the memory consumption 
becomes critical. 

To summarise the results, we can handle problems much larger than the traditional 
planning problems and close to the size of the problems in conventional static 

cleaning 
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scheduling. Recall that the input to the Visopt engine consists of the model of the 
factory and the list of demands. All the batches are introduced (planned) during the 
problem solving and allocated to the resources (scheduling). Thus, we are basically 
solving a (limited) planning problem under time and resource constraints. Moreover, 
our system can handle more complex resource constraints (a transition scheme) and 
resource dependencies (recycling, many-to-many relations etc.) than the conventional 
schedulers can. 

6 Conclusion 

In this paper we described the heart of the Visopt ShopFloor system - the scheduling 
engine. The integrated planning component is the main difference of our system from 
the conventional schedulers. We are not aware of any other system doing such deep 
integration so it is hard to compare Visopt to existing systems. As we showed in 
Section 2, the planning component provides flexibility that cannot be reached by 
conventional scheduling software. The unique features of Visopt, which the other 
scheduling systems cannot cover, include modelling of complex transition schemes 
for resources, modelling of an arbitrary dependency structure of the factory, 
modelling of set-ups, cleaning, and maintenance including by-products, and 
modelling of process and item alternatives. Moreover, Visopt ShopFloor attempts to 
be a general scheduler where the customer describes the problem in a declarative way 
and the system generates schedules automatically. Other scheduling software is either 
provided as a toolkit  (e.g. ILOG Scheduler), so the particular scheduler must be 
programmed using this toolkit, or the software solves a particular scheduling problem 
but it cannot be extended to other problem areas. Opposite to these systems, Visopt 
ShopFloor [22] provides intuitive graphical modelling environment independent of 
the solver, generality covering many scheduling problems, and extendibility via 
adding new types of resources. 
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