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Abstract. Boosting is well known to increase the accuracy of propo-
sitional and multi-relational classification learners. However, the base
learner’s efficiency vitally determines boosting’s efficiency since the com-
plexity of the underlying learner is amplified by iterated calls of the
learner in the boosting framework. The idea of restricting the learner
to smaller feature subsets in order to increase efficiency is widely used.
Surprisingly, little attention has been paid so far to exploiting character-
istics of boosting itself to include features based on the current learning
progress. In this paper, we show that the dynamics inherent to boosting
offer ideal means to maximize the efficiency of the learning process. We
describe how to utilize the training examples’ margins - which are known
to be maximized by boosting - to reduce learning times without a dete-
rioration of the learning quality. We suggest to stepwise include features
in the learning process in response to a slowdown in the improvement of
the margins. Experimental results show that this approach significantly
reduces the learning time while maintaining or even improving the pre-
dictive accuracy of the underlying fully equipped learner.

1 Introduction

Boosting is a method for enhancing learning algorithms by basing predictions on
a group of specialized hypotheses. Instead of searching for one highly accurate
prediction rule covering a given set of training examples, an ensemble of rules is
constructed by repeatedly calling a base learner with a changing distribution of
weights for the training examples. Each rule in the ensemble might cover only a
small subset of the examples, and all predictions are combined into one accurate
joint prediction. Boosting is a popular technique for increasing the accuracy of
classification learners and has been developed into practical algorithms that have
demonstrated superior performance on a broad range of application problems in
both propositional and multi-relational domains [3,19,17,5,7].

However, the iterative nature of boosting implies an amplification of the
underlying learner’s complexity. Boosting’s efficiency is vitally determined by the
base learner’s efficiency. A standard approach to deal with the issue of efficiency
in the presence of large feature sets would be to use a feature selection method
in an a priori fashion, and then run boosting with the small selected feature
subset. However, deciding a priori on the number of features to be included in
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the learning process might lead to inferior results since it is often difficult to
decide just how many features to include. If too many features are included the
learner is unnecessary slow, if too few features are included the learning result
might not be sufficiently accurate.

Instead, in this paper we suggest to actively determine the right balance
between speed and accuracy of a learner based on its learning progress. We pro-
pose to monitor the learning success in terms of the development of the training
examples’ mean margins - which are known to be maximized by boosting -
and to present step-by-step promising features to the learner whenever the im-
provement of the margins drops below a certain threshold. The margins’ im-
provement is measured by the ratio of the mean margins’ gradients averaged
over several iterations and the current gradient of the training examples’ mean
margins. This ratio increases from one iteration to the next as long as the mar-
gins increase significantly. As soon as the ratio starts to decrease, an estimate of
the slowdown in the margins’ improvements is determined. This estimate pre-
dicts the expected decrease of the ratio and is used to determine when to provide
a new feature to the learner. Whenever the actual decrease of the ratio is exceed-
ing the predicted decrease by a certain factor, a new feature is included in the
learning process. To this end, all features present in the training examples are
initially sorted according to their mutual information [25,14] with the examples’
class, and new features are provided to the learner in a demand-driven fashion,
starting with the top two features and the relations in which they occur.

The evaluation of our approach on various domains shows that our approach
significantly reduces learning times while maintaining or even improving predic-
tive accuracy. Although our learner is multi-relational, our experiments indicate
that the results apply equally well to boosting in propositional domains.

This paper is organized as follows. In section 2, we review boosting. In sec-
tion 3, we present our approach to include features and relations into the learning
process in a demand-driven fashion. Our experimental evaluation of the approach
is described and discussed in section 4. In section 5, we discuss related work and
conclude in section 6 with some pointers to future work.

2 Boosting

Boosting is a method for improving the predictive accuracy of a learning system
by means of combining a set of base classifiers constructed by a base learner into
one single hypothesis [22,20,19]. The idea is to “boost” a weak learner performing
slightly better than random guessing into an arbitrarily accurate learner by re-
peatedly calling the learner on varying probability distributions over the training
instances. The probability distribution models the weight associated with each
training instance and indicates the influence of an instance when building a base
classifier. Initially, all instances have equal influence on the construction of a
base hypothesis, i.e. the probability distribution is uniform. In each iterative call
of the learner, a base hypothesis is learned with a prediction confidence for each
example. The weights of misclassified instances are increased and those of cor-
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rectly classified instances are decreased according to the confidence of the learned
base hypothesis. Thus, correctly classified instances have less and misclassified
instances have more influence on the construction of the base hypothesis in the
next iteration. That way, in each new round of boosting the learner is confronted
with a modified learning task and forced to focus on the examples which have not
yet been correctly classified. Finally, all base hypotheses learned are combined
into one strong hypothesis. An instance z is classified by the strong hypothesis
by adding up the prediction confidence of each base hypothesis covering x, and
classifying x according to the sign of this sum.

2.1 Constrained Confidence-Rated Boosting

In this paper, we employ a specific form of constrained boosting, C?RIB, Con-
strained Confidence-Rated ILP-Boosting, which we introduced in [7] and which
forms the basis of the work presented here (C? RIBP). In Tables 1 and 2, we give
a concise description of the proposed algorithm. Components of the base algo-
rithm C?RIB in Table 1 are denoted by ’o’. For a definition of the functions in
the following explanation, the reader is referred to Table 1. In C2RI B, the train-
ing instances are randomly split into two sets used for specialization and pruning
of clauses, respectively. Starting with the target predicate, the refinement oper-
ator p of the relational learner iteratively refines the clause C' maximizing the
objective function Z until either a clause C” is found with hitherto maximal
Z(C") that covers only positive examples, or Z can not be further maximized.
The resulting clause is subject to overfitting on the training data, and thus im-
mediately considered for pruning. The generated hypothesis is compared to the
so called default hypothesis, just comprising the target predicate and satisfying
all examples. Whichever of these two hypotheses maximizes the objective func-
tion z is chosen as the base classifier of the current iteration and its prediction
confidence is used to update the probability distribution for the next iteration.

3 Margin-Based Inclusion of Features and Relations

The objective of our work presented here is to accelerate the learning process of
the boosted ILP-learner C?RIB without a deterioration of its prediction accu-
racy. The idea is to equip the learner at all times with the right amount of power
needed to “successfully” perform the learning task, i.e. to start the learner with
a few features and relations to be considered for refinement, monitor the learning
results and include additional features and relations into the learning process by
demand. For this purpose, we exploit the dynamics inherent to boosting, namely
that it a) is known to maximize training examples’ margins, b) is based on com-
bining classifiers specialized on certain fractions of the instance space, and c¢)
works by repeatedly calling a weak learner. Table 2 and the sections of Table 1
marked with ‘e’ give a concise description of the algorithm which is detailed in
the following. References to Table 2 will be indicated by “T2..7.
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Table 1. C?RIBP Algorithm

Let N denote the number of training instances e; = (z;,y;) € E = EYUE ™, and y; = 1
for e; € BT and y; = —1 for e; € E™. Let p be the target predicate of arity a(p) to
be learned, T the total number of iterations of the weak learner, and D a probability
distribution over E with D! the probability of e; in the t-th iteration. For a clause C
and a set S C F, let wy,w— be weight functions defined as in 1. and 2. further down
this page, and ¢(C,S) C’s prediction confidence on S defined according to 3.

e Let F be the set of features sorted in descending order with respect to their mutual
information with the examples’ class computed according to equation (2), and F’
the set of features known to the learner, initially comprising the top two features
of F.

o Set Dj ==+ for 1<i< N

oFort=1...T

Split E randomly into G and P according to Dy s.t. Z(%yi

C = p(X1, Ty, Xa(p>)

Z:=0

While w_(C,G) >0

o Let C' := argmazcrepc){Z(C")}, where Z is defined as in 4.
o Let Z' := 3(C")

o If Z' — Z < 0 exit loop

o Else C:=C",Z:=27

Prunes(C) = {p(X1, -+, Xa@p) — B | C=p(X1, -+, Xo@)) — BB}

Remove from Prunes(C) all clauses C’ where ¢(C’, E) <0

If Prunes(C) =0 let C; :=p(X1, -, Xap))

Else

o C' = argmincs e prunes(c){10ss(C")}, with loss(C"') defined as in 5.
o Let Ci := argmazcre(c’ p(x,, X o) (2(C")}, with z defined as in 6.

o hy: X — R is the function

B {C(Ct, E) if e = (x,y) € E is covered by C;
hi(x)

t .2
>EgDiN3

O O O o

O O O O

0 else
o . . . +/ Dt t+1 Df.’/
o Update the probability distribution: D; = TR GY D7 = L : 1<

i<N
o Ift>2and F # F
e Let H; := {h1,---,h}, with base classifier hy of iteration 1 < k <t
o F' = CheckLearningProgress(Hy,t, E, N, F,F' ) as detailed in Table 2

o Construct the strong hypothesis H(z) := sign (th:(z y) covered by C C(Ct,E))

3.1 Margins in the Framework of Confidence-Rated Boosting

In this approach, we monitor the learning success by observing the training ex-
amples’ mean margins. The margin of an example e¢; = (z;,y;) under an ensem-
ble H; of classifiers is a real-valued number margin(Hy,e;) € [—1, 1] indicating
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Table 1. continue

Function Definitions

w+(C,S) —def. Z(zi,l)es covered by CD;5
o t
- Ww— (078) —def. Z(zi,—l)es covered by CDi

1
2

1 wy (C,8)+ 55
3. C(C,S) =def. 3 In (wi—(c,ﬁ)
4
5

- 2(0) Zder. /wi(C,G) = /w-(C.G).
- 1055(C) =aey. (1= (wi(C,P) + w_(C,P))) + wy (C,P) - e~
w_(C,P)- e(e(C.9))

6. 2(C) =dey. (\/IU+(C,E) - w-(C, E))2

the amount of disagreement of the classifiers in H; with respect to e;’s class. For
the binary case we deal with here, we can define the margin of e; under H; as
the difference between the sum of the absolute weights of those base classifiers
in H; predicting for e; its correct class y;, and the sum of the absolute weights
of those base classifiers in H; predicting for e; the incorrect class y # y; [24,6].
We define the weight w(h,e;) of a base classifier hy with respect to an
example e; = (x;,y;) as its prediction confidence (as defined in Table 1, 3.)
if hy covers e;, and 0 otherwise. We define, following [6], the margin of e; under
ensemble Hy = {hy,---,h} of t classifiers hy, with weights w(hy,e;) as

margin(Hy, e;) = > lw(hi, ;)| — > lw(he,e)| . (1)

hi€Hy:hy(x:)=y; hi €Hy:hy(x:)F#y:

We normalize the prediction confidences of the base classifiers such that the ab-
solute values of the confidences of all base classifiers sum to 1. Consequently,
thEHt:hk(mi):yi w(hg,e;)| € [0,1], thEHt:hk(mi);éyi w(hy,e;)| € [0,1], and
margin(Hy,e;) € [-1,1] for all e; € E and ensembles H;.

Large positive margins (close to +1) indicate “confident” correct classifica-
tion, and small negative margins (close to —1) indicate “confident” incorrect clas-
sification. Boosting is known to be especially effective at increasing the margins
of the training examples [24,6]. It forces the focus on misclassified instances by
increasing their probabilities. Misclassified examples show small or even negative
margins. Consequently, the learner is forced to search for base hypotheses which
correctly classify these hard examples and thus increase their margins. Since the
margins are increasing in the course of iterated calls to the base learner, the
gradient of the mean margins can be assumed to be positive and be employed
to monitor the quality of the learning process.

The repeated calls of the base learner in the boosting framework allow for
a stepwise inclusion of features in the course of iterations. If the learning curve
indicates that the learner’s current instrumentation is not sufficient any longer,
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Table 2. CheckLearningProgress

CheckLearningProgress(Hy, t, E, N, F,F') returns F”

1. Compute for E the examples’ average margin AM; = + o margin(Hy, e;)
according to equation (1)
2. Let gradient(t) be the slope of the line determined by the least square fit to the
AMy ink, 1<k <t
1 Ty . . .
—_ > radient(t — if t > T,
3. Compute trend(t) := Tll follg . ( ) 2 . !
=5 ZJ:Q gradient(j) if t <1,
where T} denotes the number of iterations over which the gradients are averaged
. rend
4. Compute ratio(t) := Q;Ten?t)
5 Ift > 3:
(a) Ifratio(t—1) exhibits a local maximum, estimate the slowdown in the margins’
improvement in the form of predict(x) := aﬁ, where a,b are chosen such
b
that predict(2) = ratio(t — 1) and predict(3) = ratio(t); of fset ==t —3
(b) If a,b have already been determined, compute predict(t) := a
(c) Else predict(t) := ratio(t)
(d) 1f %jg;) > q, select the first element F' of F, i.e. the feature with the next
greatest mutual information with the training examples’ class; F"' := F' U{F}
(e) Else 7' :=F

1
ln(tfofbfset)

learning can be continued in the next iteration with an enhanced equipment.
Initially, we provide our learner with the target relation to be learned together
with two features with the greatest mutual information [25,14] with the exam-
ples’ class and the relations in which these features occur.

In each iteration of boosting, the learning success is monitored in terms of the
development of the training examples’ mean margins. To this end, we define the
gradient gradient(t) of an iteration ¢ as the slope of the line determined by the
least square fit to the average margins in each single iteration 1 to ¢ (T2.1, T2.2).
We then average the gradients over the last 7; iterations as to smooth temporary
fluctuations in the margins’ development (T2.3), and compute the ratio of the
averaged previous gradients and the gradient of the current iteration (T2.4). The
margins’ improvement is measured by this ratio which increases from one itera-
tion to the next as long as the margins increase significantly. As soon as the ratio
starts to decrease, an estimate for the slowdown in the margins’ improvements
is determined (T2.5a). This estimate predicts the expected decrease of the ratio
and is used to determine when a new feature has to be presented to the learner.
The estimate is chosen to be an inverse-logarithm. Whenever the actual decrease
of the ratio exceeds the predicted decrease by a certain threshold, a new feature
is included into the learning process (T2.5d).



154 Susanne Hoche and Stefan Wrobel

3.2 Mutual Information between Features

Initially, all features in the given training examples are sorted according to their
mutual information [25,14] with the examples’ class. The mutual information
MI(Fy, F5) between two features Fy, Fy is defined as the difference between the
entropy of F; and the entropy of F} given Fy [27], i.e. as the amount of informa-
tion about the possible values (f11, fi2,...) of feature F; that is obtained when
the value f € {fa1, f22,...} of feature F5 is known. To compute the mutual infor-
mation between class C' and feature F;, we estimate the probability distributions
of C' and F} from the training data, ignoring missing values, as follows:

— The probability p(C' = ¢) of any training example being of class ¢ is estimated
as the fraction % of training examples from E belonging to c.

— The probability p(F; = f;) that the nominal feature F; takes value f; is
estimated as the fraction % of training examples for which feature F}
takes value f;.

— The joint probability p(C' = ¢) A (F; = f;) is derived from the probabilities
of the two single events.

The mutual information between a feature F; and the class C' of an example
can then be defined as

MI(C, Fy) = E(C) — E(C|F;)

m; k
-y oy PC=cF =)

with k possible classes and m; possible values of feature Fj. For features Fj
with continuous values, we estimate the probability distribution by discretiz-
ing the values of F; with an entropy based method [4] and using the resulting
interval [d1, ..., dm,] to estimate the probability of F; taking a value in the in-
terval I; := [d;,diy1),1 < i < m; — 1, and L, , := [dm,—1,dm,]| respectively,
as the fraction % of training examples for which feature F} takes a value
in I;,1 <i<m;— 1. Note that this way of sorting features according to their
mutual information with respect to classification assumes independence of the
features and may thus result in inferior performance in domains with highly
correlated features.

4 Empirical Evaluation

To evaluate our approach, we performed experiments on data sets differing in the
number of features and the total number of examples. We determine prediction
accuracy and learning time for each dataset for both the base case C?RIB
and for C2RIBP described in this paper, and compare the results to those
of other systems (Tables 3 to 5). For C2RIBP, we also indicate the average
number of features included in the learning process. In all experiments, 1) the
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Table 3. Accuracy, standard deviation and learning time in minutes for SLIP-
PER [3], C?RIB and C?RIBP® on five propositional domains

SLIPPER  [3]|C’RIB C?RIBP”
Domain f Ex.|f Fea-|Train /|Acc Time|Acc Time|Acc Time { sel.
tures| Test |StdD StdD StdD Feat.
breast-wisc | 699 9| 10CV [95.8 n/al96.1 9195.4 5.1 5.8
n/a +1.5 +1.7
horse-colic | 368 23| 10CV (85.0 n/a|81.0 3.6(83.7 0.9 2
n/a +8.4 +5.7
hypothyroid|3163 25 10CV 199.3 n/al95.2 39.1/96.6 20.8 11.8
n/a +0.69 +2.9
mushroom (8124 22| 10CV |99.8 n/al99.3 144199.6 71.4 4.8
n/a +3.0 +0.16
splice- 3190 60| 10CV |94.1 n/a|53.13 289|88 13.6 4.4
junction +3.0 +4.7

base learner is invoked 7" = 100 times, 2) the gradients of the examples’ mean
margins are averaged over the last 7; = 10 iterations and, 3) the threshold « is
set to 1.01 (see 5d in Table 2). The value 1.01 has been empirically determined
on the domain of Mutagenicity [26], and has not been modified for subsequent
experiments on the other domains in order to ensure proper cross validation
results.

We chose three different types of domains in order to get an assessment of
our learner 1) on propositional tasks, and 2) on general knowledge and data
mining tasks and 3) on ILP benchmark and classic Machine Learning prob-
lems. The first set of experiments comprises five propositional domains from the
UCT-repository [16]. We compare our approach to the propositional constrained
confidence-rated booster SLIPPER [3] which served as a basis for C?RIB. Pre-
dictive accuracies are estimated by 10-fold-cross validation.! As can be seen
from Table 3, C?RIB performs in four domains on par with or slightly weaker
than SLIPPER. C?RIBP reduces C?RIB’s learning time” up to one order of
magnitude with a superior predictive accuracy in four domains, and without a
significant deterioration of predictive accuracy in the one domain where only few
features are present. C?2RIB shows a poor performance on the splice-junction
dataset, most likely due to the great number of features. However, C?RIBP
clearly outperforms C2RIB both in accuracy and learning time.

The second set of experiments was conducted on datasets subject of the data
mining competitions PKDD Discovery Challenge 2000 [1] (classification of loans,
where Task AC is based on all loans, and Task A only on the closed loans from

! However, in [3], single training- and test set splits are used for hypothyroid, mush-

room and splice-junction.
2 Learning times for SLIPPER are not known to us.
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Task AC), and KDD Cup 2001, Task2 [2] (prediction of gene functions). The pre-
dictive accuracy is estimated by 10-fold-cross validation, and the results are com-
pared to Progol [15] and RELAGGS [13], a transformation-based approach to
ILP, combined with SVM"9"* and C4.5rules, respectively, run on the proposition-
alized data. For Task AC, Progol was run for 2 days, and discontinued without
any results. Prediction accuracies of C2RIB and C?RIBP are, for Task AC, not-
edly lower than the ones obtained by RELAGGS/C4.5rules, however still in the
range of standard deviation of the accuracies obtained by RELAGGS/SVM!#9ht,
as holds for Task A. However, learning times of C?RIB and C?RIBP are lower
than the ones of the other systems. For Task AC, C? RIBP speeds up C2RIB’s
learning time by factor 2. For Task A, C?RIBP” seems to be penalized for
sorting the features in the presence of few examples. For the gene function

Table 4. Accuracy, standard deviation and learning time for Progol [15], RE-
LAGGS [13], C?RIB and C?RIBP on some data mining competition domains

Progol |RELAGGS|RELAGGS|C?RIB |C?RIB”
SVMY9"t  |C4.5rules
Domain f Ex. |f Fea-|Acc Acc Acc Acc Acc i sel.
Train / |tures |[StdD |StdD StdD StdD StdD Feat.
Test Time |Time Time Time Time
PKDD DS | 682 24 |n/a  [90.8 94.1 88.9 |88.9 10
2000, AC | 10CV n/a +3.2 +3.2 +3.4 +3.4
2 days |23 min 23 min 20 min (9.5 min
PKDD DS | 234 24 145.7 |88.0 88.0 86.3 86.7 10.2
2000, A | 10CV +10.5 |£5.3 +6.5 +6.1 +6.6
hrs 10 min 10 min 3.6 min|4.2 min
KDD Cup | 1243 49 (92.2 92.2 n/a 91.1 91.5 5
2001, Task2|862/381 24 min|~ 2 min |n/a 53 min |27 min

prediction task, C?RIB and C?RIBP” were ran on the original KDD Cup
2001 training-test-data partition and the results were compared to Progol® and
RELAGGS/SVM!9ht 4.5 Again, learning time is reduced by factor 2 in the
demand-driven approach C2RIBP. It slightly improves C?RIB’s predictive ac-
curacy which is on par with the other systems’ accuracies.

Finally, we evaluated our approach on the two ILP benchmark problems Mu-
tagenicity [20] (prediction of mutagenic activity of 188 molecules (description
B4)) and QSARs, Quantitative Structure Activity Relationships, [9,10] (pre-
diction of a greater-activity relationship between pairs of compounds based on

3 L. Penia Castillo, unpublished, 2002
4 M.-A. Krogel, unpublished, 2002
5 RELAGGS won Task of KDD Cup 2001.
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Table 5. Accuracy, standard deviation and learning time in minutes for C2RIB
and C?RIBP in comparison to other systems on two ILP benchmark and one
artificial domain

FOIL Fors Progol C?RIB|C?RIB"
Domain | § Ex. |f Fea-|Acc Acc Acc Acc Acc i sel.
Train/| tures |StdD StdD StdD StdD |StdD Feat.
Test Time Time Time Time |Time
Mutagen- | 188 | 18 [82.0 [20]|89.0 [3]|88.0  [20]|88.0 |88.8 6
icity 10CV +3.0 +6.0 +2.0 +3.4 |£5.2
n/a n/a 307 7 1.53
QSARs | 2788 | 12 (82.9 n/a 79.8 83.4 |[83.3 11.8
5CV +2.7 n/a +£3.7 +2.9 [£1.9
0.7 n/a 372 91 |70
Eastbound|55 / 6| 9 |n/a n/a 77.78 [18]|83.3 |89.6 6.25
Trains n/a n/a +6.43 +0 +8.6
n/a n/a 1.15 044 0.1

their structure), and on the artificial problem of Eastbound Trains® proposed
by Ryszard Michalski (prediction of trains’ directions based on their properties).
For the two ILP domains, predictive accuracy is estimated by 10- and 5-fold-
cross validation, respectively, and results are compared to FOIL [21], Fors [8] and
Progol. For the Eastbound Trains, the data is split into one training and test
set partition, and the results are averaged over 8 iterations of the experiment.
Predictive accuracy of C?RIB is higher than or on par with the one of the other
learners. C2RIBP significantly outperforms C?RIB both in terms of predictive
accuracy and learning time in two of the three domains, indicating that our
approach seems to be superior in classical, highly structured ILP domains.

5 Related Work

The idea of selecting smaller feature subsets and shifting the bias to a more
expressive representation language is common in multi-relational learning. The
work probably most related to our work is [12], where AdaBoost [22] is com-
bined with MOLFEA, an inductive database for the domain of biochemistry [11].
In [12], AdaBoost is employed to identify particularly difficult examples for
which MOLFEA constructs new special purpose structural features. AdaBoost
re-weighting episodes and MOLFEA feature construction episodes are alternated.
In each iteration, a new feature constructed by MOLFEA is presented to a propo-
sitional learner, the examples are re-weighted in accordance to the base classifier
learned by it, and a new feature is constructed by MOLFEA based on the modified
weights. In contrast, our approach actively decides when to include new features

5 The examples were generated with the Random Train Generator available at
http://www-users-cs-york.ac.uk/~stephen/progol.html
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from the list of ranked existing features with the central goal of including new
features only when absolutely necessary in order to be maximally efficient. This
means that in principle the two approaches could be easily combined, for exam-
ple by calling a generator of new features whenever the list of existing features
has been exhausted.

[23] propose a wrapper model utilizing boosting for feature selection. In
their approach, alternative feature subsets are assessed based on the underly-
ing booster’s optimization criterion. The feature subset optimal according to
this criterion is then presented as a whole to a learner. In contrast, we use a
criterion of mutual information once before we start the boosting process to es-
tablish a feature ranking, and utilize the characteristics of our boosted learner to
actively decide when to include a new feature. However, it would be interesting
to combine both approaches.

6 Conclusion

In this paper, we have proposed an approach to boosting a weak relational learner
which starts off with a minimal set of features and relations and is - by demand -
stepwise strengthened. Our work is based on C?RIB [7], a fast weak ILP-learner
in a constrained confidence-rated boosting framework. The quality of the current
learning results is measured in terms of the gradient of the training examples’
mean margins, and the learner is strengthened whenever the learning curve drops
under a certain threshold. To that purpose, features occurring in the training
examples are sorted according to their mutual information with the examples’
class and by and by provided to the learner together with the relation in which
they occur. We showed that learning times are significantly reduced while the
predictive accuracy is comparable to those of other learning systems and, in the
majority of cases, superiour to those of the “fully equipped” learner C2RIB.
These results are encouraging, especially since all experiments were conducted
without optimizing parameters.

One question for further work is whether one could expect to even gain a
higher predictive accuracy by repeatedly evaluating the features’ ordering and
taking into account the examples’ weights under the current probability dis-
tribution. In each iteration, the learner is presented a different training set,
emphasizing the hard examples more and more. A stronger influence of so far
misclassified examples on the feature ranking could support the induction of
correct classifiers for those examples that are particularly difficult to learn.

Another question for further research is whether it is possible to determine
automatically for every domain a) an optimal threshold to which the deviation
of the current from the expected decrease of the ratio of the average and the
current gradient should be compared and b) the number of iterations over which
the gradients should be averaged. It is also part of the future work to investigate
other approaches to feature selection, and make use of the accelerated learning
time to incorporate more standard elements of “full-blown” ILP-learners and to
determine the right balance between speed and accuracy of the learning system.
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