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Abstract. Collaborative recommendation has emerged as an effective
technique for a personalized information access. However, there has been
relatively little theoretical analysis of the conditions under which the
technique is effective. We analyze the robustness of collaborative rec-
ommendation: the ability to make recommendations despite (possibly
intentional) noisy product ratings. We formalize robustness in machine
learning terms, develop two theoretically justified models of robustness,
and evaluate the models on real-world data. Our investigation is both
practically relevant for enterprises wondering whether collaborative rec-
ommendation leaves their marketing operations open to attack, and the-
oretically interesting for the light it sheds on a comprehensive theory of
collaborative recommendation.

1 Introduction

Collaborative recommendation has emerged as an effective personalization tech-
nique for a diverse array of electronic commerce and information access scenar-
ios (eg, [10,5]). Such systems keep track of their customers’ preferences, and use
these data to offer new suggestions. Many variations have been explored, but the
basic idea is as follows: to recommended items to a target customer, the system
retrieves similar customers, and then recommends items that were liked by the
retrieved customers but not yet rated by the target.

Collaborative recommendation has been empirically validated for many do-
mains (eg, [3]), and has been successfully deployed in many commercial settings.
However, despite some interesting efforts [7,4,2], there is no general theoretical
explanation of the conditions under which a particular collaborative recommen-
dation application will succeed or fail.

Our goal is to complement existing theoretical work by investigating the ro-
bustness of collaborative recommendation. Informally, robustness measures how
sensitive the technique is to changes in the customer/product rating matrix. In
particular, we analyze the situation in which a malicious agent attacks a rec-
ommender system by posing as one or more customers and submitting bogus
product ratings. Our analysis is designed to rigorously quantify the extent to
which a malicious agent can force the recommender system to give poor recom-
mendations to its “genuine” customers. The theoretical results reported in this
paper builds on an ongoing empirical investigation of this issue [9,8].
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Our primary motivation is to gain deeper insights into the principles under-
lying effective collaborative recommendation. However, our work is also relevant
for a second, more practical reason: recommender systems can represent an in-
secure back-door into an enterprise’s marketing operations. To lock this door,
some enterprises impose substantial charges on customers to submit ratings (eg,
a bookstore might only accept ratings for books that have been purchased).
However, many collaborative recommenders are open Web services that mali-
cious agents could easily attack. How much damage can they inflict?

We make three contributions. First, we formalize robustness in machine learn-
ings terms, and introduce a novel form of class noise that models an interesting
suite of attacks (Sec. 2). Second, we develop two models that predict the change
in accuracy as a function the number of fake ratings that have been inserted
into the customer/product matrix (Secs. 3–4). Third, we empirically evaluate
our predications against real-world collaborative recommendation data (Sec. 5).

2 Definitions

Our analysis on collaborative recommendation assumes the standard k-NN learn-
ing algorithms. Other (eg, model-based) approaches have been tried but k-NN
is accurate, widely used and easily analyzed. In this approach, each customer is
represented as a vector of product ratings (many of which will be empty for any
particular customer). Unlike traditional machine learning settings, the “class” is
not a distinguished attribute, but corresponds to the product that the system is
contemplating for recommendation.

We model an attack as the addition of noise to the training data. In general,
this noise could be associated with either the attributes, the class or both. We
focus exclusively on class noise, and defer attribute noise to future work. We
are not concerned with malicious noise as defined by [6], because we can safely
assume that the attacking agent is not omniscient (eg, the agents can not directly
inspect any ratings except their own).

We model attacks with a relatively benign noise model that we call biased
class noise. This model is characterized by the following parameters: the noise
rate β, and the class bias µ. Noise is added according to the following process.
First, an instance is generated according to the underlying distribution. With
probability 1 − β, the instance is noise-free and labeled by the target concept.
Otherwise, with probability βµ the instance is labeled 1 and with probability
β(1 − µ) the instance is labeled 0.

The biased class noise model is useful because it can represent a variety of
stereotypical attacks. For example, a book’s author could try to force recommen-
dations of his book by pretending to be numerous customers who all happen to
like the book. We call this a “push” attack and it corresponds to µ = 1. Al-
ternatively, the author’s arch-enemy could insert fake customer profiles that all
dislike the book; this “nuke” attack is modeled with µ = 0.

We are interested in robustness: the ability of the recommender to make
good recommendations in spite of an attack. There are two aspects to robust-
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ness. First, we may be concerned with accuracy: are the products recommended
after the attack actually liked? The second issue is stability: does the system
recommend different products after the attack (regardless of whether customers
like them)?

While stability and accuracy are distinct, they are not orthogonal. For ex-
ample, if a recommender has perfect accuracy for a given task both with and
without noise, then it must be perfectly stable. On other the hand, consider a
product that no-one likes. The recommendation policies “recommend to no-one”
and “recommend to everyone” are both perfectly stable, yet the first is always
correct and the second is always wrong. Our analysis of robustness focuses ex-
clusively on accuracy.

Before proceeding, we introduce some additional notation. We assume a d-
dimensional instance space Xd. Without loss of generality, we assume X = [0, 1].
In the context of recommendation, each dimension corresponds to one of d prod-
ucts, and the value on the dimension is a numeric rating. The nearest neighbor
approach requires a function dist(·, ·) defined overXd×Xd, but our analysis does
not depend on any particular distance metric. Finally, let H be a hypothesis,
C be a concept, and D be a probability distribution over Xd. The error rate
of H with respect to C and D is defined as E(H,C,D) = Prx∈D(H(x) �= C(x)).

3 Absolute Accuracy

The first model extends Albert and Aha’s noise-free PAC results for k-NN [1] to
handle biased class noise. We first review these noise-free results, and then state
our model as Theorem 1.

The key idea behind Albert and Aha’s (hereafter: AA) analysis is that of a
“sufficiently dense” sample from the instance space. Informally, a subset S ⊂ Xd

is dense if most of the points in the entire space Xd are near many points in
the sample S. The terms “most”, “near” and “many” are formalized as follows:
Let D be a distribution over Xd. A subset S ⊆ Xd is (k, α, γ)-dense if, except
for a subset with probability less than γ under D, for every x ∈ Xd, there exists
at least k distinct points x1, . . . , xk ∈ S such that dist(x, xi) ≤ α for each i.

Given this definition, AA derive [1, Lemma 2.2] a lower bound Υd(k, α, γ, |S|)
on the probability that a sample S of Xd is (k, α, γ)-dense: Υd(k, α, γ, |S|) =
1 − md

∑
0≤k′<k Φ2(ρ, k′, |S|), where Φ2(ρ, t, s) =

(
t
s

)
B (max {s/t, ρ} , s, t),

B(p, s, t) = ps(1 − p)t−s, m = 
√d/α�, and ρ = γ/md. (See Appendix A for
a proof.) In the spirit of the PAC model, Υd(k, α, γ, |S|) is a worst-case lower
bound that does not depend on the distribution D over Xd.

The final step is AA’s analysis is to formalize the intuition that k-NN is
accurate to the extent that its training sample is sufficiently dense. To describe
their result, we first must constrain both the complexity of the concept being
learned and the distribution over the instance space. For any constant B, let
DB be the class of distributions over Xd such that no point has probability
exceeding B. For any constant L, let CL is the set of concepts C over Xd such
that C is bounded by closed hyper-curves of total length less L.
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These constraints mean that AA’s results hold only for a restricted class
of learning tasks (due to the parameter L), and are not truly distribution-free
(due to B). However, we will see below that in fact the model’s predictions for
real-world tasks are not very sensitive to the values of L and B.

LetC ∈ CL be a concept to be learned, andD ∈ DB be a distribution overXd.
AA’s central result [1, Theorem 3.2] is that the probability that the error of k-NN
exceeds ε when trained on a sample S is at most Υd (k, ε/4LB, ε/2, |S|).1

The intuition behind AA’s results is that k-NN is accurate when training on
a sufficient number of instances. We can extend this intuition to handle biased
class noise by requiring that, in addition to the sample containing enough “good”
(noise-free) instances, it must also not contain too many “bad” (noisy) instances.

We begin by defining sparse subsets analogously to the definition of dense
subsets. Informally, a subset S ⊂ Xd is sparse if most of the points in the entire
space Xd are near few points in the sample S. More precisely, a subset S ⊆ Xd

is (k, α, γ)-sparse if, except for a subset with probability less than γ, for every x
there exists at most k points xi such that dist(x, xi) ≤ α.

Appendix A proves the following lower bound Υs(k, α, γ, |S|) on the proba-
bility that a sample S of Xd is (k, α, γ)-sparse:

Υs(k, α, γ, |S|) = 1−md
∑

〈k′,k′′〉∈K
Φ3(ρ, k′, k′′, |S|),

where m and ρ are as defined above, Φ3(ρ, r, s, t) =
(

t
r

)(
t−r

s

)
T

(max {r/t, ρ} , r, s/t, s, t), T (p, r, q, s, t) = prqs(1 − p − q)t−r−s, and K =
{〈k′, k′′〉|0 ≤ k′, k′′ ≤ |S| ∧ k < k′ + k′′ ≤ |S|}.

To complete our analysis, we observe that the accuracy of k-NN with training
data S is equal to the probability that S contains enough “good” instances and
not too many “bad” instances. For k-NN, “enough” and “not too many” mean
that most of the instances should have at least 
k/2� good neighbors and at
most �k/2� bad neighbors.

Let Sreal ⊂ S be the examples corresponding to genuine users, and Sattack =
S \Sreal be the examples comprising the attack. Of course, we can not know Sreal

and Sattack exactly, but we do know that |Sreal| = (1 − β)|S| and |Sattack| = β|S|
(where β is the size of the attack), which is sufficient for our analysis.

Furthermore, some of the noisy instances may in fact be correctly labelled.
Let f be the fraction of the instance space labelled 1, and let µ be the class
noise bias. Then a fraction fµ+ (1− f)(1− µ) of the noisy instances are in fact
correctly labelled. Let Sgood ⊇ Sreal be the instances that are actually labelled

1 We have departed from AA in several ways. First, AA use the notation k-〈α, γ〉-net ;
we refer to “denseness” because our biased class noise analysis involves an analogous
notion of sparseness. Second, our proof is somewhat different and therefore our
bound on the denseness probability differs slightly from AA’s. Most importantly,
as is standard in PAC analysis, AA introduce an additional confidence parameter
δ and solve Υd(k, ε/4LB, ε/2, |S|) > 1 − δ for |S|, in order to show that k-NN can
PAC-learn efficiently. Since robustness is orthogonal to efficiency, we ignore this part
of their analysis.
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correctly, and Sbad = S\Sgood ⊆ Sattack be the instances that are actually labelled
incorrectly. Again, we can not know Sgood or Sbad but we do know that the number
of noise-free instances is |Sgood| = (1−β)|S|+β|S|(fµ+(1− f)(1−µ)) ≥ |Sreal|.
and the number of noisy instances is |Sbad| = β|S|(1 − fµ − (1 − f)(1 − µ)) ≤
|Sattack|. If λ = β(µ+f−2µf) is the effective attack size, then |Sgood| = (1−λ)|S|
and |Sbad| = λ|S|.

We require that both Sgood be (
k/2�, α, γ)-dense and Sbad be (�k/2�, α, γ)-
sparse. Since these events are independent, the probability of their conjunction
is the product of their probabilities. Therefore, if we can determine appropriate
values for the distance thresholds α1 and α2 and probability thresholds γ1 and
γ2, then we have that the accuracy of k-NN when training on S with biased class
noise is at least Υd(
k/2�, α1, γ1, |Sgood|) · Υs(�k/2�, α2, γ2, |Sbad|). In Appendix A
we prove the following theorem.

Theorem 1 (Absolute accuracy). The following holds for any ε, β,
µ, d, k, L, B, C ∈ CL and D ∈ DB. Let S be a sample of Xd according to D
with biased class noise rate β, and let H = k-NN(S). Then we have that

Pr [E(H,C,D) < ε] ≥ Υd (
k/2�, ε/4LB, ε/4, (1− λ)|S|) ·
Υs (�k/2�, ε/4LB, ε/4, λ|S|) ,

where λ = β(µ+ f − 2µf), and f is the fraction of Xd labeled 1 by C.

To summarize, Theorem 1 yields a worst-case lower bound on the accuracy
of k-NN under biased class noise. On the positive side, this bound is “abso-
lute” in the sense that it predicts (a probabilistic bound on) the actual error
E(k-NN(S), C,D) as a function of the sample size |S|, noise rate β, and other
parameters. In other words, the term “absolute” draws attention to the fact that
this model takes account of the actual position along the learning curve. Unfor-
tunately, like most PAC analyses, its bound is very weak (though still useful in
practice; see Sec. 5).

4 Approximate Relative Accuracy

In contrast, the second model does not rely on a worst-case analysis and so
makes tighter predictions than the first model. On the other hand, the model
is only “approximate” because it makes two assumptions. First, it assumes that
the training sample is large enough that the learning curve has “flattened out”.
Second, it assumes that, at this flat part of the learning curve, k-NN achieves
perfect accuracy except possibly on the boundary of the target concept. We call
this second model “approximate” to draw attention to these assumptions, and
“relative” to note specifically that it does not predict error on an absolute scale.

To formalize these assumptions, let S be a training sample drawn from the
distribution D over Xd, and let C be the target concept. Let S′ be the fraction
1− β of the instances in S that were (correctly) labeled by C during the biased
class noise process. Let D′ be the distribution that is proportional to D except
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that D′[x] = 0 for all points x on the boundary between C and Xd \ C. The
assumptions of the second model can be expressed as:

E(k-NN(S′), C,D′) = 0 (1)

Given this assumption, we can predict the error of k-NN as follows. To classify
an instance x using a training set S, k-NN predicts the majority class of the k
instances x1, . . . , xk ∈ S that are closest to x. To classify x correctly, at least

k/2� of these k instances must have the correct class.

If we randomly draw from D a point x ∈ Xd, there are two cases: either
C(x) = 1 (which happens with probability f), or C(x) = 0 (which happens with
probability 1− f), where as above f is the probability under D that C(x) = 1.

In the first case, we need to have at least 
k/2� successes out of k trials in
a Bernoulli process where the probability of success is equal to the probability
that a neighbor xi of x will be labeled 1. We can calculate this probability as
(1−β)+βµ. The first term is the probability that xi is labeled 1 and xi ∈ S′; by
(1), we know that this probability is 1− β. The second term is the probability
that xi is labeled 1 and xi �∈ S′, by definition of the biased class noise process
labels we know that this probability is βµ.

In the second case, again we need at least 
k/2� successes, but with success
probability (1 − β) + β(1 − µ), the probability that a neighbor xi of x will be
labeled 0. The first term is the probability that xi is labeled 0 and xi ∈ S′, and
by (1) this happens with probability 1− β. The second term is the probability
that xi is labeled 0 and xi �∈ S′, which occurs with probability β(1− µ).

The following theorem follows from this discussion.

Theorem 2 (Approximate relative accuracy). The following holds for any
β, µ, d, k, C and D. Let S be a sample of Xd according to D with biased class
noise rate β. Let S′ and D′ be as defined above. If assumption (1) holds, then

E(k-NN(S), C,D′) =

1 − f ·
k∑

k′=
k
2 �

(
k

k′

)
B(1− β(1 − µ), k′, k) − (1− f) ·

k∑
k′=
 k

2 �

(
k

k′

)
B(1 − βµ, k′, k),

where f is the fraction of Xd labeled 1 by C.

Without more information, we can not conclude anything about
E(k-NN(S), C,D) (which is what one can measure empirically) from
E(k-NN(S), C,D′) (the model’s prediction) or from E(k-NN(S′), C,D′) = 0 (the
assumption underlying the model). For example, if D just so happens to as-
sign zero probability to points on C’s boundary, then E(k-NN(S′), C,D) =
E(k-NN(S′), C,D′) and so in the best case E(k-NN(S), C,D) = 0. On the
other hand, if all of D’s mass is on C’s boundary then in the worst case
E(k-NN(S), C,D) = 1. Furthermore, it is generally impossible to know whether
E(k-NN(S′), C,D′) = 0.

Despite these difficulties, we will evaluate the model on real-world data by
simply assuming E(k-NN(S′), C,D′) = 0 and D′ = D, and comparing the pre-
dicted and observed error.
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Fig. 1. MUSHROOM: Empirical (left) and predicted (right) absolute accuracy
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Fig. 2. PTV: Empirical (left) and predicted (right) absolute accuracy

5 Evaluation

We evaluated the two models against two real-world learning tasks:

– The MUSHROOM data-set from the UCI repository contains 8124 instances
with 23 attributes, with no missing values.

– The PTV collaborative recommendation data for television listing
[www.ptv.com] contains 2344 instances (people) and 8199 attributes (tele-
vision programs), and only 0.3% of the matrix entries are non-null. We dis-
carded people who rated fewer than 0.05% of the programs, and programs
rated by fewer than 0.05% of the people. The resulting 241 people and 570
programs had a sparseness of 15.5%. The original ratings (values from 1–4)
were converted into binary attributes (‘like’/‘dislike’).

We used the standard k-NN algorithm with no attribute or vote weighting.
Distance was measured using the Euclidean metric (ignoring non-null attributes).
All experiments use k = 10 neighbors.

Our experiments use a variation on the standard cross validation approach.
We repeat the following process many times. First, we randomly partition the
entire set of instances into a real set R, a fake set F , and a testing set T . To
implement the biased class noise model, a noisy set N containing β|R|/(1 − β)
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Fig. 3. MUSHROOM: Empirical (left) and predicted (right) relative accuracy 

instances is then randomly drawn from F. The class attributes of the instances 
in N are then modified to  1 with probability p and 0 with probability 1 - p. 
The I;-NN learning algorithm is then training on R U N (so the noise rate is 
N / R  U N = p). We measure accuracy as the fraction of correct predictions 
for the test instances in T. For MUSHROOM, noise is added only to the class 
attribute defined by the data-set's authors. For PTV the class attribute (i.e., 
program to attack) is selected randomly. 

Absolute accuracy model. The absolute accuracy model predicts 

Pr[E(I;-NN(Sp), C, D) < t] ,  

the probability that the accuracy exceeds 1 - t ,  where So is a sample with biased 
class noise rate p. Let the model's predicted absolute accuracy from Theorem 1 
be 

A 

Our empirical estimate Aabs(p) of this probability is simply the fraction of trials 
for which t exceeds the error. 

Recall that Theorem 1 requires a bound L on the perimeter of the target con- 
cept, and a bound B on the probability of any instance under the distribution D.  
Thus our model is not completely general, and furthermore it is difficult to es- 
timate these parameters for a given learning task. However, it is easily shown 
that for small values of I;, Aabs(p) does not depend on L and B, and thus we do 
not need to tune these parameters of our model for each learning task. 

Due to the worst-case analysis, typically Aabs(P) >> 1 - clearly an absurd 
value. However, for the purposes of analysing robustness, such values are useful, 
because we are interested in the increase in error at noise rate P compared to 
p = 0. We therefore report results using the ratios (L - A,b,(p))/(L - A,b,(O)) 
and (L - Xabs (p ) ) / (~  - Xabs(0)), where L = A,b,(l) is a constant chosen to 
scale the ratios to [0,1]. 

The results for MUSHROOM with t = 0.25 are shown in Fig. 1. The predicted 
and observed accuracies agree reasonably well, even accounting for the fact that 
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Fig. 4. PTV: Empirical (left) and predicted (right) absolute accuracy 

the data have been scaled t o  [0,1]. The fit is by no means perfect, but we are 
satisfied with these results, since worst-case PAC-like analyses are usually so 
weak as to be incomparable to real data. 

Fig. 2 shows the results for PTV with t = 0.3. Here the fit is worse: PTV 
appears to be much more robust in practise than predicted, particular as P 
increases. We conjecture that this is due to the fact that the PTV data is highly 
noisy, but further analysis is needed to explain these data. 

Relative accuracy model. The relative accuracy model predicts 
&(I;-NN(So),C,D), the error of I;-NN when trained on a sample So with 
biased class noise rate P. Let A,,l(P) be the model's prediction from Theorem 2. 
Our empirical estimate X r e l ( ~ )  of this probability is simply the fraction of 
incorrectly classified test instances. As before, we scale all data to [O-11. 

The results for MUSHROOM are shown in Fig. 3 and the PTV results are 
shown in Fig. 4. The model fits the observed data quite well in both domains, 
though as before PTV appears to be inherently noisier than MUSHROOM. 

6 Related Work 

Collaborative recommendation has been empirically validated in numerous stan- 
dard lLcustomer/product" scenarios [3]. However, there is relatively little theo- 
retical understanding of the conditions under which the technique to be effective. 

Our work is highly motivated by ongoing empirical investigations of the ro- 
bustness of collaborative filtering [9,8]. The ideas underlying Theorem 1 borrow 
heavily &om Albert et al's seminal PAC analysis of noise-free I;-NN [I]. 

There has been substantial theoretical algorithmic work on collaborative fil- 
tering [7;2,4]. For example, Azar et a1 [2] provide a unified treatment of several 
information retrieval problems, including collaborative filtering, latent semantic 
analysis and link-based methods such as hubs/authorities. They cast these prob- 
lems as matrix reconstruction: given a matrix of objects and their attributes (eg, 
for collaborative filtering, the objects are products, the attributes are customers, 
and matrix entries store customers' ratings) from which some entries have been 
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deleted, the task is to reconstruct the missing entries (eg, predict whether a
particular customer will like a specific product). Azar et al prove that the ma-
trix entries can be efficiently recovered as long as the original data has a good
low-rank approximation.

The fundamental difference between all of these results and ours is that our
biased class noise model is more malicious than simple random deletion of the
matrix entries. It remains an open question whether these results can be extended
to accommodate this model

7 Discussion

Collaborative recommendation has been demonstrated empirically, and widely
adopted commercially. Unfortunately, we do not yet have a general predictive
theory for when and why collaborative filtering is effective. We have investigated
one particular facet of such a theory: an analysis of robustness, a measure of a
recommender system’s resilience to potentially malicious perturbations in the
customer/product rating matrix.

This investigation is both practically relevant for enterprises wondering
whether collaborative filtering leaves their marketing operations open to attack,
and theoretically interesting for the light it sheds on a comprehensive theory of
collaborative filtering.

We developed and evaluated two models for predicting the degradation in
predictive accuracy as a function of the size of the attack and other parameters.
The first model uses PAC-theoretic techniques to predict a bound on accuracy.
This model is “absolute” in that it takes account of the exact position of the
system along the learning curve, but as a worst-case model it is problematic to
evaluate its predictions . In contrast, the second model makes tighter predictions,
but is “relative” in the sense that it assumes perfect prediction in the absence of
the malicious attack. Our preliminary evaluation of the model against two real-
world data-sets demonstrates that our model fits the observed data reasonably
well.
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A Proof of Theorem 1

The following two lemmas are easily proven.

Lemma 1. Consider a binomial process where outcome o1 has probability at
least ρ and outcome o2 consumes the remaining probability mass. The prob-
ability of exactly s o1-outcomes in t trials is at most Φ2(ρ, s, t) =

(
t
s

)
B(

max
{

s
t , ρ

}
, s, t

)
, where B(p, s, t) = ps(1− p)t−s.

Lemma 2. Consider a trinomial process where outcome o1 has probability at
least ρ and outcomes o2 and o3 consume the remaining probability mass. The
probability of exactly r o1-outcomes and s o2-outcomes in t trials is at most
Φ3(ρ, r, s, t) =

(
t
r

)(
t−r

s

)
T

(
max

{
r
t , ρ

}
, r, s

t , s, t
)
, where T (p, r, q, s, t) = prqs(1 −

p− q)t−r−s.

The following lemma bounds the probability that a subset is sparse or dense.

Lemma 3. The following holds for any d, α, γ, k, and distribution D. Let
m = 
√d/α� and ρ = γ

md . The probability that a sample S of Xd drawn according
to D is (k, α, γ)-dense is at least

Υd(k, α, γ, |S|) = 1−md
∑

0≤k′<k

Φ2(ρ, k′, |S|), (2)

and the probability that S is (k, α, γ)-sparse is at least

Υs(k, α, γ, |S|) = 1−md
∑

〈k′,k′′〉∈K
Φ3(ρ, k′, k′′, |S|), (3)

where K = {〈k′, k′′〉 | 0 ≤ k′, k′′ ≤ |S| ∧ k < k′ + k′′ ≤ |S|}.
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Proof. First consider (2). Partition Xd into md squares, where m is chosen large
enough so that any two points in one square are at most distance α apart. By
the Pythagorean Theorem, we require that m ≥ √

d/α, so choose m = 
√d/α�.
Let F be the set of frequent squares: those with probability at least ρ = γ

md . Since
there are at most md squares not in F , the total probability of the non-frequent
squares is at mostmdρ = md · γ

md = γ. If at least k sample points lie in each of the
frequent squares, then the sample will be sufficiently dense for the points in the
frequent squares. The probability of selecting a point in some particular heavy
square is at least ρ, and the probability of not selecting a point in this square is at
most 1−ρ. By Lemma 1, the probability of selecting exactly k′ out of |S| points in
some particular heavy square is at most Φ2(ρ, k′, |S|). Therefore the probability
of selecting fewer than k points in some particular heavy square is at most∑

0≤k′<k Φ2(ρ, k′, |S|). This expression is an upper bound on the probability that
the sample is insufficiently dense for some particular frequent square. Since there
are at most md frequent squares, the probability that the sample is insufficiently
dense for one or more frequent squares is at most md

∑
0≤k′<k Φ2(ρ, k′, |S|). (2)

follows by noting that the probability that the sample is sufficiently dense for
every frequent square is therefore at least 1−md

∑
0≤k′<k Φ2(ρ, k′, |S|).

We now prove (3). As before, partition Xd into md squares. The border of
a square is the set of points outside but within α of the square. If at most k
sample points lie in each of the frequent squares and their borders, then the
sample will be sufficiently sparse for the points in the frequent squares. Consider
some frequent square in the set F of squares with probability at least ρ = γ

md . By
Lemma 2, we have that Φ3(ρ, k′, k′′, |S|) is an upper bound on the probability
that k′ sample points fall in some specific heavy square and k′′ points fall in
its border. Therefore the probability of selecting more than k points in some
particular frequent square or its border is at most

∑
k′,k′′ Φ3(ρ, k′, k′′, |S|), where

the sum is over the combinations of k′ and k′′ satisfying 0 ≤ k′, k′′ ≤ |S| and
k < k′ + k′′ ≤ |S|. Since there are at most md frequent points, (3) follows by
noting that the probability that the sample is sufficiently dense for every frequent
point is at least one minus md times this expression. ��
Finally, our proof of Theorem 1 derives from [1]; here we sketch the main ideas.

Let C ∈ CL be the target concept. Let C⊂
α ⊂ C be the core of the concept:

the points at least a distance α away from some point not in C. Let C⊃
α ⊃ C be

the concept’s neighbourhood : the points within a distance α of some point in C.
As introduced in Section 3, let Sgood be the noise-free instances in a sample S
and Sbad = S \ Sgood be the noisy instances. Suppose that Sgood is 〈
k/2�, α, γ〉-
dense and Sbad is 〈�k/2�, α, γ〉-sparse. Let k-NN(S) be the set of points labelled
by k-NN given training data S. Then, except for a set U of instances with
probability at most 2γ, k-NN(S) is bounded within a distance α of the target
concept: (C⊂

α \ U) ⊆ (k-NN(S) \ U) ⊆ (C⊃
α \ U).

We can therefore bound the error of k-NN(S) by bounding the probability
of C⊃

α \C⊂
α . The perimeter of C is at most L, and therefore the volume of C⊃

α \C⊂
α

is at most 2αL. No point in Xd has probability greater than B, and therefore
the probability of C⊃

α \ C⊂
α is at most 2αLB.
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Therefore, assuming that Sgood is 〈
k/2�, α, γ〉-dense and Sbad is 〈�k/2�, α, γ〉-
sparse, we have that E(k-NN(S), C,D) < 2γ + 2αLB. The first term counts
instances whose noisy neighbours outvoted noise-free neighbours, and the second
term counts mistakes that might occur on the boundary of C.

To complete the proof, we must ensure that 2γ + 2αLB < ε. Since we seek
a lower bound on the probability that E(k-NN(S), C,D) < ε, we can simply
split the total permissible error equally between the two causes: 2γ = ε/2 and
2αLB = ε/2, or γ = ε/4 and α = ε/4LB.
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