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Abstract. The existing methods of predicting with confidence give good
accuracy and confidence values, but quite often are computationally in-
efficient. Some partial solutions have been suggested in the past. Both
the original method and these solutions were based on transductive in-
ference. In this paper we make a radical step of replacing transductive
inference with inductive inference and define what we call the Inductive
Confidence Machine (ICM); our main concern in this paper is the use
of ICM in regression problems. The algorithm proposed in this paper
is based on the Ridge Regression procedure (which is usually used for
outputting bare predictions) and is much faster than the existing trans-
ductive techniques. The inductive approach described in this paper may
be the only option available when dealing with large data sets.

1 Introduction

When presented with a test example, traditional machine learning algorithms
only output a bare prediction, without any associated confidence values. For ex-
ample, Support Vector Machine (Vapnik, 1998, Part II) outputs just one number
(a bare prediction, as we will say), and one has to rely on the previous experience
or relatively loose theoretical upper bounds on the probability of error to gauge
the quality of the given prediction. This is also true for the more traditional
Ridge Regression (RR) procedure as it is used in machine learning (see, e.g.,
Saunders, Gammerman, & Vovk, 1998).

Gammerman, Vapnik, and Vovk (1998) proposed what we call in this pa-
per “Transductive Confidence Machine” (TCM), which complements the bare
predictions with measures of confidence in those predictions. Both Transductive
(see, e.g., Proedrou et al., 2001) and Inductive (proposed in this paper) Con-
fidence Machines are currently built on top of the standard machine learning
algorithms for outputting bare predictions; we will call the latter the underlying
algorithms. TCM suggested in Gammerman et al. (1998) was greatly improved
in (Saunders, Gammerman, & Vovk, 1999). Vovk, Gammerman, and Saunders
(1999) introduced the universal confidence values: the best confidence values
one can hope to obtain. The universal confidence values are defined using the
algorithmic theory of randomness (or, in the simplest situations, Kolmogorov
complexity; see Li and Vitányi, 1997) and are computable only in a very weak
sense (“computable in the limit”). There are reasons to believe that the version
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of TCM defined in Saunders et al. (1999), when coupled with a good underlying
algorithm, can give confidence values as good as the universal values provided
by the algorithmic theory of randomness (Nouretdinov et al., 2001).

The main disadvantage of the existing variants of TCM is their relative com-
putational inefficiency. An original motivation behind the idea of transductive
inference (Vapnik, 1998) was to obtain more computationally efficient versions of
learning algorithms. Whereas this remains an interesting long-term goal, so far
in the theory of confident predictions a side-effect of using transduction has been
computational inefficiency; for every test example, all computations need to be
started from scratch. It was not clear, however, how prediction with confidence
could be implemented without resorting to transduction.

Saunders, Gammerman, and Vovk (2001) proposed a much more efficient
version of TCM; other efficient versions are described in Vovk and Gammerman
(2001).

This paper makes a much more radical step introducing Inductive Confidence
Machine, ICM. The computational efficiency of ICM is almost as good as that
of the underlying algorithm. There is some loss in the quality of the confidence
values output by the algorithm, but we show that this loss is not too serious.
On the other hand, the improvement in the computational efficiency is massive.

ICM will be defined in Section 2. In the following section we will prove the
validity of the predictive regions it outputs. Finally, in the last section we give
some experimental results that measure the efficiency of our algorithm based on
those criteria.

In the rest of this introductory section we will briefly describe the relevant
literature.

Computing confidence values is, of course, an established area of statistics. In
the non-parametric situations typically considered in machine learning the most
relevant notion is that of tolerance regions (Fraser, 1957; Guttman, 1970). What
we do in this paper is essentially finding tolerance regions without paramet-
ric assumptions, only assuming that the data is generated by some completely
unknown i.i.d. distribution (we will call this the i.i.d. assumption). Traditional
statistics, however, did not consider, in this context, the high-dimensional prob-
lems typical of machine learning, and no methods have been developed in statis-
tics which could compete with TCM and ICM.

The two main areas in the mainstream machine learning which come close
to providing confidence values similar to those output by TCM and ICM are the
Bayesian methods and PAC theory. For detailed discussion, see (Melluish et al.,
2001); here our discussion will be very brief.

Quite often Bayesian methods make it possible to complement bare predic-
tions with probabilistic measures of their quality (theoretically this is always
possible, but in practice there can be great computational difficulties); e.g.,
Ridge Regression can be obtained as a Bayesian prediction under specific as-
sumptions and then it can be complemented by a measure of its accuracy (such
as the variance of the a posteriori distribution). They require, however, strong
extra assumptions, which the theory of TCM and ICM avoids. In fact, Bayesian
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methods are only applicable if the stochastic mechanism generating the data is
known in every detail; in practice, we will rarely be in such a happy situation.
(Melluish et al., 2001) show how misleading Bayesian methods can become when
their assumptions are violated and how robust TCM results are (ICM results
are as robust).

PAC theory, in contrast, only makes the general i.i.d. assumption. There
are some results, first of all those by Littlestone and Warmuth (1986; see also
Cristianini & Shawe-Taylor, Theorem 4.25 and 6.8), which are capable of giving
non-trivial confidence values for data sets that might be interesting in practice.
However, in order for the PAC methods to give non-trivial results the data
set should be particularly clean; they will fail in the vast majority of cases
where TCM and ICM produce informative results (see Melluish et al., 2001). The
majority of relevant results in the PAC theory are even less satisfactory in this
respect: they either involve large explicit constants or do not specify the relevant
constants at all (see, e.g., Cristianini and Shawe-Taylor, 2000, Section 4.5).

2 Inductive Confidence Machine

In this paper we are only interested in the problem of regression, with Ridge
Regression as the underlying algorithm. In contrast to the original Ridge Re-
gression method, every prediction output by ICM is not a single real value, but
a set of possible values, called a predictive region.

We are given a training set {(x1, y1), . . . , (xl, yl)} of l examples, where xi ∈
IRn are the attributes and yi ∈ IR are the labels, i = 1, . . . , l, and the attributes
of a new example xl+1 ∈ IRn. When fed with a confidence level, such as 99%,
ICM is required to find a predictive region such that one can be 99% confident
that the label yl+1 of the new example will be covered by that predictive region.

The idea of ICM is as follows. We split the training set into two subsets:

– the proper training set {(x1, y1), . . . , (xm, ym)} with m < l elements, and
– the calibration set {(xm+1, ym+1), . . . , (xl, yl)} with k := l − m elements;

m and k are parameters of the algorithm. We apply the Ridge Regression method
to the proper training set, and using the derived rule we associate a strangeness
measure with every pair (xi, yi) in the calibration set. This measure can be
defined as

αi := |ym+i − ŷm+i|, i = 1, . . . , k, (1)

where ŷm+i are the predictions given by the derived rule; later we will also
consider other definitions. For every potential label y of the new unlabelled
example xl+1 we can analogously define

αk+1 := |y − ŷl+1|,
where ŷl+1 is the prediction for the new example given by the derived rule. Let
us defined the p-value associated with the potential label y as

p(y) :=
#{i = 1, . . . , k + 1 : αi ≥ αk+1}

k + 1
,
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where #A stands for the number of elements in the set A; to empha-
size the dependence on the training set and xl+1, we will also write
p(x1, y1, . . . , xl, yl, xl+1, y) in place of p(y). In Section 3 we will prove that p(y)
are indeed valid p-values.

Suppose we are given a priori some confidence level 1 − δ, where δ > 0 is a
small constant (typically one takes 1% or 5%); sometimes we will say that δ is
the significance level. Given the significance level δ, the predictive region output
by ICM is

{y : p(y) > δ} . (2)

In Section 4 we will see that this can be done efficiently.

3 Validity of the Predictive Regions

Recall that valid p-values p(y) should satisfy, for any i.i.d. distribution P and
for every significance level δ,

P{p(y) ≤ δ} ≤ δ. (3)

The next proposition shows that (2) defines valid p-values under the general
i.i.d. assumption when the randomization is done over the training as well as
over the new example (xl+1, yl+1).

Proposition 1. For every probability distribution P in IRn × IR and every sig-
nificance level δ > 0,

P l+1
{

(x1, y1, . . . , xl, yl, xl+1, yl+1) :

p(x1, y1, . . . , xl, yl, xl+1, yl+1) ≤ δ
}
≤ δ.

Proof. We will actually prove the stronger assertion that (3) is true if the ran-
domization is done only over the calibration set and the new example. Let us fix
the proper training set x1, y1, . . . , xm, ym; our goal is to prove

P k+1
{

(xm+1, ym+1, . . . , xl+1, yl+1) :

p(xm+1, ym+1, . . . , xl+1, yl+1) ≤ δ
}
≤ δ.

(4)

We can imagine that the sequence

(xm+1, ym+1), . . . , (xl+1, yl+1)

is generated in two stages:

– first the unordered set

{xm+1, ym+1, . . . , xl+1, yl+1} (5)

is generated;
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– one of the (k + 1)! possible orderings {xπ(m+1), yπ(m+1), . . . , xπ(l+1), yπ(l+1)}
(where π : {m + 1, . . . , l + 1} → {m + 1, . . . , l + 1} is a permutation) of (5)
is chosen (some of these orderings may lead to the same sequence if some
example occurs twice in (5)).

Already the second stage will ensure (4): indeed, p(yl+1) ≤ δ if and only if αl+1

is among the 
δ(k + 1)� largest αi; since all permutations π are equiprobable,
the probability of this event will not exceed δ. �

This proof shows that the method of computing α1, . . . , αk+1 should only satisfy
the following condition in order for the computed p-values to be valid: every
αi, i = 1, . . . , k + 1, should be computed only from (xm+i, ym+i), the proper
training set, and the unordered set {xm+1, ym+1, . . . , xl+1, yl+1}, where yl+1 is
understood to be the postulated label y of xl+1. Definition (1) and definition (7)
(see section 4) obviously satisfy this requirement.

Fix some significance level δ (small positive constant). Proposition 1 shows
that ICM is valid in the following sense. Either the ICM prediction is correct
(i.e., the prediction region contains the true label yl+1) or an event of small (at
most δ) probability occurred. If δ is chosen so that we are prepared to ignore
events of probability δ, we can rely on the predictive region covering the true
label.

4 Explicit ICM

In this section we will give a slightly more explicit representation of ICM.
Let us denote by

α(1), . . . , α(k∗)

the sequence of all αi corresponding to the calibration set sorted in the descend-
ing order, with all repetitions deleted; let

js := #{αi : αi ≥ α(s)}, s = 1, . . . , k∗,

be the number of αs at least as large as α(s) (if all αi are different, j1 = 1, j2 =
2, . . .). Fix the confidence level 1− δ. The “attainable” significance levels will be
of the form js

k+1 ; decrease δ, if necessary, so that it is of this form: δ = js

k+1 for
some s = 1, . . . , k∗.

It can be easily checked that the predictive region output by ICM can be
represented as

(ŷl+1 − α(s), ŷl+1 + α(s)), (6)

provided the αs are computed according to (1).
Notice that the computational overhead of ICM is light; it is almost as effi-

cient as the underlying algorithm. The decision rule is computed from the proper
training set only once, and it is applied to the calibration set also only once. The
value of s corresponding to the given significance level δ and the value α(s) can
be also computed in advance. For every test example we need to apply the deci-
sion rule to it to find its yl+1; once this is done, computing the predictive region
from (6) is trivial.
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Another Way of Computing αi

Definition (1) defines the strangeness of the new example as the error of the
decision rule on it. A natural way to make this strangeness measure more precise
is to take into account the predicted accuracy of the decision rule f found from
the proper training set on a given unlabelled example from {xm+1, . . . , xl+1}.
Hopefully this should lead to smaller prediction regions.

Instead of using the strangeness measure αi = |yi − ŷi|, we can use

αi :=
∣∣∣∣
yi − ŷi

σi

∣∣∣∣ , (7)

where σi is an estimate of the accuracy of the decision rule f on xi. More
specifically, we take σi := eµi , where µi is the RR prediction of the value ln(|(yi−
f(xi)|) for the example xi. The use of the logarithmic scale instead of the direct
one ensures that the estimate is always positive; besides, relatively more weight
is given to examples with classifications close to f ’s predictions.

It is easy to see that when using αi computed from (1) ICM will output
predictive intervals of the same length for all test examples. This is not longer
the case when (7) is used; the length of the predictive interval will be propor-
tional to the predicted accuracy of f on the new example. What we are actually
accomplishing by using (7) is that the predictive regions obtained will be smaller
for points where the RR prediction is good and larger for points where it is bad.

Fixed Prediction Interval

There are two possible modes of using the p-values computed from (2):

1. For a given significance level δ, find a predictive region such that we can be
1 − δ confident that it covers the true label.

2. Given a fixed predictive region, find the maximum level at which we can be
confident that the true label will be covered.

The first mode corresponds to the regression ICM considered so far. The second
mode is essentially what is usually done in classification problems, where a fixed
predictive region may represent one of the possible classifications.

It is clear that the maximum confidence interval at which a given predictive
interval [a, b] is valid will be 1 − js/(k + 1), where s is the maximum number
such that

α(s) ≥ max (|ŷi − a|, |ŷi − b|) .

5 Experimental Results

The first set of experiments check how reliable the obtained predictive regions
are. We count the percentage of wrong predictive intervals; in other words, how
many times the algorithm fails to give a predictive region that contains the real
label of every test example. In effect this checks empirically the validity of our
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Table 1. The average success of the predictions made, for different confidence
levels using (1) as strangeness measure

Kernel Type Empirical reliability
90% 95% 99%

Polynomial 93.6% 97.4% 99.3%

RBF 97.5% 98.6% 99.6%

ANOVA Splines 97.7% 97.2% 98.8%

Table 2. The average success of the predictions made, for different confidence
levels using (7) as strangeness measure

Kernel Type Empirical reliability
90% 95% 99%

Polynomial 95.2% 97.8% 99.1%

RBF 97.3% 98.8% 99.6%

ANOVA Splines 95% 97.6% 99.2%

algorithm, which was proven theoretically in Section 3. We expect that for a
large number of examples the percentage of wrong predictions will not exceed
(and perhaps will be close to) the specified significance level.

A second set of experiments checks the tightness of our predictive regions by
calculating the median value of the lengths of all predictive regions obtained for a
specific significance level. This gives us a measure of how efficient our algorithm
is. We prefer using the median value instead of the mean, because it is more
robust: if a few of the predictions are extreme (either very large or very small)
due to noise or due to over-fitting, the average will be affected, while the median
will remain unchanged.

The proposed algorithm has been tested on the Boston Housing data set,
which gives the values of houses, ranging from 5K to 50K, depending on 13
attributes. In the experiments 100 splits of this data set have been used, with
different examples for the proper training, calibration, and test sets each time.
In every split the calibration set consisted of 99 examples, the test set of 25
examples, and the rest of 382 examples was used as the proper training set. In
Tables 1 to 4 we give the widths of the predictive regions and the empirical
reliability (i.e., the percentage of cases when the true label turned out to be
outside the predictive region) of these bounds for specific significance levels (1%,
5%, and 10%) and for specific kernels (Polynomial, RBF, and ANOVA) used in
conjunction with RR.

The results in Tables 1 and 2 confirm the validity of our algorithm: the rate
of successful predictions is at least equal to the desired accuracy.

In Tables 3 and 4 we present results about tightness of our predictive regions
for both variations of our algorithm. As we can see, in both cases the best results
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Table 3. The median width of the predictive regions, for different confidence
levels using (1) as strangeness measure

Kernel Type Median width
90% 95% 99%

Polynomial 9.6 12.6 16.1

RBF 9.9 13.5 29.4

ANOVA Splines 9.5 12.2 15.4

Table 4. The median width of the predictions made, for different accuracy levels
using (7) as strangeness measure

Kernel Type Median width
90% 95% 99%

Polynomial 9.5 11.8 15.6

RBF 10 12.7 23.5

ANOVA Splines 9.7 11.7 15

Table 5. Comparison of the mean width of the predictive regions, for ICM and
TCM Variation1

Algorithm Mean width
90% 95% 99%

ICM 10.8 12.7 17.5

TCM Variant1 12.4 16.7 28.8

Table 6. Comparison of the median width of the predictive regions, for ICM
and TCM Variation2

Algorithm Median width
90% 95% 99%

ICM 9.5 11.8 15.6

TCM Variant2 7.5 9.3 18.8

were obtained when we used the ANOVA splines as our kernel function. By
comparing the results for the two variations we notice that the method which uses
(7) as strangeness value gives, on average, slightly better results. The difference
is becoming relatively larger as we move toward higher confidence levels.

Figures 1 and 2 complement the information given in Tables 3 and 4 for
ANOVA splines by also giving other characteristics of the distribution of the
predictive interval widths. These figures show that the distribution of the method
which uses (7) as strangeness measure is more spread out, as we would expect.
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Fig. 1. Medians, upper and lower quartiles, and 10th and 90th percentile of
the distributions of the predictive interval widths for the method using (1) as
strangeness value

Finally, in Tables 5 and 6 we compare our algorithm with two variations of
TCM which are described in (Melluish, Vovk, Gammerman, 1999) and (Nouret-
dinov, Melluish, Vovk, 2001), using the polynomial kernel1. It is obvious that
ICM outperforms the first variation of the TCM in all hypothesis tests, while
compared with the second variation the difference is small. Though the set of α
values in TCM is richer than the one in ICM and the Ridge Regression rule is
derived using less examples in the case of induction, this doesn’t seem to worsen
the performance of the latter significantly.

We also tested the algorithm on the Bank Rejection and the CPU Activity
data sets both of which consist of 8192 examples split into 4096 training and 4096
test examples. This was done in order to demonstrate the algorithms ability to
handle large sets. The Bank Rejection data set was generated from a simplistic
simulator, which simulated the queues in a series of banks. Our task is to predict
the rate of rejections(i.e., the fraction of customers that are turned away from the
bank because all the open tellers have full queues) depending on 32 attributes.

The CPU Activity data set is a collection of a computer systems activity
measures collected from a Sun Sparcstation 20/712 with 128 Mbytes of memory
running in a multi-user university department. Users would typically be doing a
large variety of tasks ranging from accessing the internet, editing files or running
1 In Table 5 we compare the mean widths instead of the median as in (Melluish, Vovk,
Gammerman, 1999) only mean widths are reported
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Fig. 2. Medians, upper and lower quartiles, and 10th and 90th percentiles of
the distributions of the predictive interval widths for the method using (7) as
strangeness value

Table 7. The median width of the predictive regions, for the Bank Rejection
and the CPU Activity data sets

Data Set Strangeness Median width
measure 90% 95% 99%

Bank (1) 0.29 0.39 0.51
(7) 0.24 0.28 0.40

CPU (1) 8.89 11.81 16.79
(7) 8.77 10.71 15.89

very cpu-bound programs. Our task is to predict the portion of time that the
cpus run in tuser mode depending on 12 attributes.

The median widths of the predictive regions obtained by the Bank Rejection
and the CPU Activity data sets are listed in Table 7. The rate of rejections in
the Bank Rejection data set ranges from 0 to 0.7 and the portion of time that
the cpus run in user mode in the CPU Activity data set ranges from 0 to 99.
So even for a 99% confidence level the second variation of our algorithm gives
a predictive region which covers only 57% and 17% of the whole range of labels
for each set respectively.
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6 Conclusions

We have defined ICM, a computationally efficient confidence machine for the
regression problem based on inductive inference. In addition to the bare pre-
diction ICM outputs a measure of its accuracy which has a clear probabilistic
interpretation. The experimental results obtained give good empirical reliability
that is constantly above the specified confidence level. This confirms that the
algorithm can be used for obtaining reliable predictions. Furthermore, the width
of our predictive regions, is almost as tight as that of the transductive version.
The tightness of our predictive regions can be seen by the fact that our best
result for the Boston Housing data set, which is given by the second variation of
the algorithm (using (7) as strangeness measure), predicts a region that is only
33% of the whole range of house prices at the 99% confidence level.
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