Characterizing Markov Decision Processes

Bohdana Ratitch and Doina Precup

McGill University, Montreal, Canada
{bohdana,dprecup}@cs.mcgill.ca
http://www.cs.mcgill.ca/{ sonce, “dprecup}

Abstract. Problem characteristics often have a significant influence on
the difficulty of solving optimization problems. In this paper, we propose
attributes for characterizing Markov Decision Processes (MDPs), and
discuss how they affect the performance of reinforcement learning algo-
rithms that use function approximation. The attributes measure mainly
the amount of randomness in the environment. Their values can be cal-
culated from the MDP model or estimated on-line. We show empirically
that two of the proposed attributes have a statistically significant effect
on the quality of learning. We discuss how measurements of the proposed
MDP attributes can be used to facilitate the design of reinforcement
learning systems.

1 Introduction

Reinforcement learning (RL) [17] is a general approach for learning from interac-
tion with a stochastic, unknown environment. RL has proven quite successful in
handling large, realistic domains, by using function approximation techniques.
However, the properties of RL algorithms using function approximation (FA)
are still not fully understood. While convergence theorems exist for some value-
based RL algorithms using state aggregation or linear function approximation
(e.g., [1, 16]), examples of divergence of some RL methods combined with certain
function approximation architectures also exist [1]. It is not known in general
which combinations of RL and FA methods are guaranteed to produce stable
or unstable behavior. Moreover, when unstable behavior occurs, it is not clear
if it is a rare event, pertinent mostly to maliciously engineered problems, or if
instability is a real impediment to most practical applications.

Most efforts for analyzing RL with FA assume that the problem to be solved
is a general stochastic Markov Decision Process (MDP), while very little research
has been devoted to defining or studying sub-classes of MDPs. This generality
of the RL approach makes it very appealing. This is in contrast with prior
research in combinatorial optimization (e.g., [13, 6]), which showed that the
performance of approximate optimization algorithms can be drastically affected
by characteristics of the problem at hand. For instance, the performance of
local search algorithms is affected by characteristics of the search space for a
given problem instance, such as the number of local optima, the sizes of the
regions of attraction, and the diameter of the search space. Recent research
(e.g., [7, 10]) has shown that such problem characteristics can be used to predict

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 391-404, 2002.
© Springer-Verlag Berlin Heidelberg 2002

392 Bohdana Ratitch and Doina Precup

the behavior of local search algorithms, and improve algorithm selection. In
this paper, we show that a similar effect is present in algorithms for learning to
control MDPs: the performance of RL algorithms with function approximation is
heavily influenced by characteristics of the MDP. Our focus is to identify relevant
characteristics of MDPs, propose ways of measuring them, and determine their
influence on the quality of the solution found by value-based RL algorithms.

Prior theoretical [14] and empirical results [3, 9] suggest that the amount
of stochasticity in an MDP can influence the complexity of finding an optimal
policy. We propose quantitative attributes for measuring the amount of ran-
domness in an MDP (e.g., entropy of state transitions, variance of immediate
rewards and controllability), and for characterizing the structure of the MDP.
These attributes can be computed exactly for MDPs with small discrete state
space, and they can be approximated for MDPs with large or continuous state
spaces, using samples from the environment. Our research builds on the work of
Kirman [9], who studied the influence of stochasticity on dynamic programming
algorithms. In this paper, we redefine some of his attributes and propose new
ones. We treat both discrete and continuous state space, while Kirman focused
on discrete problems. We also focus on on-line, incremental RL algorithms with
FA, rather than off-line dynamic programming. We discuss the potential for us-
ing MDP attributes for choosing RL-FA algorithms suited for the task at hand,
and for automatically setting user-tunable parameters of the algorithms (e.g.,
exploration rate, learning rate, and eligibility). At present, both the choice of an
algorithm and the parameter setting are usually done by a very time-consuming
trial-and-error process. We believe that measuring MDP attributes can help au-
tomate this process.

We present an empirical study focused on the effect of two attributes, state
transition entropy and controllability, on the quality of the behavior learned
using RL with FA. The results show that these MDP characteristics have a sta-
tistically significant effect on the quality of the learned policies. The experiments
were performed on randomly generated MDPs with continuous state spaces, as
well as randomized versions of the Mountain Car task [17].

The paper is organized as follows. In Sect.2, we introduce basic MDP nota-
tion and relevant reinforcement learning issues. In Sect.3, we introduce several
domain-independent attributes by which we propose to characterize MDPs, and
give intuitions regarding their potential influence on learning algorithms. Sect.4
contains the details of our empirical study. In Sect.5 we summarize the contri-
butions of this paper and discuss future work.

2 Markov Decision Processes

Markov Decision Processes (MDPs) are a standard, general formalism for mod-
eling stochastic, sequential decision problems [15]. At every discrete time step ¢,
the environment is in some state s; € S, where the state space S may be finite or
infinite. The agent perceives s; and performs an action a; from a discrete, finite
action set A. One time step later, the agent receives a real-valued numerical

Characterizing Markov Decision Processes 393

reward r+1 and the environment transitions to a new state, s;y1. In general,
both the rewards and the state transitions are stochastic. The Markov property
means that the next state s;y; and the immediate reward r,4+; depend only on
the current state and action, (s, a;). The model of the MDP consists of the tran-
sition probabilities P, and the expected values of the immediate rewards R/,
Vs, a,s’. The goal of the agent is to find a policy, a way of behaving, that maxi-
mizes the cumulative reward over time. A policy is a mapping 7 : S x A — [0, 1],
where 7(s,a) denotes the probability that the agent takes action a when the
environment is in state s. The long-term reward received by the agent is called
the return, and is defined as an additive function of the reward sequence. For
instance, the discounted return is defined as Y .-, ~'ri11, where y € [0,1).

Many RL algorithms estimate wvalue functions, which are defined with re-
spect to policies and reflect the expected value of the return. The action-
value function of policy 7 represents the expected discounted return obtained
when starting from state s, taking a, and henceforth following m: Q™(s,a) =
E {30, Veregrilse = s,as = a} ,¥s € S,a € A. The optimal action-value
function is Q*(s,a) = max, Q™ (s,a),Vs € S,a € A. An optimal policy is one for
which this maximum is attained. If the optimal action-value function is learned,
then an optimal policy can be implicitly derived as a greedy one with respect
to that value function. A policy is called greedy with respect to some action-
value function Q(s,a) if in each state it selects one of the actions that have the
maximum value: 7(s,a) > 0 iff ¢ € argmax, e Q(s,a’).

Most RL algorithms iteratively improve estimates of value functions based
on samples of transitions obtained on-line. For example, at each time step t,
the tabular Sarsa learning algorithm [17] updates the value of the current state-
action pair (s¢,a;) based on the observed reward ;41 and the next state-action

pair S¢41,a¢q1, as:

Q(st,a¢) «— Q(s¢,a¢) + ulrerr +¥Q(s¢41, apy1) —Q(se,ae)], o € (0,1). (1)
Input Target

Unlike supervised learning, RL is a trial-and-error approach. The learning agent
has to find which actions are the best without the help of a teacher, by trying
them out. This process is called exploration. The quality and the speed of learning
with finite data can depend dramatically on the agent’s exploration strategy.

In MDPs with large or continuous state spaces, value functions can be rep-
resented by function approximators (e.g., CMACs or neural networks [17]). In
that case, RL methods sample training data for the approximator, which consist
of inputs (e.g., state-action pairs) and targets (e.g., estimates of the action-value
function). Equation (1) shows an example of inputs and targets for the SARSA
algorithm. The approximator generalizes the value estimates gathered for a sub-
set of the state-action pairs to the entire S x A space. The interplay between
the RL algorithm and the function approximator has an iterative, interleaved
manner, as shown in Fig. 1.

Function approximation in the context of RL is harder than in the classical,
supervised learning setting. In supervised learning, many techniques assume a

394 Bohdana Ratitch and Doina Precup

a subset state-action values
of S x A (targets) Q(s,a) generalization of
[RL FA the value function
Q - to the entire S x A space
(inputs)

Fig. 1. Interaction of RL and FA learning

Table 1. Factors contributing to the noise in the target of the FA training data

Factor 1: Stochastic immediate rewards =~ Ti 41 7 Ttot+1
Factor 2: Stochastic transitions: s¢; 41 # Stg+1 = Ti4+1 F Tig+1
Factor 3: Stochastic transitions: s¢,+1 # Sto+1 = Q(St;+1,0t,+1)
Q(5ty41, ty+1)
Factor 4: Different action choices: at, +1 7 aty+1 = Q(Sty+1,0t,+1)
Q(5t541,01541)

static training set. In RL on the other hand, the estimates of the value function
(which are the targets for the FA) evolve and improve gradually. Hence, the
FA’s target function appears to be non-stationary. Moreover, the stochasticity
in the environment and the exploration process may introduce variability into
the training data (i.e., variability in the targets for a fixed input, which we will
call “noise” from now on). To identify the potential sources of this noise, let
us examine (1) again. Suppose that the same state-action pair (8, a) is encoun-
tered at time steps t; and to during learning, and the FA is presented with the
corresponding targets (1, 11 + YQ(St;+1, at,+1)] and [re, 41 +YQ(Sty+1, Aty 41)]-
Table 1 shows four factors that can contribute to the noise. Note that these
factors arise from the particular structure of the estimated value functions, from
the randomized nature of the RL algorithm and, most of all, from the inherent
randomness in the MDP. We will now introduce several attributes that help
differentiate these sources of randomness, and quantify their effect.

3 MDP Attributes

We present six domain-independent attributes that can be used to quantitatively
describe an MDP. For simplicity, we define them assuming discrete state and
action spaces and availability of the MDP model. Later, we discuss how these
assumptions can be lifted.

State transition entropy (STE) measures the amount of stochasticity due to
the environment’s state dynamics. Let O, denote a random variable represent-
ing the outcome (next state) of the transition from state s when the agent per-
forms action a. This variable takes values in .S. We use the standard information-
theoretic definition of entropy to measure the STE for a state-action pair (s, a)
(as defined in [9]):

Characterizing Markov Decision Processes 395

STE(S7G') = H(Os7a) = - Z Rsa,s’ log P;,s’ (2)
s'esS

A high value of STE(s,a) means that there are many possible next states s’
(with P¢_, # 0) which have about the same transition probabilities. In an MDP
with high STE values, the agent is more likely to encounter many different states,
even by performing the same action a in some state s. In this case, state space
exploration happens naturally to some extent, regardless of the exploration strat-
egy used by the agent. Since extensive exploration is essential for RL algorithms,
a high STE may be conducive to good performance of an RL agent. At the same
time, though, a high STE will increase the variability of the state transitions.
This suggests that the noise due to Factors 2 and 3 in Table 1 may increase,
which can be detrimental for learning.

The controllability (C) of a state s is a normalized measure of the information
gain when predicting the next state based on knowledge of the action taken,
as opposed to making the prediction before an action is chosen (note that a
similar, but not identical, attribute is used by Kirman [9]). Let Oy denote a
random variable (with values from S) representing the outcome of a uniformly
random action in state s. Let A; denote a random variable representing the
action taken in state s. We consider A, to be chosen from a uniform distribution.

Now, given the value of Ay, information gain is the reduction in the entropy of O:
H(Os) — H(Os|Ay), where

1
H(OS):_ZPS,S’IOgPS’SI :_Z(WZ 5,8/ 10g |A| Z ss/

s’'eS s'esS acA acA
H(O4|Ay) Z Z P log(Py)
aEA s'eS
The controllability in state s is defined as:
— H(Os) — H(OS|AS)

If H(Os) = 0 (deterministic transitions for all actions), then C(s) is defined to be
1. It may also be useful (see Sect. 5) to measure the forward controllability (FC)
of a state-action pair, which is the expected controllability of the next state:

= P!C(s (4)

s'esS

High controllability means that the agent can exercise a lot of control over
which trajectories (sequences of states) it goes through, by choosing appropriate
actions. Having such control enables the agent to reap higher returns in environ-
ments where some trajectories are more profitable than others. Similar to the
STE, the level of controllability in an MDP also influences the potential explo-
ration of the state space. Because in a highly controllable state s the outcomes of

396 Bohdana Ratitch and Doina Precup

different actions are quite different, the agent can choose what areas to explore.
This can be advantageous for the RL algorithm, but may be detrimental for
function approximation, because of the noise due to Factor 4 in Table 1.

The variance of immediate rewards, VIR(s,a), characterizes the amount of
stochasticity in the immediate reward signal. High VIR causes an increase in the
noise due to Factor 1 in Table 1, thus making learning potentially more difficult.

The risk factor (RF) measures the likelihood of getting a low reward after
the agent performs a uniformly random action. This measure is important if
the agent has to perform as well as possible during learning. Let r% denote
the reward observed on a transition from a state s after performing a uniformly
random action, a,. The risk factor in state s is defined as:

RF(s) = Pririv < E{ri*} —e(s)], (5)

where €(s) is a positive number, possibly dependent on the state, which quantifies
the tolerance to lower-than-usual rewards. Note that low immediate rewards do
not necessarily mean low long-term returns. Nevertheless, knowledge of RF may
help minimize losses, especially during the early stages of learning.

The final two attributes are meant to capture the structure in the state
transitions. The transition distance, T D(s,a), measures the expected distance
between state s and its successor states, according to some distance metric on S.
We are currently investigating what distance metric would be appropriate. One
candidate is a (weighted) Euclidean distance, but this is not adequate for all
environments. The transition distance may affect RL when using global function
approximators, such as neural networks. In the case of incremental learning with
global approximators, training on two consecutive inputs that are very different
may create mutual interference of the parameter updates and impede learning.
Hence, such MDPs may benefit from using local approximators (e.g. Radial Basis
Networks). The transition variability, TV (s, a), measures the average distance
between possible next states. With a good T'V metric, a high value of TV (s, a)
would indicate that the next states can have very different values, and hence
introduce noise due to Factor 3 in Table 1.

In continuous state spaces, the attributes are defined by using integrals in-
stead of sums. If the model of the process is not available, these attributes can be
estimated from the observed transitions, both for discrete and continuous state
spaces. The attributes can be measured locally (for each state or state-action
pair) or globally, as an average over the entire MDP. Local measures are most
useful for tuning the parameters of the RL algorithm. For example, in Sect.5, we
suggest how they can be used to adapt the exploration strategy. In the experi-
ments presented in the next section, we use global measures - sample averages of
the attribute values, computed under the assumption that all states and actions
are equally probable. This choice of the sampling distribution is motivated by
our intention to characterize the MDP before any learning takes place. Note,
however, that under some circumstances, weighted averages might be of more
interest (e.g., if we want to compute these attributes based on behavior gen-
erated by a restricted class of policies). If the sample averages were estimated

Characterizing Markov Decision Processes 397

on-line, during learning, they would naturally reflecting the state distribution
that the agent is actually encountering.

4 Empirical Study

In this section we focus on studying the effect of two of state-transition entropy
(STE) and controllability (C), on the quality of the policies learned by an RL
algorithm using linear function approximation. The work of Kirman suggests
that these attributes influence the performance of off-line dynamic programming
(DP) algorithms, to which RL approaches are related. Hence, it seems natural
to start with studying these two attributes. Our experiments with the other
attributes are still in their preliminary stages, and the results will be reported
in future work.

In Sect. 4.1 we present the application domains used in the experiments. The
experimental details and the results are described in Sect.4.2.

4.1 Tasks

In order to study empirically the effect of MDP characteristics on learning, it
is desirable to consider a wide range of STE and C values, and to vary these
two attributes independently. Unfortunately, the main collection of currently-
popular RL tasks' contains only a handful of domains, and the continuous tasks
are mostly deterministic. So our experiments were performed on artificial random
MDPs, as well as randomized versions of the well-known Mountain-Car task.
Random discrete MDPs (RMDPs) have already been used for experimental
studies with tabular RL algorithms. In this paper, we use as a starting point a
design suggested by Sutton and Kautz for discrete, enumerated state spaces?,
but we extend it in order to allow feature-vector representations of the states.
Fig. 2 shows how transitions are performed in an RMDP. The left panel shows
the case of a discrete, enumerated state space. For each state-action pair (s, a)
the next state s’ is selected from a set of b possible next states, according to
the probability distribution P, ,j = 1,...,b. The reward is then sampled from
]

a normal distribution with mean R{ . and variance V' ,. Such MDPs are easy
to generate automatically.

Our RMDPs are a straightforward extension of this design. A state is
described by a feature vector: (vi,...,v,), with v; € [0,1]. State transitions
are governed by a mixture of b multivariate normal distributions (Gaussians)

N (pz, 05), with means pj = (uj,...p}) and variances o5 = (0,...0%). The
means pf = Mj(s,a) and variances o = V/(s,a) are functions of the cur-

rent state-action pair, (s,a). Sampling from this mixture is performed hierar-
chically: first one of the b Gaussian components is selected according to proba-
bilities Pj(s,a),j = 1,...b, then the next state s’ is sampled from the selected

! Reinforcement learning repository at the University of Massachusetts, Amherst
www-anw.cs.umass.edu/rlr

2 www.cs.umass.edu/ rich/RandomMDPs.html

398 Bohdana Ratitch and Doina Precup

Taken with P(s,a,sj) Taken with Pj(s,a)
> >
O @ @ O @ W
_’Y_J vi~N(Mji(s,a),Vji(s,a))... va~N (Min(s,a),Vin(s,a))

s
r~N(R(s,a,s"),V(s,a,s") s'
r-#(R(s,.a,s),V(s.a,s))

Fig. 2. Random MDPs

component, N(uj7oj)3. Once the next state s’ is determined, the reward for
the transition is sampled from a normal distribution with mean R(s,a,s’) and
variance V (s, a, s’). The process may terminate at any time step according to
a probability distribution P(s’). Mixtures of Gaussians are a natural and non-
restrictive choice for modeling multi-variate distributions. Of course, one can
use other basis distributions as well. We designed a generator for RMDPs of
this form?, which uses as input a textual specification of the number of state
variables, actions, branching factor, and also some constraints on the functions
mentioned above. In these experiments we used piecewise constant functions
to represent P;(s, a), M}(s, a), Vj’:(s, a), R(s,a,s") and V (s, a,s’), but this choice
can be more sophisticated.

Mountain-Car[17] is a very well-studied minimum-time-to-goal task. The
agent has to drive a car up a steep hill by using three actions: full throttle
forward, full throttle reverse, or no throttle. The engine is not sufficiently strong
to drive up the hill directly, so the agent has to build up sufficient energy first,
by accelerating away from the goal. The state is described by two continuous
state variables, the current position and velocity of the car. The rewards are -1
for every time step, until the goal is reached. If the goal has not been reached
after 1000 time steps, the episode is terminated. We introduced noise in the
classical version of the Mountain Car task by perturbing either the acceleration
or the car position. In the first case, the action that corresponds to no throttle
remained unaffected, while the other two actions were perturbed by zero-mean
Gaussian noise. This is done by adding a random number to the acceleration of
+1 or -1. The new value of the acceleration is then applied for one time step. In
the second case, the car position was perturbed on every time step by zero-mean
Gaussian noise.

4.2 Effect of Entropy and Controllability on Learning

We performed a set of experiments to test the hypothesis that STE and C have
a statistically significant effect on the quality of the policies learned with finite

3 By setting the variances U;- to zero and using discrete feature values, one can obtain
RMDPs with discrete state spaces.

4 The C++ implementation of the RMDP generator and the MDPs used in these
experiments will be available from www.cs.mcgill.ca/ sonce/

Characterizing Markov Decision Processes 399

amounts of data. We used a benchmark suite consisting of 50 RMDPs and 10
randomized versions of the Mountain-Car task (RMC). All the RMDPs had two
state variables and two actions. In order to estimate the average STE and C
values for these tasks, each state variable was discretized into 10 intervals; then,
100 states were chosen uniformly (independently of the discretization) and 150
samples of state transitions were collected for each of these states.” The STE
and C values were estimated for each of these states (and each action, in the
case of STE) using counts on these samples. Then the average value for each
MDP was computed assuming a uniform state distribution.®

The RMDPs formed 10 groups with different combinations of average STE
and C values, as shown in the left panel of Fig. 3. Note that it is not possible
to obtain a complete factorial experimental design (where all fixed levels of one
attribute are completely crossed with all fixed levels of the other attribute), be-
cause the upper limit on C is dependent on STE. However, the RMDP generator
allows us to generate any STE and C combination in the lower left part of the
graph, up to a limiting curve. For the purpose of this experiment, we chose at-
tribute values distributed such that we can still study the effect of one attribute
while keeping the other attribute fixed. Note that each group of RMDPs con-
tains environments that have similar STE and C values, but which are obtained
with different parameter settings for the RMDP generator. The RMDPs within
each group are in fact quite different in terms of state transition structure and
rewards.

The average values of STE and C for the RMC tasks are shown in the right
panel of Fig. 3. We used two tasks with acceleration noise (with variances 0.08
and 0.35 respectively) and eight tasks with position noise (with variances 5-1075,
9-1075,17-1075,38-1075,8-107%,3-1073,9-1073 and 15-1073). These tasks
were chosen in order to give a good spread of the STE and C values. Note that
for the RMC tasks, STE and C are anti-correlated.

We used SARSA as the RL algorithm and CMACs as function approxima-
tors [17] to represent the action-value functions. The agent followed an e-greedy
exploration strategy with e = 0.01. For all tasks, the CMAC had five 9x9 tilings,
each offset by a random fraction of a tile width. For the RMDPs, each parame-
ter w of the CMAC architecture had an associated learning rate which followed
a decreasing schedule ay = #f)m, where n; is the number of updates to w
performed by time step ¢. For the RMCs, we used a constant learning rate of
a = 0.0625. These choices were made for each set of tasks (RMDPs and RMCs)
based on preliminary experiments. We chose settings that seemed acceptable for
all tasks in each set, without careful tuning for each MDP.

5 Note that by sampling states uniformly, we may get more than one state in one bin
of the discretization, or we may get no state in another bin.

5 For the purpose of estimating STE and C beforehand, the choice of either uniform
state distribution or the distribution generated by a uniformly random policy are
the only natural choices. Preliminary experiments indicate that the results under
these two distributions are very similar.

400 Bohdana Ratitch and Doina Precup

. RMDPs] RMC Tasks
e
35 ® 14
¢ 4 Position noise
3 T2 o Acceleration noise
2.5 1
STE
STE2 0d o
1 8 % 0
1 T Y
¢
03 % & @ o “ o
9
006702 03 04 05 06 07 08 08 0067 02 03 04 05 06 07 08 09
Controllability (C) Controllability (C)

Fig. 3. Values of the Attributes for MDPs in the Benchmark Suite

For each task in the benchmark suite, we performed 30 learning runs. Each
run consisted of 10000 episodes, where each episode started in a uniformly chosen
state. For the RMDPs, the termination probability was set to 0.01 for all states.
Every 100 trials, the current policy was evaluated on a fixed set of 50 test states,
uniformly distributed across the state space. The best policy on a particular run r
is the one with the maximum average return (M AR,) over the states in the test
set. The learning quality is measured as the average returns of the best policies
found: LQ = Ziil M AR,. Note that it is not always possible to compare the
LQ measure directly for different MDPs, because their optimal policies may have
different returns (thus the upper limits on M AR, and LQ are different). So we
need to normalize this measure across different MDPs. Ideally, we would like
to normalize with respect to the expected return of the optimal policy. Since
the optimal policy is not known, we normalize instead by the average return of
the uniformly random policy over the same test states (RURP). The normalized
learning quality (NLQ) measure used in the experiments is NLQ = #%P,
if rewards are positive (as is the case of the RMDPs), and NLQ = %SP
otherwise (for the RMCs). We conducted some experiments with RMDPs for
which we knew the optimal policy and the results for the optimally and RURP-
normalized LQ measures were very similar.

Note that learning quality of RL algorithms is most often measured by the
return of the final policy (rather than the best policy). In our experiments, the
results using the return of the final policy are very similar to those based on the
best policy (reported below), only less statistically significant. The within-group
variance of the returns is much larger for the final policies, due to two factors.
First, final policies are more affected by the learning rate: if the learning rate is
too high, the agent may deviate from a good policy. Since the learning rate is not
a factor in our analysis, it introduces unexplained variance. Secondly, SARSA
with FA can exhibit an oscillatory behavior [5], which also increases the variance
of the returns if they are measured after a fixed number of trials. We plan to
study the effect of the learning rate more in the future.

To determine if there is a statistically significant effect of STE and C on
NLQ, we performed three kinds of statistical tests. First, we used analysis of

Characterizing Markov Decision Processes 401

variance [2], to test the null hypothesis that the mean NLQ for all 10 groups of
RMDPs is the same. We performed the same test for the 10 RMC tasks. For
both domains, this hypothesis can be rejected at a significant confidence level
(p < 0.01). This means that at least one of the two attributes has a statisti-
cally significant effect on NLQ. We also computed the predictive power (Hay’s
statistic [2]) of the group factor, combining STE and C, on NLQ. The values
of this statistic are 0.41 for the RMDPs and 0.57 for the RMCs. These values
indicate that the effect of STE and C is not only statistically significant but
also practically usable: the mean squared error in the prediction of the NLQ
is reduced by 41% and 57% respectively for the RMDPs and RMC tasks, as a
result of knowing the value of these attributes for the MDP. This result is very
important because our long-term goal is to use knowledge about the attributes
for making practical decisions, such as the choice of the algorithm or parameter
settings for the task at hand. For the RMDP domains, the combination of STE
and C values has the most predictive power (41%), whereas STE alone has only
4% prediction power and C alone has none. This suggests that both attributes
have an effect on NLQ and should be considered together.

Figure 4 shows the learning quality as a function of STE and C for the
RMDPs (left panel) and for the RMC tasks (middle and right panels). Note that
for the RMC tasks, we cannot study the effects of STE and C independently,
because their values are anti-correlated. For ease of comparing the results to
those obtained for RMDPs, we include two graphs for the RMC tasks, reflecting
the dependency of NLQ on STE and C (middle and right panels of the figure 4).
We emphasize that both graphs reflect one trend: as STE increases (and C de-
creases correspondingly), NLQ decreases. The reader should not conclude that
STE and C exhibit independent effects in the case of the RMC tasks. As can
be seen in the figure, for both domains (RMDPs and RMCs) the quality de-
creases as the entropy increases. We also conducted Least Significant Difference
(LSD) tests [2] to compare the mean NLQ of the different pairs of RMDP groups
and different pairs of RMC tasks. These tests (conducted at a conventional 0.05
confidence level), show that there is a statistically significant difference in the
mean NLQ for all groups of RMDPs with different STE values, but the effect
of STE becomes less significant as the value of the STE increases (potentially
due to a floor effect). The trend is the same for the RMC tasks. As discussed
in Sect. 3, high entropy is associated with the amounts of noise in the training
data due to Factors 2 and 3 in Table 1, which makes learning more difficult.
As we discussed in Sect. 2, the amount of noise also depends on the shape of
the action-value functions. For example, if the action-value function is constant
across the state-action space, then there will be no noise due to Factor 3 (see Ta-
ble 1). Additional experiments with RMDPs that have relatively smooth and flat
action-value functions” showed that in this case, the learning quality increased
as the STE increased. This is due to the positive effect of extensive state-space
exploration in high-entropy MDPs. Thus, the effect of STE on learning quality is

7 In those RMDPs, one action has higher rewards than the other in all states and the
functions R(s,a,s’) have a small range.

402 Bohdana Ratitch and Doina Precup

RMDPs RMC Tasks RMC Tasks

STE-0. 12 12
135
13 10 10
NLQ NLQ NLQ
124 8 8
12 . .
115
STE-15 4 4
1 —t
TS , -
W50z o1 05 _0s N A KT ORI, 0.06 024 045 068 081 1
Controllability (C) STE Controllability (C)

Fig. 4. Learning Quality

a tradeoff between the negative effect of noise and the positive effect of natural
state space exploration.

The LSD tests also show differences in NLQ for the groups of RMDPs with
different C values. The differences are significant between some of the groups
with STE~ 0.5 and STE~ 1.5 levels. They appear when C changes by about
0.4. As can be seen from the left panel of Fig.4, the learning quality increases
as controllability increases. As discussed in Sect. 3, high controllability means
that the agent can better exploit the environment, and has more control over
the exploration process as well.

5 Conclusions and Future Work

In this paper, we proposed attributes to quantitatively characterize MDPs, in
particular in terms of the amount of stochasticity. The proposed attributes can
be either computed given the model of the process or estimated from samples
collected as the agent interacts with its environment. We presented the results of
an empirical study confirming that two attributes, state transition entropy and
controllability, have a statistically significant effect on the quality of the policies
learned by a reinforcement learning agent using linear function approximation.
The experiments showed that better policies are learned in highly controllable
environments. The effect of entropy shows a trade-off between the amount of
noise due to environment stochasticity, and the natural exploration of the state
space. The fact that the attributes have predictive power suggests that they can
be used in the design of practical RL systems.

Our experiments showed that these attributes also affect learning speed. How-
ever, statistically studying this aspect of learning performance is difficult, since
there is no generally accepted way to measure and compare learning speed across
different tasks, especially when convergence is not always guaranteed. We are
currently trying to find a good measure of speed that would allow a statistically
meaningful study. We are also currently investigating whether the effect of these
attributes depends on the RL algorithm. This may provide useful information

Characterizing Markov Decision Processes 403

in order to make good algorithmic choices. We are currently in the process of
studying the effect of the other attributes presented in Sect. 3.

The empirical results we presented suggest that entropy and controllability
can be used in order to guide the exploration strategy of the RL agent. A signif-
icant amount of research has been devoted to sophisticated exploration schemes
(e.g., [11], [4], [12]). Most of this work is concerned with action exploration, i.e.
trying out different actions in the states encountered by the agent. Compara-
tively little effort has been devoted to investigating state-space exploration (i.e.
explicitly reasoning about which parts of the state space are worth exploring).
The E? algorithm [3] uses state-space exploration in order to find near-optimal
policies in polynomial time, in finite state spaces. We are currently working on
an algorithm for achieving good state-space exploration, guided by local mea-
sures of the attributes presented in Sect. 3. The agent uses a Gibbs (softmax)
exploration policy [17]. The probabilities of the actions are based on a linear
combination of the action values, local measures of the MDP attributes and the
empirical variance of the FA targets. The weights in this combination are time-
dependent, in order to ensure more exploration in the beginning of learning, and
more exploitation later.

Acknowledgments

This research was supported by grants from NSERC and FCAR. We thank Ri-
card Gavalda, Ted Perkins, and two anonymous reviewers for valuable comments.

References

[1] Bertsekas, D. P., Tsitsiklis, J. N.: Neuro-Dynamic Programming. Belmont, MA:
Athena Scientific (1996) 391

[2] Cohen, P. R.: Empirical Methods for Artificial Intelligence. Cambridge, MA: The
MIT Press (1995) 401

[3] Dean, T., Kaelbling, L., Kirman, J., Nicholson, A.: Planning under Time Con-
straints in Stochastic Domains. Artificial Intelligence 76(1-2) (1995) 35-74 392

[4] Dearden, R., Friedman, N., Andre, D.: Model-Based Bayesian Exploration. In Un-
certainty in Artificial Intelligence: Proceedings of the Fifteenth Conference (UAI-
1999) 150-159 403

[5] Gordon, J. G.: Reinforcement Learning with Function Approximation Converges
to a Region. Advances in Neural Information Processing Systems 13 (2001) 1040-
1046 400

[6] Hogg, T., Huberman, B. A., Williams, C. P.: Phase Transitions and the Search
Problem (Editorial). Artificial Intelligence, 81 (1996) 1-16 391

[7] Hoos, H. H., Stutzle, T. : Local Search Algorithms for SAT: An Empirical Eval-
uation. Journal of Automated Reasoning, 24 (2000) 421-481. 391

[8] Kearns, M., Singh, S.: Near-Optimal Reinforcement Learning in Polynomial Time.
In Proceedings of the 15th International Conference on Machine Learning (1998)
260-268 403

[9] Kirman, J.: Predicting Real-Time Planner Performance by Domain Characteri-
zation. Ph.D. Thesis, Brown University (1995) 392, 394, 395

404

[10]

(1]

(12]
(13]
(14]
(15]

[16]

Bohdana Ratitch and Doina Precup

Lagoudakis, M., Littman, M. L. : Algorithm Selection using Reinforcement Learn-
ing Proceedings of the 17th International Conference on Machine Learning (2000)
511-518 391

Meuleau, N., Bourgine, P.: Exploration of Multi-State Environments: Local Mea-
sures and Back-Propagation of Uncertainty. Machine Learning 35(2) (1999) 117-
154 403

Moore, A. W., Atkeson, C. G.: Prioritized Sweeping: Reinforcement Learning with
Less Data and Less Time. Machine Learning, 13 (1993) 103-130 403
Papadimitriou, C. H., Steiglitz, K: Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall (1982) 391

Papadimitriou, C. H., Tsitsiklis, J. N.: The Complexity of Markov Chain Decision
Processes. Mathematics of Operations Research 12(3) (1987) 441-450 392
Puterman, M. L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley (1994) 392

Singh, S. P., Jaakkola, T., Jordan, M. I.: Reinforcement Learning with Soft State
Aggregation. Advances in Neural Information Processing Systems, 7 (1995) 361-
368 391

Sutton, R. S., Barto, A. G.: Reinforcement Learning. An Introduction. Cambridge,
MA: The MIT Press (1998) 391, 392, 393, 398, 399, 403

	Characterizing Markov Decision Processes
	Introduction
	Markov Decision Processes
	MDP Attributes
	Empirical Study
	Tasks
	Effect of Entropy and Controllability on Learning

	Conclusions and Future Work
	Acknowledgments
	References

