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Abstract. The learning metrics principle describes a way to derive met-
rics to the data space from paired data. Variation of the primary data
is assumed relevant only to the extent it causes changes in the auxiliary
data. Discriminative clustering finds clusters of primary data that are
homogeneous in the auxiliary data. In this paper, discriminative cluster-
ing using a mutual information criterion is shown to be asymptotically
equivalent to vector quantization in learning metrics. We also present
a new, finite-data variant of discriminative clustering and show that it
builds contingency tables that detect optimally statistical dependency
between the clusters and the auxiliary data. A finite-data algorithm is
demonstrated to outperform the older mutual information maximizing
variant.

1 Introduction

The metric of the data space determines the goodness of the results of unsuper-
vised learning: clustering, nonlinear projection methods, and density estimation.
The metric, in turn, is determined by feature extraction, variable selection, trans-
formation, and preprocessing of the data. The principle of learning metrics aims
at automating part of the process of metric selection, by learning the metric
from data.

Tt is assumed that the data comes in pairs (x, ¢): during learning, the primary
data vectors x € R™ are paired with auxiliary data ¢ which in this paper are
discrete classes. Important variation in x is supposed to be revealed by variation
in the the conditional density p(c|x).

The distance d between two close-by data points x and x + dx is defined
to be the difference between the corresponding distributions of ¢, measured by
the Kullback-Leibler divergence Dkp,. It is well known (see e.g. [3]) that the
divergence is locally equal to the quadratic form with the Fisher information
matrix J, i.e.

d2 (x,x + dx) = Dxw(p(c|x)||p(c|x + dx)) = dxTI(x)dx . (1)

The Fisher information matrix has classically appeared in the context of con-
structing metrics for probabilistic model families. A novelty here is that the data
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vector x is considered as the parameters of the Fisher information matrix, the
aim being to construct a new metric into the data space.

The Kullback-Leibler divergence defines a metric locally, and the metric can
in principle be extended to an information metric or Fisher metric to the whole
data space. We call the idea of measuring distances in the data space by approx-
imations of (1) the learning metrics principle [1, 2].

The principle is presumable useful for tasks in which there is suitable auxil-
iary data available, but instead of merely predicting the values of auxiliary data
the goal is to analyze, explore, or mine the primary data. Charting companies
based on financial indicators is one example; there the bankruptcy risk (whether
the company goes bankrupt or not) is natural auxiliary data.

Learning metrics is similar to supervised learning in that the user has to
choose proper auxiliary data. The difference is that in supervised learning the
sole purpose is to predict the auxiliary data, whereas in learning metrics the
metric is supervised while the rest of the analysis can be unsupervised, given the
metric.

In this paper we analyze clustering in learning metrics, or discriminative
clustering (earlier also called semisupervised clustering) [2]. In general, a goal
of clustering is to minimize within-cluster distortion or variation, and to max-
imize between-cluster variation. We apply the learning metrics by measuring
distortions within each cluster by a kind of within-cluster Kullback-Leibler di-
vergence. This causes the clusters to be internally as homogeneous as possible
in conditional distributions p(c|x) of the auxiliary variable. The mutual differ-
ences between the distributions p(c|x) of the clusters are then automatically
maximized, giving a reason to call the method discriminative.

We have earlier derived and analyzed discriminative clustering with
information-theoretic methods, assuming infinite amount of data. In this pa-
per we will derive a finite-data variant and theoretical context for it, in the
limit of “hard” clusters (vector quantization). It is not possible to use gradient-
based algorithms for hard clusters, and hence we derive optimization algorithms
for a smooth variant for which standard fast optimization procedures are then
applicable.

2 Discriminative Clustering Is Asymptotically Vector
Quantization in Fisher Metrics

2.1 Discriminative Clustering

We will first introduce the cost function of discriminative clustering by apply-
ing the learning metrics principle to the classic vector quantization or K-means
clustering.

In vector quantization the goal is to find a set of prototypes or codebook
vectors m; that minimizes the average distortion I/ caused when the data are
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represented by the prototypes:
E= Z/V D(x,m;) p(x) dx (2)
G Vi

where D(x,m;) is the distortion caused by representing x by m;, and Vj is the
Voronoi region of the cell j. The Voronoi region V; consists of all points that are
closer to m; than to any other model, that is, x € Vj if

D(x,m;) < D(x,my) (3)

for all k.

The learning metrics principle is applied to (2) by introducing a set of distri-
butional prototypes %, one for each partition j, and by measuring distortions
of representing the distributions p(c|[x) by the prototypes 1;. The average dis-
tortion is

B =Y [ Deatplebe) ) pix) dx @)

where distortion between distributions has been measured by the Kullback-
Leibler divergence. Note that the Voronoi regions V; are still kept local in the
primary data space by defining them with respect to the Euclidean distortion
(3).
The cost (4) is minimized with respect to both sets of prototypes, m; and 1.
The optimization is discussed further in Section 5.

It can be shown that minimizing (4) maximizes the mutual information be-
tween the auxiliary data and the clusters, considered as a random variable [2].
This holds even for the soft variant discussed in Section 5.

2.2 Asymptotic Connection to Learning Metrics

In this section we aim to clarify the motivation behind discriminative clustering,
by deriving a connection between it and the learning metrics principle of using
(1) as the distance measure. The connection is only theoretical in that it holds
only for the asymptotic limit of a large number of clusters, whereas in practice
the number of clusters will be small.

The asymptotic connection can be derived under some simplifying assump-
tions. It is assumed that almost all Voronoi regions become increasingly local
when their number increases. (In singular cases, the data samples are identified
with their equivalence classes having zero mutual distance.) There are always
some non-compact and therefore inevitably non-local Voronoi regions at the
borders of the data manifold, but it is assumed that the probability mass within
them can be made arbitrarily small by increasing the number of regions. Assume
further that the densities p(c|x) are differentiable. Then the class distributions
p(c|x) can be made arbitrarily close to linear within each region V; by increasing
the number of Voronoi regions.
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Let Ey,;ddenote the expectation over the Voronoi region V; with respect to
the probability density p(x). At the optimum of the cost FEgy, we have P, =
Ev, [p(c[x)], i.e. the parameters v, are equal to the means of the conditional
distribution within the Voronoi regions (see [2]; this holds even for the soft
clusters).

Since p(c|x) is linear within each Voronoi region, there exists a linear oper-
ator L; for each Vj, for which p(c|x) = L;x. The distributional prototypes then
become

Y; = By, [p(c[x)] = Ev,[L;x| = L; By, [x] = Lym; = p(c|m;) ,

and the cost function becomes

B =Y /V Drcaplelx), plehinge)) p(x) dx

That is, given a locally linear p(c|x), there exists a point m; = Ey, [x] for each
Voronoi region such that the Kullback-Leibler divergence appearing in the cost
function can be measured with respect to the distribution p(c|m;)) instead of
the average over the whole Voronoi region.

Since the Kullback-Leibler divergence is locally equal to a quadratic form of
the Fisher information matrix, we may expand the divergence around m; to get

B =D /v (3¢ = 1050 ) T T (W5 ) (x — W) ) () dlx (5)

where J(1m;()) is the Fisher information matrix evaluated at m ;).

Note that the Voronoi regions V; are still defined by the parameters m; and
in the original, usually Euclidean metric.

In summary, discriminative clustering or maximization of mutual information
asymptotically finds a partitioning from the family of local Euclidean Voronoi
partitionings, for which the within-cluster distortion in the Fisher metric is min-
imized. In other words, discriminative clustering asymptotically performs vector
quantization in the Fisher metric by Euclidean Voronoi regions: Euclidean met-
rics define the family of Voronoi partitionings {V;}; over which the optimization
is done, and the Fisher metric is used to measure distortion inside the regions.

3 Estimation from Finite Data

3.1 Maximum Likelihood
Note that for finite data minimizing the cost function (4) is equivalent to maxi-
mizing
L=3" 2 108 Vit (©)
J xeV;

where ¢(x) is the index of the class of the sample x. This is the log likelihood
of a piece-wise constant conditional density estimator. The estimator predicts
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the distribution of C' to be %, within the Voronoi region j. The likelihood is
maximized with respect to both the 4, and the partitioning, under the defined
constraints.

3.2 Maximum a Posteriori

The natural extension of maximum likelihood estimation is to introduce a prior
and to find the maximum a posterior (MAP) estimate. The Bayesian framework
is particularly natural for discriminative clustering since we are actually inter-
ested only on the resulting clusters, not the distribution of the auxiliary data
within them. The class distributions can therefore be conveniently integrated
out from the posterior (although seemingly paradoxical, the auxiliary data of
course guides the clustering).

Denote the observed auxiliary data set by D(¢), and the primary data set
by D®). We then wish to find the set of clusters {m} which maximizes the
posterior

p({m}|D'9, D®) = /w}p({mh {9} D), D)d{w}

or equivalently log p({m}|D(®), D(*)). Here the integration is over all P}
Denote the number of classes by ., the number of clusters by k, and the
total number of samples by N. Denote the part of the data assigned to cluster j

by D§C), and the number of data samples of class ¢ in cluster j by nj;. Further
denote Nj =", njj.

Assume the improper and separable prior p({m}, {¢}) < p({1p})= Hj p(v;).
Then,

p({m}| D@, D)) /{ PP ) (), D)

- H/w p(D§C)|{m}’¢j7D(I))p(%)dd’j
J J

“I1 )/, Tvistwas,=T10;-
J i i ;

We will use a conjugate (Dirichlet) prior, p(¢;) oc []; w?igfl, where n¥ = {n%};
are the prior parameters common to all j, and N° = > nY. Then the “partition-
specific” density p(D§C)|{m},¢j)p(¢j) is Dirichlet with respect to 1) and the
factors @; of the total posterior become

_ © @) ndtngi-1 oo T (0 +nyi)
Q= [, 90 m)o, D pto) o [ L0 vy =S

J

The log of the posterior probability then is
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log p({m}[D'?, D)) = "logT(n) + nji) = Y logT(N® + N;) . (7)
ij J

In MAP estimation this function needs to be maximized.

3.3 Asymptotic Connection to Maximization of Mutual Information

It is shown that for a fixed number of clusters, the cost function (7) of the new
method approaches mutual information as the number of data samples increases.

Denote sj; = n? + nji—1,5 =% .8 = NO + Nj — N¢, and S = Zj S;.
Then,

logp({m}| D9, D) =3 "logI'(sj; +1) — »_logT[(S; + Ne—1)+1] . (8)
j J
It is straightforward to show using the Stirling approximation and Taylor ap-
proximations (Appendix A), that

S S;/S S

1 D D& /S Nck(log S + 1
oz p({ml] ’ ) :ZSji/SIOgSJ/ +O<—(Og h )> . (9
ij
where s;;/5 approaches pj;;, the probability of class 4 in cluster j, and S;/S
approaches p; as the number of data samples increases. Hence, (9) approaches
the mutual information, added by a constant.

4 Discriminative Clustering Optimizes Contingency
Tables

Contingency tables (see [4]) are classical methods for measuring statistical de-
pendency between discrete-valued (categorical) random variables. The categories
are fixed before the analysis, and for two variables the co-occurrences of the cat-
egories in a sample are tabulated into a two-dimensional table. A classic example
due to Fisher is to measure whether the order of adding milk and tea affects the
taste. The first variable indicates the order of adding the ingredients, and the
second whether the taste is better or worse. In medicine the other variable could
indicate health status and the other one demographic groups.

The resulting contingency table is tested for dependency between the row and
column variables. The literature for various kinds of tests and uses of contingency
tables is extensive, see for example [4, 5, 6, 7]. The effect of small sample sizes
and/or small cell frequencies has been the subject of much controversy. Bayesian
methods are principled means for coping with small data sets; below we will
derive a connection between the Bayesian approach presented in [7], and our
discriminative clustering method.

Given discrete-valued auxiliary data, the result of any clustering method
can be analyzed as a contingency table. The possible values of the auxiliary
variable correspond to columns and the clusters to rows. Clustering compresses
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a potentially large number of multivariate continuous-valued observations into
a manageable number of categories, and the contingency table can, at least in
principle, be tested for dependency. Note that the difference from the traditional
use of contingency tables is that the row categories are not fixed but clustering
tries to find a suitable categorization. The question here is, is discriminative
clustering a good way of constructing such contingency tables? The answer is
that it is optimal in the sense introduced below.

Good [7] derived a “Bayesian test” for dependency in contingency tables by
computing the Bayes factor against H,

P({ni;}|H)

P({ni}H)’
where H is the hypothesis of statistical independence of the row and column
categories. The probabilities are derived assuming mixtures of Dirichlet distri-
butions as priors.

In the special case of one fixed margin (the auxiliary data) in the contingency
table, and the prior defined in Section 3.2', the Bayes factor is

P({ni}{n(c)}. H)
P({n;}{n(e:)}, H)
CIL; T +07%  D(N°)%  D(kn®)NeI(N 4 kN°)
T TN + N0 T(0)NeF T, I (n(es) + kn®) T (kNO)
= p({m}|D, D®)) x const., (11)

(10)

where the constant does not depend on Nj or n;;. Here n(c;) denotes the num-
ber of samples in the (auxiliary) class ¢;. MAP estimation for discriminative
clustering is thus equivalent to constructing a dependency table that results in
a maximal Bayes factor, under the constraints of the model.

5 Algorithms

Optimization of both variants of discriminative clustering, the finite data version
(7) and the infinite-data version (4), is hard since the gradient is zero except
on the Voronoi borders. Hence gradient-based optimization algorithms are not
applicable. We have earlier [2] proposed a “smoothed” infinite-data variant which
can be optimized by an on-line algorithm, reviewed below. A similar smoothed
variant will be introduced for MAP estimation as well.

5.1 Algorithm for Large Data Sets

Smooth parameterized membership functions y;(x; {m})) were introduced to the
cost function (4). Their values vary between 0 and 1, and }; y;(x) = 1. The

1 In contrast to [7], we used priors with equal total amount of “prior data” for both
hypotheses.
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smoothed cost function is
B, = 3 [ i {m) D p(elx). ) pl) . (12)
J

The membership functions can be for instance normalized Gaussians,
yi(x) = Z71(x)e I mil*/o” where Z normalizes the sum to unity for each
X.

The cost function can be minimized by the following stochastic approxima-
tion algorithm. Denote the i.i.d. data pair at the on-line step ¢t by (x(¢),c(t))
and index the (discrete) value of ¢(t) by 4, that is, ¢(t) = ¢;. Draw two clus-
ters, j and [, independently with probabilities given by the membership functions
{yr(x(t))}r. Reparameterize the distributional prototypes by the “soft-max”,
log ¢j; = ;i —log )", exp(vjm), to keep them summed up to unity. Adapt the
prototypes by

P (t)
¥;i(t)
Yjm (t +1) = Yjm(t) — at) [Yjm(t) = Omil , (14)

where ¢,,; is the Kronecker delta. Due to the symmetry between j and [, it is
possible (and apparently beneficial) to adapt the parameters twice for each t
by swapping j and [ in (13) and (14) for the second adaptation. Note that no
updating takes place if j = [, i.e. then m;(¢ + 1) = m;(¢). During learning the
parameter a(t) decreases gradually toward zero according to a schedule that
fulfills the conditions of the stochastic approximation theory.

m;(t +1) = my(t) — a(t) [x(t) — my(t)] log (13)

5.2 MAP Algorithm for Finite Data Sets

In an analogous fashion to the infinite-data variant we postulate smooth mem-
bership functions y;(x; {m}) that govern the assignment of the data x to the
clusters. Then the smoothed “number” of samples of class ¢ within cluster j
becomes n;; = ) —; ¥j(x), and the MAP cost function (7) becomes

logp({m}|D'?, D@)=> "logT'| n+ Y y;(x) |- logT <N§)+Z yj(X)) :
i e(x)=i j x
(15)
For normalized Gaussian membership functions the gradient of the cost function
with respect to the jth model vector is (Appendix B)

0% ——logp({m}|D'), D)) =3 "(x — m;)ys (x)y; (%) (Le(x).j — Le(so 1) 5 (16)

om;
J x,1

where
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Here ¥ iz the digamma function, derivalive of the logarithm of T'.

The MAP estimate can then be solved with general-purpose nonlinear opti-
mization methods. We have used the conjugate gradient algorithm.

Note that ¥ approaches the logarithm when its argument grows, and hence
for large data sets the gradient approaches the average of (13) over the data and
the Ith membership function, with 2 = ng;/N;.

6 Empirical Results

The algorithm is first demonstrated with a toy example in Figure 1. The data
(10,000 samples) comes from a two-dimensional spherically symmetric Gaussian
distribution. The two-class auxiliary data changes only in the vertical dimension,
indicating that enly the vertical dimension is relevant. The algorithm learns to
model only the relevant dimension.

As [ar as we know Lhere do nol exist alternative methods for precisely the
same task, partitioning the primary data space to clusters that are homogeneous
in terms of the auxiliary data. We have earlier compared the older mutual infor-
malion maximizing varianl (section 5.1) with two clustering methods: the plain
mixture of Gaussians and MDA2 |2, 9], a mixture model for the joint distri-
bution of primary and auxiliary data. For gene expression data our algorithm
outperformed the alternatives [2]. Here we will add the new variant (section 5.2)
to the comparison.

A random half of the Landsat satellite data set from the UCI Machine Learn-
ing Repository (36 dimensions, six classes, and 6435 samples) was partitioned
into 2—10 clusters, using the six-fold class indicator as the auxiliary data.

For each number of clusters, solutions were computed for 30 values of the
smoothing parameter o, ranging from two to 100 on the logarithmic scale. All the
prior paramelers n? were sel Lo unity. The models were evalualed by compuling
the log-posterior probability (7) of the left-out data.

Fig. 1. A demonstration of the MATP algorithm. The probability density function
of the data is shown in shades of gray and the cluster centers with circles. The

conditional dengily ol one of the lwo auxiliary classes is shown in Lhe ingel. (Here
a = 04)



Discriminative Clustering 427

5 clusters 6 clusters 7 clusters

-2000 -2000 -2000

-3000 -3000 -3000;* v

0001+ -4000 -4000

-5000 -5000 - - -5000 —

L L L
2, 5. 10.0 20. 50. 2, 5. 10.0 20. 50. 2, 5. 10.0 20. 50.

9 clusters 10 clusters

-2000 -2000 -2000

3000 - -3000 -3000

-4000 3 -4000 " -4000

-5000 -5000 -5000 —

L I L
2, 5. 10.0 20. 50. 2, 5. 10.0 20. 50. 2, 5. 10.0 20. 50.

Fig. 2. The performance of the conjugate-gradient MAP algorithm (solid line)
compared to the older discriminative clustering algorithm (dashed line), plain
mixture of Gaussians (dotted line) and MDA2, a mixture model for the joint
distribution of primary and auxiliary data (dash-dotted line). Sets of clusters
were computed with each method with several values of the smoothing parameter
o, and the posterior log-probability (7) of the validation data is shown for a
hard assignment of each sample to exactly one cluster. Results measured with
empirical mutual information (not shown) are qualitatively similar. The smallest
visible value corresponds to assigning all samples to the same cluster

The log-posterior probabilities of the validation set are presented in Figure 2.
For all numbers of clusters the new algorithm performed better, having a larger
edge at smaller numbers of clusters. Surprisingly, in constrast to earlier experi-
ments with other data sets, for this data set the alternative clustering methods
seem to outperform the older variant of discriminative clustering.

For 4-7 clusters, the models were compared by ten-fold cross-validation. The
best value for o was chosen with validation data, in preliminary tests. The new
model was significantly better for all cluster numbers (paired t test, p< 0.001).

7 Conclusions

In summary, we have applied the learning metrics principle to clustering, and
coined the approach discriminative clustering. It was shown that discriminative
clustering is asymptotically, in the limit of a large number of clusters, equivalent
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to clustering in Fisher metrics, with the additional constraint that the clusters
are (Euclidean) Voronoi regions in the primary data space. In the earlier work [1]
Fisher metrics were derived from explicit conditional density estimators for clus-
tering with Self-Organizing Maps; discriminative clustering has the advantage
that the (arbitrary) density estimator is not required.

We have derived a finite-data discriminative clustering method that max-
imizes the posterior probability of the cluster centroids. There exist related
methods for infinite data, proposed by us and others, derived by maximizing
the mutual information [2, 10, 11]. For discrete primary data there exist also
finite-data generative models [12, 13]; the main difference in our methods is the
ability to derive a metric to continuous primary data spaces.

Finally, we have shown that the cost function is equivalent to the Bayes factor
of a contingency table with the marginal distribution of the auxiliary data fixed.
The Bayes factor is the odds of the data likelihood given the hypothesis that the
rows and columns are independent, vs. the alternative hypothesis of dependency.
Hence, discriminative clustering can be interpreted to find a set of clusters that
maximize the statistical dependency with the auxiliary data.
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A Connection of MAP Estimation to Maximization of
Mutual Information

The Stirling approximation logI'(s + 1) = slogs — s + O(log s) applied to (8)
yields

log p({m}| D), D)) Zsﬂlogsﬂ ZS log(S; + N. — 1)

ij
— (Ne = 1) " log( Sj + N.— 1)+ O(Nk(log S + 1)) .
J
The zeroth-order Taylor expansion log(S + n) = logS + O (%) gives after
rearrangements, for S; > 1,

log p({m}| D, D ZSJ’ log sj; — ZS log Sj + O(Nck(log S + 1)) .

ij J
Division by S then gives (9).
B Gradient of the MAP Cost Function

Denote for brevity t;; = nj; +n{ and T; = >, t;;. The gradient of (15) with
respect to m; is

6r8n.10gp({m}|D(c),D("” Z Z —Z/l () Z U(1y)
J =1

il ce(x)

Z (W () = U(T)] -

It is straightforward to show that for normalized Gaussian membership functions

S ) = 5= m) (3 = ) ).
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Substituting this to the gradient gives

o log p({m}[D'), D)) =3 " (x—1m;) (81 —11(3)); (O (t1,e(0 ) — L (T1)] -

m.
0 J x,l

(17)
The final form (16) for the gradient results from applying the identity
> 0y =)yl =Y ywi(L; — L),
1

l

to (17).
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