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Abstract. Polycategorical classification deals with the task of solving
multiple interdependent classification problems. The key challenge is to
systematically exploit possible dependencies among the labels to improve
on the standard approach of solving each classification problem inde-
pendently. Our method operates in two stages: the first stage uses the
observed set of labels to learn a joint label model that can be used to
predict unobserved pattern labels purely based on inter-label dependen-
cies. The second stage uses the observed labels as well as inferred label
predictions as input to a generalized transductive support vector ma-
chine. The resulting mixed integer program is heuristically solved with a
continuation method. We report experimental results on a collaborative
filtering task that provide empirical support for our approach.

1 Introduction

The standard supervised classification setting of inferring a single discriminant
function based on a finite sample of labeled patterns has been investigated for
decades. More recently, the question of how to make use of additional unlabeled
examples has received a lot of attention. Such methods include the Fisher ker-
nel [12] and maximum entropy discrimination method [13], maximum likelihood
estimation via EM in text categorization [15], co-training [3], transductive infer-
ence [14], and kernel expansion methods [21]. The general hope in this line of
research is that unlabeled data provide useful information about the pattern dis-
tribution that can be exploited to improve the classification performance, either
by inducing an improved pattern representation or by enabling a more robust
estimation of the discriminant function. In most cases, certain assumptions have
to be made to guarantee that unlabeled data help to improve the performance.

In this paper, we investigate a more general setting, called polycategorical
classification. Assume that we have multiple (binary) concepts represented by
labeling processes Pj, 1 ≤ j ≤ k, i.e. each Pj denotes a joint probability distri-
bution over labeled patterns (x, y) ∈ �d × {−1, 1}. For each concept a sample
set Sj is available, where samples in Sj have been generated i.i.d. according
to Pj. The goal is to simultaneously learn all k binary classification tasks. Of
course, if these tasks were unrelated then one would apply a standard classifi-
cation method to each sample set Sj independently. However, we assume that
there are non-trivial dependencies between the labeling processes.
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Fig. 1. Illustration of the set relationships between patterns labeled by different 
labeling processes 

Notice how this setting can be viewed as a generalization of supervised learn- 
ing with unlabeled data. For each classification problem Pj we have the corre- 
sponding sample set SJ, but in addition we have patterns that occur in one or 
more of the other sample sets S1, 1 # j and are thus annotated by labels from 
other labeling processes. This induces a rich set structure between the two ex- 
trema of examples that are correctly labeled according to the specific concept to 
be learned and examples that have not been labeled by any process (cf. Fig. 1). 
Intuitively, a pattern labeled by some other process P1 will on average be more 
useful w.r.t. PJ than an unlabeled pattern, in particular if there is some de- 
pendency between the two labeling processes. For example, if one knew a priori 
that two concepts are identical, Pi = P1, then one could simply use the union 
Si U S1 for training of both concepts, which would drastically increase the num- 
ber of available training examples. The goal in polycategorical classification is 
to exploit such dependencies to effectively augment the available training data 
in order to learn more accurate classification functions. 

As a motivating example of why these types of problems are actually of rel- 
evance in practice, consider the scenario of information filtering in multi-user 
or multi-agent systems: Each user may define personalized categories for items 
such as text documents, movies or CDs. In particular, users may annotate items 
by whether an item is relevant (label +1) or irrelevant (label -1). These pref- 
erences or categories will be specific to a particular person, yet there might be 
similarities between user interests that induce dependencies among the category 
labels. For example, a document xi labeled with y; t {-1,l) by some user or 
agent uj might provide evidence about how another user or agent ul might label 
this example, in particular if both users have shown similar responses on items 
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in Sj ∩ Sl. There are thus two sources of evidence that are important in pre-
dicting yji given xi: the input space representation (which is ordinarily exploited
in classification) and dependencies between the labeling processes. The latter is
closely related to a technique known as collaborative filtering [7, 17, 20] which
makes predictions or recommendations purely based on inter-label dependencies.
The success of these techniques in (commercial) recommendation systems shows
that a substantial amount of cross-information is contained in user profiles. In
polycategorical classification, one aims at combining these two sources of evi-
dence, the item’s feature vector representation and the dependencies between
labels provided by different users. This problem has been discussed in the con-
text of recommender systems as the problem of combining content-based and
collaborative filtering, cf. for example [2, 16]. Yet, none of the methods proposed
so far has shown how to generalize state-of-the-art discriminative methods to
incorporate “collaborative” information.

The approach we propose can be decomposed into two almost independent
stages. The first stage, deals with the problem of learning a probabilistic model of
inter-label dependencies. In other words, the goal of the first stage is to estimate
the joint label probability P (yi = (y1

i , . . . , y
j
i , . . . , y

k
i )|y(xi)) for each pattern

xi that occurs in one of the sample sets. Here y(xi) denotes the set of known
labels for pattern xi. By marginalization we will then obtain prior probabilities
P (yji |y(xi)). Notice that these probabilities do not depend on the actual feature
representation xi, but just on its observed (partial) label vector y(xi). Since this
estimate does not depend on the observation xi we will also refer to the latter as
the prior label probability. In the second stage the sample sets Sj are augmented
by probabilistically labeled examples. The latter is then used as the input to a
generalized transductive Support Vector Machine (SVM) to produce the desired
classification functions. The challenge at this stage is how to combine the prior
label estimates with the actual feature representations.

The rest of the paper is organized as follows: Section 2 describes a statistical
model and a corresponding learning algorithm to compute predictions for unob-
served labels based on observed labels. Section 3 deals with the generalization of
the transductive SVM, while section 4 presents an experimental evaluation on a
real-world data set.

2 Modeling Inter-label Dependencies

In this section, we will completely ignore the pattern representation and solely
focus on modeling inter-label dependencies. If we denote by m the total number
of distinct patterns xi, m ≡ |⋃j S

j |, then all labels can be arranged in a m× k
matrix Y with entries yji ∈ {−1, ?, 1}, referring to the label the j-th labeling
process assigns to the i-th pattern. Here we suggestively use the special symbol
’?’ to denote missing entries. In most cases, this matrix will be sparse in the
sense that, N =

∑
j |Sj | � m · k, i.e. only a very small fraction of the entries

will actually be observed. The goal is to estimate a matrix Ŷ ∈ [−1; 1]m×k

with coefficients ŷji corresponding to the expected value of the label Y ji under
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the model, where Y ji denotes the random variable associated with the label of
the i–th pattern with respect to the j–th labeling process.

2.1 Log-Likelihood Function

As an objective function between the probabilistic estimates Ŷ and the observed
matrix Y it is natural to consider the log-likelihood,

l(Ŷ;Y) =
∑

i,j:yj
i
=1

log
1 + ŷji
2

+
∑

i,j:yj
i
=−1

log
1− ŷji
2

, (1)

which we want to maximize. Notice that P (Y ji = ±1) = (1 ± E[Y ji ])/2 and
ŷji = E[Y ji ] by definition, so this just measures the average log-probability of the
true label under the model leading to the approximation Ŷ .

2.2 Probabilistic Latent Semantic Analysis Model

There are many possibilities to define a joint label model. In this paper, we in-
vestigate the use of the probabilistic latent semantic analysis (pLSA) approach
presented in [8]. We have previously applied this model in the context of collabo-
rative filtering [10, 9], so it seems to be a good starting point for polycategorical
classification. The pLSA model can be written in the following form:

ŷji =
R∑
r=1

φriψ
j
r , with φri ∈ [−1; 1], ψjr ∈ [0; 1] and

R∑
r=1

ψjr = 1, (2)

here R denotes the rank of the approximation, which we assume to be given for
now. Notice that the total number of free parameters in the model is R · m +
(R − 1) · k, which can be far less than m · k, if R � min{m, k}. Intuitively, we
can think of (φri )r for each r as a prototype vector with probabilistic labels for
each pattern xi and of the coefficients (ψjr)j as defining a convex combination
of these vectors for the j-th classification problem. The pLSA model clearly
bears a resemblance with soft-clustering models; concepts are probabilistically
clustered into R groups, where each group corresponds to a super-concept that
is characterized by a vector of probabilistic labels over patterns.

2.3 Expectation Maximization Algorithm

In fitting the above model, we would like to maximize the likelihood in Eq. (1)
with respect to the parameters (φ, ψ). Explicitly inserting the model into the
log-likelihood function and ignoring additive constants results in

l(φ, ψ;Y) =
∑

i,j:yj
i
=1

log
∑
r

(1 + φri )ψ
j
r +

∑
i,j:yj

i
=−1

log
∑
r

(1− φri )ψjr (3)
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Since the logarithm of a sum of terms is hard to optimize, we follow the standard
Expectation-Maximization (EM) approach [5] of iteratively improving Eq. (3)
until a local maximum is reached. We denote by φ(t), ψ(t) the parameter esti-
mates at time step t of the EM procedure. The goal in step t+ 1 is to improve
on the estimate obtained in step t, which can be quantified in terms of the
differential log-likelihood

�lt+1 =
∑

i,j:yj
i
=1

log
∑

r(1 + φ
r
i (t+ 1))ψjr(t+ 1)∑

r(1 + φ
r
i (t))ψ

j
r(t)

+
∑

i,j:yj
i
=−1

log
∑
r(1− φri (t+ 1))ψjr(t+ 1)∑

r(1− φri (t))ψjr(t)
. (4)

Using a concavity argument (Jensen’s inequality) the differential log-likelihood
can be lower bounded as follows

�lt+1 ≥
∑

i,j:yj
i
=1

∑
r

hrij(t) log
(1 + φri (t+ 1))ψjr(t+ 1)

(1 + φri (t))ψ
j
r(t)

+
∑

i,j:yj
i
=−1

∑
r

hrij(t) log
(1− φri (t+ 1))ψjr(t+ 1)

(1− φri (t))ψjr(t)
, (5)

where

hrij(t) ≡




(1+φr
i (t))ψj

r(t)∑
s
(1+φs

i
(t))ψj

s(t)
, if yji = 1

(1−φr
i (t))ψj

r(t)∑
s
(1−φs

i
(t))ψj

s(t)
, if yji = −1.

(6)

After augmenting the lower bound in Eq. (5) by appropriate Lagrange multipliers
to enforce the constraints on ψ(t + 1) one can set the gradient with respect to
the new parameters estimates φ(t+ 1) and ψ(t+ 1) to zero. This yields explicit
solution of the following form,

φri (t+ 1) =

∑
j:yj

i
=1 h

r
ij(t)−

∑
j:yj

i
=−1 h

r
ij(t)∑

j:yj
i
=1 h

r
ij(t) +

∑
j:yj

i
=−1 h

r
ij(t)

(7)

ψjr(t+ 1) =

∑
i:yj

i
=±1 h

r
ij(t)∑

s

∑
i:yj

i
=±1 h

s
ij(t)

(8)

Eq. (6) corresponds to the E-step (expectation step), while Eqs. (7,8) form the
M-step (maximization step). As can be seen, the previous parameter values only
enter the M-step equations through the hrij variables. Hence one can maxi-
mize the log-likelihood by alternating E-steps and M-steps until convergence
is reached. The fact that the EM algorithm converges follows from the fact that
the log-likelihood is increased in every step, while being bounded from above.
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2.4 Comments

We have voted for the pLSA approach to model inter-label dependencies in this
paper. However, we would like to point out that due to the modularity of our
approach there are other options that could be employed and combined with
the generalization of transductive inference SVMs presented in the subsequent
section. For example, as an alternative to pLSA one could use graphical models
such as Bayesian networks, where the label vector yj for each labeling process
can be treated as an instance and the Bayesian network consists of n nodes, one
for every pattern xi. This approach to collaborative filtering has been pursued
in [11]. We plan to investigate this research direction in future work.

3 Transductive SVM with Probabilistic Labels

3.1 Support Vector Machines

The Support Vector Machine (SVM) [22] is a popular classification method
that is based on the principle of margin maximization. SVMs generalize the
linear discrimination method known as the maximum margin hyperplane. As-
sume we parameterize linear classifiers by a weight vector w and a bias term b,
f(x) = sign(〈w,x〉+ b). For linearly separable data S, there are in general many
hyperplanes that separate the training data perfectly. These hyperplanes form
the so-called version space. The maximum margin principle suggests to choose
w∗ and b∗ among the parameters in the version space so that they maximize the
minimal distance (the margin) between the hyperplane and any of the training
points.

SVMs generalize this idea in two ways. First of all in order to be able to deal
with non-separable data sets one introduces slack variables ξi, one for every data
point, and augments the objective function by an additional penalty term. The
penalty term is usually proportional to the sum of the slack variables (L1-norm),
other choices include a squared error. With L1-norm penalties one arrives at the
following standard quadratic program for soft-margin SVMs:

minimize
1
2
‖w‖2 + C

n∑
i=1

ξi (9)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n

Here n denotes the number of available training patterns. After introducing
Lagrange parameters αi for the inequality margin constraints one can explicitly
solve for w, b and ξi to obtain the dual formulation (Wolfe dual, cf. [22])

maximize θ(α) = −1
2

∑
i,j

αiαjyiyj〈xi,xj〉+
∑
i

αi (10)

subject to C ≥ αi ≥ 0, i = 1, . . . , n∑
i

yiαi = 0
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Since the Gram matrix with coefficients kij = 〈xi, xj〉 is symmetric and positive
semi-definite, the resulting problem is a convex quadratic minimization problem.

Furthermore, in SVM learning, one can take advantage of the fact that the
dual function only depends on the gram matrix and replace the inner products
between patterns in the input representation by an inner product computed via
kernel functions K and simply define a new Gram matrix by kij = K(xi,xj).
One then effectively gets a non-linear classification function in the original input
representation. Details on kernel methods can be found in [19].

3.2 Transductive SVMs

In transductive SVMs (TSVMs), one aims at incorporating additional unlabeled
data to get more reliable estimates for the optimal discriminant. The key ob-
servation is that a discriminant function which results in small margins for an
unlabeled data point will not achieve a good separation, no matter what the true
label of the unlabeled data point is. This idea is formalized in TSVMs by in-
troducing additional integer variables ȳi ∈ {−1, 1} to model the unknown labels
and to optimize a joint objective over the integer variables and the parameters
w, b or - equivalently - the dual parameters α. In the following, we use the primal
formulation, mainly because it is more comprehensible for the purpose of this
presentation. We assume for simplicity that the labeled patterns are numbered
from 1, . . . , n and the unlabeled examples are numbered from n+ 1, . . . ,m.

minimize
1
2
‖w‖2 + C

n∑
i=1

ξi + C̄
m∑

i=n+1

ξi, over w, ξ (11)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi, i = 1, . . . , n
ȳi(〈w,xi〉+ b) ≥ 1− ξi, i = n+ 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m
ȳi ∈ {−1, 1}, i = n+ 1, . . . ,m

Alternative formulations of the TSVM problem that avoid the use of integer
variables and result in non-convex optimization have been investigated in [4].

For large problems, there is (currently) no hope to find the exact solution to
the above mixed integer quadratic program. Instead, one has to resort to opti-
mization heuristics to compute an approximate solution. The heuristic proposed
in [14] optimizes the integer variables in an outer loop and then solves the stan-
dard SVM-QP in the inner loop. Since [14] proposes to keep the proportion of
positive and negative labels constant, labels ȳi and ȳj with ȳi 
= ȳj are swapped
between pairs of unlabeled examples xi, xj , if this reduces the overall objective
function. Finally, there is yet another outer loop which employs a continuation
method to reduce the sensitivity of the optimization heuristic with respect to
local minima. Starting from a small value for the penalty C̄, C̄ is iteratively
increased until it reaches a given final value C̄∗ ≤ C. Notice that for small val-
ues of C̄, the labeled data dominate the objective function, so that the TSVM
solution will be close to the SVM solution which can be computed exactly. As C̄
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is increased, the penalty for having unlabeled data points close to the decision
boundary increases and more attention will be paid to the configuration of the
unlabeled data points and the imputed labels ȳi.

3.3 SVM with Probabilistic Labels

In order to use the prior label estimates derived from inter-label dependencies,
we propose to generalize TSVMs in a way that they can handle “uncertain”
labels, where we think of labeled and unlabeled patterns as extreme cases of
uncertain labels. Hence let us assume label probabilities ŷji for i = 1, . . . , n are
given, where ŷji = yji for observed labels. We will drop the superscript j to refer to
a generic labeling process. Let us introduce binary integer variables ȳi ∈ {−1, 1}
as in TSVMs and define the following optimization problem (using the same
numbering convention as before)

minimize
1
2
‖w‖2 + C

n∑
i=1

ξi + C̄

[
m∑

i=n+1

ξi +DH(y, ŷ)

]
(12)

where H(y, ŷ) = −
m∑

i=n+1

[
1 + ȳi
2

log
1 + ŷi
2

+
1− ȳi
2

log
1− ŷi
2

]
(13)

subject to yi(〈w,xi〉+ b) ≥ 1− ξi, i = 1, . . . , n
ȳi(〈w,xi〉+ b) ≥ 1− ξi, i = n+ 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m
ȳi ∈ {−1, 1}, i = n+ 1, . . . ,m (14)

The function H measures the cross entropy between the (deterministically) im-
puted labels ȳi and the predictions derived from the inter-label model, ŷi. It
acts as a soft penalty that penalizes labels that deviate from the prior predic-
tions. The relative weight D ∈ �+ controls the influence of this penalty relative
to the margin penalty encoded in the slack variables ξi, thereby trading off the
inter-label information encoded in ŷi with the information encoded in the feature
representation xi. In practice, one can use a cross-validation scheme to deter-
mine the optimal value for D. Notice that in the special case of ŷi = 0, i.e. in
the case of a maximally entropic prior with a label uncertainty of one bit, our
formulation reduces to TSVM, since the corresponding log-ratio term in H will
reduce to a constant.

For a given hyperplane, the update step for the labels ȳi is simple. First notice
that the slack variable ξi will depend on ȳi, because the associated constraint
involves ȳi. Since ξi is non-negative and large values are penalized, the optimal
choice is given by

ξi = max{0, 1− ȳiγi} = 1−min{1, ȳiγi}, where γi ≡ 〈w,xi〉+ b . (15)

Notice that for data points that are strictly inside the margin tube, this value
will be positive for both, ȳi = 1 and ȳi = −1. It is now straightforward to
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Initialize C̄ to a small value ε
Initialize integer variables ȳi = sign(ŷi)
Repeat until C̄ = C̄∗

Repeat until convergence, i.e. no integer variable needs to be changed
Compute the optimal hyperplane w, b, given the integer variables {ȳi}
Re-compute the integer variables {ȳi} for given parameters w, b

end
C̄ = 2 ∗ C̄

end

Fig. 2. Generalized SVM algorithm for polycategorical classification

compute the optimal value for ȳi by comparing the cost induced by the two
possible choices,

h+
i = max{0, 1− γi} −D log(1 + ŷi)/2 (16)
h−i = max{0, 1 + γi} −D log(1− ŷi)/2 (17)

h−i − h+
i = min{1, γi} −min{1,−γi}+D log

1 + ŷi
1− ŷi (18)

=



(γi + 1) +D log 1+ŷi

1−ŷi
, for γi ≥ 1

(γi − 1) +D log 1+ŷi

1−ŷi
, for γi ≤ −1

2γ +D log 1+ŷi

1−ŷi
, otherwise

ȳ∗i = sign(h−i − h+
i ) (19)

Notice that if ŷiγi ≥ 0, both contributions are in agreement, i.e. the data point
is on the +1/-1 side of the hyperplane and the prior probability for a +1/-1 label
is higher. However, if ŷiγi < 0, these two contributions are in conflict, in which
case the weighting factor D determines how to compare the log ratio with the
margin difference and which one to favor, the prior belief or the location of the
feature vector relative to the current decision boundary. The complete algorithm
is described in pseudo-code in Fig. 2

4 Experiments and Results

4.1 Data Generation and Preprocessing

In order to experimentally verify the proposed method for polycategorical clas-
sification, we have used the well–known EachMovie [6] data set which contains
about 1600 movies and more than 60,000 user profiles with a total number of
approximately 2.8 million labels/votes. We have augmented this data set with
movie synopses based on descriptions provided at [1]. The movie pages have
been automatically crawled, parsed and indexed. Movies have then been repre-
sented as vectors xi in the standard term frequency representation used in the
vector space model [18] for information retrieval. We have been able to obtain
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Table 1. Classification accuracy results on the augmented EachMovie data set.
The first row denotes accuracies obtained by ignoring the feature representation,
the second row summarizes the results by using the SVM. The first columns refers
to the case of no model for inter-label dependencies, the second column to the
popularity model and the third column to the pLSA model

independent popularity pLSA model
classification baseline

no features 66.0% 73.0%

SVM 63.0% 68.6% 74.3%

descriptions for 1217 movies which constitutes the set of pattern used in the
experiments. For computational reasons, we have subsampled the database and
randomly selected a subset of 1000 user profiles among the profiles with at least
100 votes. The actual votes have been converted into binary labels by threshold-
ing the ratings: 4-5 stars have been mapped to a +1 and 0-3 stars to a -1 label.
For each user, the available labels have been randomly split into a training set
(90%) and a test set (10%).

4.2 Experiments

We have performed the following experimental comparison. For each of the 1000
users, we have trained a SVM just based on the feature representation. In all
the experiments we have restricted our attention to linear kernels. This provides
a benchmark that is purely based on the extracted content information. More-
over, we have trained a pLSA model to predict unobserved labels based on the
observed label matrix Y. We have chosen a model with R = 200, by coarse
optimization based on the predictive log-likelihood. This provides a benchmark
that is purely based on label dependencies. In addition, we have investigated the
use of a simple popularity baseline model which estimates the expected label by
uniformly averaging over the population of users. Finally, the pLSA predictions
as well as the popularity predictions have been used as prior predictions for the
polycategorical SVM algorithm.

Table 1 summarizes the results in terms of classification accuracy. First of
all, notice that the use of inter-label dependencies leads to a significant absolute
improvement of more than 11% in terms of classification accuracy compared to
the SVM learning. This clearly demonstrates that a lot can be gained by the
polycategorical treatment compared to the straightforward approach of indepen-
dently solving each classification problem. It also shows that in this particular
example, the content features are relatively weak for discrimination between
movies, at least given the available training sample size. It seems that individ-
ual words occurring in short movie summaries are rather weakly correlated with
most users’ preferences. Secondly, notice that using the features representation
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yields a small yet consistent improvement in the performance of both, the sim-
ple popularity model as well as the pLSA model for inter-label dependencies.
Despite the fact that the “collaborative” information between labels seems to be
more precise than the information encoded in the content descriptions, there is
still extra information that can be gained from the feature representation. One
also sees that the difference is larger in the case of the popularity baseline - 2.6%
vs. 1.1% gain in accuracy. One also has to consider that previous experiments [9]
have shown that pLSA is a highly competitive collaborative filtering technique,
so improving upon it is not trivial. We speculate that the improvement will be
larger in cases, where both the feature representation and the inter-label de-
pendencies yield predictions of comparable accuracy. Along these lines, we are
currently investigating ways to extract stronger features like genre information
for movies.

5 Conclusion

We have presented a novel approach to jointly solving large scale classifica-
tion problems with many interdependent concepts. The proposed method uses
state-of-the-art classification methods, namely SVMs, to learn from feature rep-
resentations. In order to incorporate inter-label dependencies the transductive
SVM framework has been extended to deal with weak label information. An
efficient optimization heuristic has been proposed to compute approximate so-
lutions of the resulting mixed integer program. On a real-world data set, the
proposed method outperforms both, methods that are purely based on a fea-
ture representation and methods that are only taking into account inter-label
dependencies.
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