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Abstract. Efficiently inducing precise causal models accurately reflect-
ing given data sets is the ultimate goal of causal discovery. The algorithm
proposed by Wallace et al. [10] has demonstrated its ability in discov-
ering Linear Causal Models from data. To explore the ways to improve
efficiency, this research examines three different encoding schemes and
four searching strategies. The experimental results reveal that (1) spec-
ifying parents encoding method is the best among three encoding meth-
ods we examined; (2) In the discovery of linear causal models, local Hill
climbing works very well compared to other more sophisticated methods,
like Markov Chain Monte Carto (MCMC), Genetic Algorithm (GA) and
Parallel MCMC searching.

1 Introduction

Graphical Model is a powerful knowledge representation and reasoning tool un-
der uncertainty [8]. However, the manually construction of Graphical Model is
usually time-consuming and subject to mistakes. Therefore, algorithms for auto-
matic construction, that occasionally use the information provided by an expert,
can be of great help [5]. As Graphical Model can often be plausibly understood
as describing causal relations, the automatic construction of Graphical Model is
usually referred as Causal Discovery.

In social sciences, there is a class of limited Graphical Model, usually referred
as Linear Causal Models, including Path Diagram [12], and Structural Equations
Model [1]. In Linear Causal Models, effect variables are strictly linear functions
of exogenous variables. Although this is a significant limitation, its adoption al-
lows for a comparatively easy environment in which to develop causal discovery
algorithms. In 1996, Wallace et al. successfully introduced an information the-
oretic approach to the discovery of Linear Causal Models. This algorithm uses
Wallace’s Minimum Message Length (MML) criterion [9] to evaluate and guide
the search of Linear Causal Model, and their experiments indicated that MML
criterion is capable of recovering Linear Causal Model which is quite accurate
reflection of the original model [10]. In 1997, Dai et al. further studied the reli-
ability and robustness issues in causal discovery [2], they closely examined the
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relationships among the complexity of the causal model to be discovered, the
strength of the causal links, the sample size of given data set and the discovery
ability of individual causal discovery algorithms.

Two main issues involved in the process of Causal Discovery using MML are
Encoding and Searching. In order to improve the efficiency of discovery algo-
rithm, an optimal encoding scheme and an efficient search strategy are highly
demanded. In this paper, we examine three different encoding schemes for de-
scribing the structure of Linear Causal Models, and compare four different search
strategies to explore the possibilities to improve discovery efficiency while pre-
serving discovery accuracy.

The paper is organized into 5 sections. Section 2 describes two structure
encoding schemes proposed in [10], and gives a new encoding scheme. Section 3
describes four different search strategies. In Sec. 4 three encoding schemes and
four search strategies are compared. Finally, we conclude this paper in Sec. 5.

2 Causal Structure Encoding Schemes

As reported in [10], the basic idea of causal discovery via MML is that an encod-
ing scheme based on the minimum message length principle needs to be provided
to describe

1. the causal structure, which is a Directed Acyclic Graph (DAG) for Linear
Causal Model

2. the strength (model parameters) of the causality in the Linear Causal Model
3. the data assuming the Linear Causal Model is true

For each candidate model from the model space, we calculate the total message
length based on the given data, and the one with the shortest total message
length will be chosen as the best model. According to information theory, the
total message length L(M, D) is given by,

L(M, D) = −logP (M) − logP (D|M)
= L(M) + L(D|M) (1)

where L(M) is the cost of encoding the causal model M , and L(D|M) is the
cost of encoding the given data D assuming the model M is true. As a model
is represented with a DAG and the path coefficients, so L(M) is composed of
two main parts: the cost of encoding the causal structure, L(s), and the cost of
encoding the model parameters, L(p), i.e.,

L(M) = L(s) + L(p) (2)

In general, the encoding scheme for describing model parameters and the given
data is relatively stable and mature. Here we mainly examine the encoding
schemes for describing the casual structure, a Directed Acyclic Graph (DAG).
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2.1 Scheme 1: Specifying a Total Ordering and Arc Connections

A Directed Acyclic Graph (DAG) with K nodes can be encoded by specifying a
total ordering (requiring log K! bits) and specifying which pairs of nodes are con-
nected 1; this requires K(K−1)

2 bits on the assumption that the probability that
a link is present is 1/2. It corresponds to maximal ignorance about the degree of
connectedness of the graph. We avoid the use of explicit prior information about
the causal models we are looking for. It is enough to specify the presence or
absence of arcs, since directionality is implied by the ordering already provided.
Since more than one ordering is consistent with the DAG, actually specifying a
particular ordering is inefficient, so we reduce the message length by the number
of bits needed to select among the φ total orderings consistent with the DAG.
Hence,

L
(s)
1 = log K! +

K(K − 1)
2

− log φ. (3)

2.2 Scheme 2: Specifying Total Acyclic Orientations

The second method for calculating the cost of describing a DAG begins by
specifying the undirected graph, which costs K(K−1)

2 bits, and then specifies the
particular direction which each arc is to assume. This results in an acyclic graph.
That is, we count the number of possible acyclic orientations; the logarithm of
that number is the number of additional bits required. In order to do this count,
we can subtract the number of cyclic orientations ρ from the number of total
orientations, which is 2ν , where ν is the number of undirected arcs. Hence,

L
(s)
2 =

K(K − 1)
2

+ log(2ν − ρ). (4)

Previous experimental results show that these two methods result in MML costs
that are very close for a wide variety of simple graph structures[10] we tested,
so we can expect that the choice of encoding method will make little difference
to experimental results. In practice, until the introduction of L

(s)
3 , our imple-

mentation of L
(s)
1 is faster. To further improve the efficiency of the discovery

algorithm, we introduced the following new encoding scheme.

2.3 Scheme 3: Specifying Parents Set

The structure of a Directed Acyclic Graph can be described by specifying its par-
ents set Parents(x) for each node of the DAG. This description consists of the
number of parents, followed by the index of the set Parent(x) in some enumer-
ation of all sets of its cardinality. So the cost for encoding the causal structure
can be calculated using:

L
(s)
3 =

∑
i

(
log K + log

(
K
ri

))
(5)

1 Schemes 1 and 2 were introduced by Wallace, Korb and Dai in 1996 [10].
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Where ri = |Parents(Xi)|. To avoid intensive computational time cost in calcu-
lating log

(
K
ri

)
, we use Stirling’s approximation formula x! = xxe−x

√
2πx, so we

get,

log
(
K
ri

) ≈ (K − ri) log
(

K

K − ri

)
+ ri log

(
K

ri

)
(6)

Thus, we have,

L
(s)
3 =

∑
i

(
log K + (K − ri) log

(
K

K − ri

)
+ ri log

(
K

ri

))
(7)

This encoding scheme works much faster than using the formula L
(s)
1 and L

(s)
2 .

This can be seen from the experimental results reported in section 4.

3 Model Space Search Strategies

For a given data set, the number of possible causal structures is exponential in
the number of variables. To find out the best structure from this huge space, a
efficient search strategy is highly demanded [5] 2. Hill-climbing search was used
in our previous work [3, 10] 3.

In the past decade, there is an increasing amount of work on the application
of Markov Chain Monte Carlo and Evolutionary Algorithm to complex learn-
ing, search and optimization problems. In 1993, Madigan proposed the MC3

algorithm4 which uses Metropolis sampling to search over structures for graph-
ical models [7]. In 1996, Larrañaga et al. tackle the problem of searching for a
Bayesian Network structure that maximizes the BDE metric with hybrid genetic
algorithm, given a total order of all variables [6]. This algorithm was later ex-
tended to the general case that no ordering between the variables is assumed,
and they make use of a repair operator to convert offspring structures that are
cyclic into acyclic. In 1999, Wong et al. used MDL metric and evolutionary pro-
gramming for the optimization in the search process [11]. In 1998, Holmes used
genetic operators to inform the proposal distribution for a Metropolis sampling
algorithm [4], proposed the Parallel Markov Chain Monte Carlo algorithm and
found that their sampler converged quicker than standard Metropolis sampling.

In this section, we describe four different search strategies for discovering
causal models: Hill-climbing, Genetic Algorithm, Markov Chain Monte Carlo
(MCMC) and parallel MCMC. Their performance will be compared in Sec. 4.

3.1 Hill-Climbing (HC)

This search method could start with a seed DAG provided by user, or a null
graph without any edge, then attempt to add an edge if there is none or to
2 The search is guided by message length, and we have an assumption that the model
with minimum message length is the best model.

3 Random Restarting can be integrated to overcome the problem of local optima.
4 MC3 means Markov Chain Monte Carlo Model Composition.



52 Honghua Dai et al.

delete or to reverse it if there already is one. Such adding, deleting or reversing
is done only if such changes result in a decrease of the total message length of
the new structure. If the new structure is better, it is kept and then try another
change. This process continues until no better structure is found within a given
number of Hill-climbing steps, or the search from the whole structure space is
completed.

3.2 Markov Chain Monte Carlo (MCMC)

Given a data set D, the posterior probability p(M |D) of each model M can be
directly calculated from Bayes theorem,

p(M |D) =
p(D|M)p(M)

p(D)
(8)

Where p(M) is the prior probability for the model M , p(D|M) is the likelihood
of the model for the data set D, and p(D) can be thought as a normalizing
constant.

If we are interested in finding the model that maximizes the posterior proba-
bility, causal discovery can be formulated as an optimization problem that finds
the maximum a posterior probability:

M∗ = arg max
M

p(M |D) (9)

The MCMC method for solving this problem is to generate samples M from
the distribution p(M |D) and select the best. If we can generate independent
samples from the target distribution, the law of Large Number ensures that the
approximation can be made as accurate as desired by increasing the sample
size. MCMC method draws samples independently from the target distribution
through a Markov chain having p(M |D) as its stationary distribution.

To perform this sampling, we use a version of the Metropolis algorithm: The
current model structure is represented by a Connectivity Matrix, in which a
cell C[i][j] having a non-zero value indicates there exists an edge i → j in the
model structure. Sampling from the posterior over model structures proceeds
by a Markov process which steps from one DAG to another in such a way that
the chance of visits to a DAG is proportional to its posterior probability. The
proposal distribution is determined by the following four variation operators:

– Select two distinct variables i and j uniformly from the domain. If there
exists an edge between them, attempt to remove it. Otherwise, attempt to
add an edge in either direction.

– Select three distinct variables i, j and k uniformly from the domain, if there
exists an edge i → j, then remove it and add another edge i → k.

– Select three distinct variables i, j and k uniformly from the domain, if there
exists an edge i → j, then remove it and add another edge k → j.

– Check the resulting structure, if it contains a cycle, then randomly select
and remove an edge from the cycle, so that the resulting structure is a DAG.
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If we assume symmetricity in the proposal distribution 5, then the candidate
model M ′ will replace current model M with the following probability:

α = min{1,
p(M ′|D)
p(M |D)

} (10)

This acceptance rule says that the candidate model is always accepted when
its posterior probability is higher than that of current model. Otherwise, it is
accepted according to the ratio of two probabilities.

From the formula 8, it can be seen that the posterior probability can be cal-
culated as the ratio of joint probabilities. On the other hand, the theory of MML
inference shows that the total message length L(M, D) closely approximates the
negative logarithm of the joint probability of model M and data set D, like this

L(M, D) = − log p(M) − log p(D|M)
= − log p(D, M) (11)

So we have

p(M ′|D)
p(M |D)

=
p(D, M ′)
p(D, M)

= 2L(M,D)−L(M ′,D) (12)

Finally, the acceptance probability can be written as

α = min{1, 2L(M,D)−L(M ′,D)} (13)

The sampling proceeds until the chain is thought to be converged.

3.3 Genetic Algorithm (GA)

The third method we considered is a Genetic Algorithm. Chromosome represen-
tation for the model structure is an K × K connectivity matrix, in which a cell
C[i][j] having a non-zero value indicates there exists an edge i → j in the model
structure.

The fitness of a chromosome is defined according to the MML cost of the
corresponding model structure: The less MML cost, the higher its fitness.

With matrix representation in mind, one crossover operator, three mutate
operators, and one repair operator are defined as follows:

Crossover Binary tournament selection is used to select pairs of structures
for crossover. One structure with higher fitness from two randomly selected
structures, and another one with higher fitness from another two randomly
selected structures are selected to crossover. The crossover operator uni-
formly exchanges parent sets for each variable.

5 The algorithm is also referred as Metropolis-Hastings algorithm
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Simple Mutate Randomly select two distinct variables i and j from the do-
main. If there exists an edge between them, then attempt to remove it.
Otherwise, attempt to add an edge in either direction.

Parent Shift Mutate Randomly select an edge, randomly set the end of the
edge to another variable.

Child Shift Mutate Randomly select an edge, randomly set the start of the
edge to another variable.

Repair Illegal structures may be generated from above operators. Repair oper-
ator try to locate and break cycles in the structure, until a directed acyclic
graph is got.

During the process of evolution, Roulette wheel selection strategy is adopted
to ensure that better structures have a higher probability to be selected. Evolu-
tion proceeds until a given termination criterion is satisfied (In the experiments
of this paper the evolution process stops when the number of MML calculations
reaches a pre-set limit).

3.4 Parallel MCMC (PMCMC)

In 1998, Holmes and Mallick suggested to exchange information between different
samplers as a way to improve mixing in MCMC samplers [4]. They demonstrated
this method on a parameter training problem for a neural network, and a knot
selection problem. They found that their algorithm can propose large changes
without sacrificing acceptance probabilities.

The parallel MCMC method uses a population of samplers to estimate fea-
tures of the target distribution p(M |D) in an attempt to select a proposal distri-
bution as close as possible to the target distribution. In this algorithm, candidate
structures are not only generated by those operators as defined in 3.2, but also
generated by a crossover operator as defined in 3.3. However, instead of using
the candidate directly as in a standard Genetic Algorithm, PMCMC uses the
formula 13 to either accept the candidate or remain unchanged.

4 Empirical Results and Analysis

In this section, we compare three encoding schemes and evaluate four differ-
ent search strategies. Eight Linear Causal Models are used in our experiments:
Fiji, Evans, Blau, Rodgers&Maranto, case9, case10, case12 and case15, which
have 4, 5, 6, 7, 9, 10, 12 and 15 variables respectively.

4.1 Comparison on Encoding Schemes

In order to compare the computational cost of these encoding schemes, we incor-
porate them with a Hill-Climbing search strategy. The CPU time cost of search
process using different encoding schemes are compared in Table 1. From this
table, we can see that scheme 1 is faster than scheme 2, this coincides with pre-
vious experimental reported in [10], and the encoding scheme 3 is the fastest
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Table 1. Comparison of Time Cost of Discovery using different Encoding
Schemes

Data Set Scheme 1 Scheme 2 Scheme 3

Fiji 0.84 seconds 0.92 seconds 0.96 seconds
Evans 2.29 seconds 3.01 seconds 2.25 seconds
Blau 5.18 seconds 6.35 seconds 3.42 seconds
Case9 19.23 seconds 23.19 seconds 16.32 seconds
Case10 59.97 seconds 71.19 seconds 20.10 seconds
Case12 126.20 seconds 181.61 seconds 36.20 seconds
Case15 265.50 seconds

one among three different encoding schemes. As the problem of computational
cost, the search process using encoding scheme 1 or 2 can not give a result for
data set (case15 ) which has more than 12 variables within reasonable time, how-
ever, the search process using encoding scheme 3 is capable of discovering more
complicated models with larger number of variables.

Although the encoding costs using different schemes are different, the final
discovery results are very close for data sets we tested. As an example, we give
results on data set Case10 and Case12 by Hill-climbing based on different encod-
ing schemes in Fig. 1 and 2. From which, we can see that all these search process
returns the same results. This indicates that encoding scheme 3 can improve the
efficiency of the discovery process while preserving the discovery accuracy.

4.2 Test Results on Search Strategies

To evaluate the performance of different search strategies, a common represen-
tation of the causal structure is used with four different search strategies. All
the message lengths of causal structures here are calculated using scheme 3 as
described in Sec. 2.
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Fig. 1. Comparison of Discovery Result on Case10 using different Schemes
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Table 2. Minimum Message Length Comparison

Fiji Evans Blau Rodgers Case9 Case10 Case12 Case15

Original 5495.3 5470.3 7348.2 9346.2 3302.4 4462.8 17355.7
HC 5489.0 5466.7 7352.3 9352.6 10208.1 3302.4 4462.8 17371.0
MCMC 5488.6 5462.3 7348.2 9344.3 10208.2 3305.0 4470.2 17355.7
GA 5489.0 5466.7 7348.1 9345.2 10217.1 3302.4 4468.4 17482.4
PMCMC 5489.6 5466.7 7351.5 9344.3 10217.1 3302.4 4462.8 17355.7

Considering the fact that the most computationally intensive part in search
process is the calculation of MML cost, we use the times of calculating the MML
cost as the basis of the termination rule for all the algorithms. For those models
with less than 8 nodes, the search proceeds until the times of calculating MML
reaches 2000, for those network with 9 or more variables, the search proceeds
until the calling times reaches 5000.

For the genetic algorithm and the parallel MCMC algorithm, we run a set
of exploratory experiments to find a proper set of parameters for them. In the
following experiments, population size is set to 12, crossover probability is set
to 0.5, and mutation probability is 0.3.

Table 2 illustrates the message length of eight original models and the MML
length of the corresponding models discovered by the HC, MCMC, GA and
PMCMC search strategies.

It should be noted that MML-based procedure is derived from asymptotic
approximations, thus for models with few variables (like Fiji and Evans), min-
imizing MML doesn’t coincide with the original model. For models with 9 or
more variables, MML-based procedure works well.

From Table 2, we can see that Hill-climbing search can discover 3 original
models from 8, MCMC and PMCMC search strategies can discover 4 original
models from 8, and GA can find 2 original models out of 8. Although in some
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Fig. 2. Comparison of Discovery Result on Case12 using different Schemes
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Fig. 4. Original Model and Search results on Blau model 

cases the algorithms do not find original models, all these algorithms can ap- 
proximate the original one accurately. 

Figure 3 illustrate the convergence speed of the four search strategies in 
discovering causal models from four different data sets. In these figures, X-axis 
is the number of MML calculation so far, and Y-axis is the best MML cost found. 
Although all different search strategies converge towards the original model, we 
can see that the Hill-climbing converge faster than the other three. 

In theory, the main drawback of Hill-climbing method is that its greedy search 
nature determines that this method can be very easily stuck in local optima. 
More theoretic-robust methods like MCMC, and GA were proposed as means to 
overcome this problem. However, from our experiments, we can see that within 
reasonable number of calculations, MCMC and GA seem to have no apparent 
advantages over Hill-climbing. As for Parallel MCMC, although Holmes' work 
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Fig. 5. Original Model and Search results on Case9 model

showed that it can converge faster than standard MCMC, this method can be
viewed as a Genetic Algorithm using a different selection strategy.

So in order to overcome problem of the curse of dimension, standard GA or
MCMC don’t seem to be a potential direction, at least for causal discovery from
complete data set.

5 Conclusions

To improve the efficiency of discovery algorithm, this paper examined three
different encoding schemes for describing the structure of a Linear Causal Model,
and compared four different search strategies. Our empirical results indicated
that the encoding scheme 3 is an improvement over our previous work in terms
of learning efficiency while preserving the discovery accuracy.

This paper also reported the comparison results of four search strategies for
the discovery of causal models from the model space. The experimental results
revealed that more sophisticated search strategies seem to have no apparent
advantages over Hill-climbing, which works very well for the task of Causal
Discovery from complete data sets. This result keeps consistent with what we
have found previously.
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