Sparse Online Greedy Support
Vector Regression

Yaakov Engel!, Shie Mannor?, and Ron Meir? *

L Center for Neural Computation, Hebrew University
Jerusalem 91904, Israel
yaki@alice.nc.huji.ac.il
2 Dept. of Electrical Engineering, Technion Institute of Technology
Haifa 32000, Israel
{shie@tx,rmeir@ee}.technion.ac.il

Abstract. We present a novel algorithm for sparse online greedy kernel-
based nonlinear regression. This algorithm improves current approaches
to kernel-based regression in two aspects. First, it operates online — at
each time step it observes a single new input sample, performs an update
and discards it. Second, the solution maintained is extremely sparse.
This is achieved by an explicit greedy sparsification process that admits
into the kernel representation a new input sample only if its feature
space image is linearly independent of the images of previously admitted
samples. We show that the algorithm implements a form of gradient
ascent and demonstrate its scaling and noise tolerance properties on
three benchmark regression problems.

1 Introduction

Kernel machines have become by now a standard tool in the arsenal of Machine
Learning practitioners. Starting from the seventies a considerable amount of
research was devoted to kernel machines and in recent years focused on Support
Vector Machines (SVMs) [13]. A basic idea behind kernel machines is that under
certain conditions the kernel function can be interpreted as an inner product in
a high dimensional Hilbert space (feature space). This idea, commonly known
as the “kernel trick”, has been used extensively in generating non-linear versions
of conventional linear supervised and unsupervised learning algorithms, most
notably in classification and regression; see [5,3,11] for recent reviews. SVMs have
the noteworthy advantage of frequently yielding sparse solutions. By sparseness
we mean that the final classifier or regressor can be written as a combination
of a relatively small number of input vectors, called the support vectors (SVs).
Besides the practical advantage of having the final classifier or regressor depend
on a small number of SVs, there are also generalization bounds that depend
on the sparseness of the resulting classifier or regressor (e.g., [5]). However, the

* The research of R. M. was supported by the fund for promotion of research at the
Technion and by the Ollendorff center.

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 84-96, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Sparse Online Greedy Support Vector Regression 85

solutions provided by SVMs have been empirically shown to be not maximally
sparse [1,6]. Additionally, support vector regression involves using twice as many
variables as the number of samples, rendering the computational problem more
difficult.

The solution of SVM problems usually involves a non-trivial quadratic opti-
mization problem. There have been several attempts to find efficient algorithms
for this problem (e.g., [9,4]), most of which are based on the special form of
the dual quadratic optimization problem. These methods display a super-linear
dependence of the computation time on the number of samples and require
repeated access to the training samples, making them suitable only for batch
learning.

Achieving sparseness by using linear dependence was suggested in [6]. The
idea there is to solve the SVM problem using standard methods and then simplify
the solution by eliminating linear dependencies in feature space. This simplifi-
cation procedure effectively reduces the number of SVs while keeping the final
classifier /regressor unchanged.

An important requirement of online algorithms is that their per-time-step
complexity should be bounded by a constant independent of ¢ (¢ being the time-
step index), for it is assumed that samples arrive at a constant rate. Since the
complexity of SV learning is super-linear in the number of samples [4], performing
aggressive sparsification concurrently with learning is essential.

In this work we take advantage of an efficient greedy sparsification method
in order to obtain an approximate, provably convergent, online SVR algorithm
that we call SOG-SVR (sparse online greedy SVR).

The remainder of the paper is organized as follows: In Section 2 we briefly
overview support vector regression along with a sequential implementation which
inspired our algorithm. In Section 3 we introduce a method for detecting linear
dependencies in feature space and for sparsifying the solution based on these
dependencies. Section 4 presents the SOG-SVR algorithm along with a conver-
gence proof. In Section 5 we apply SOG-SVR to two benchmark problems, and
we conclude with Section 6.

2 Support Vector Regression

Consider a training sample S = {(x1,y1), .., (Xe,y0)}, Xi € R and y; € R,
where y; = g(x) + (;, for some unknown function g and noise variable ¢;. The
objective is to reconstruct a good approximation to g(-) from the finite data
set S. The derivation of the SVR equations can be found in [11] and will not
be repeated here, but for completeness we recall the main results. Let ¢ be a
nonlinear mapping from input space to some high-dimensional feature space. For
the linear regressor (in feature space) defined by f(+) = (w,¢(:)) + b, we wish
to minimize

14
RE € w) = Slwl” +C Y (6 + &), (21)

i=1

86 Yaakov Engel et al.
subject to (for Vi € {1,...,¢})

yi — f(xi) <e+&, fxi)—yi<e+&, &.& >0, (2.2)

where e defines the width of the error-insensitive zone of the cost function and
& and & are slack variables measuring the deviation of y; — f(x;) from the
boundaries of the error-insensitive zone. This primal problem is transformed to
its dual quadratic optimization problem. Maximize

Lo,) = —%(a* —a)'K(a* —a)—cla*+a)le+ (a* —a)ly (2.3)

subject to

ot —a)fe=0 (2.4)

(
0 < o ,a<Ce (2.5)

where k(x,x') = (p(x), p(x)), [K]i; = k(xi,x;), o) = (ag*),...,ag*))T and
e=(1,...,1)T. In order to simplify notation, here and in the sequel we use the
standard notation a*) to refer to either a or a*.

The Representer Theorem [15] assures us that the solution to this optimiza-
tion problem may be expressed solely in terms of the kernel function over the
training set:

0
FO =3 Bik(xi) +b . (2.6)
=1

In SVR, once the dual problem (2.3) is solved for a* and «, the optimal regressor
may be written as f(-) = Zle(af — a;)k(xi,) + b.

By redefining the feature vectors and the weight vector ¢ = (¢’ ,\)7 and
w = (wT,b/\)T we can “homogenize” the regressor:

14

Fo0) =Y (a7 — ai)k(xs, %), (2.7)

i=1

where k(x’,x) = k(x',x) + A2. The transformation to the homogeneous form is
equivalent to adding a usually small, positive constant term to the kernel func-
tion. Note however, that the regularization term ||w||? in the primal Lagrangian
(2.1) now includes the free term b. Homogenizing the regressor not only sim-
plifies the analysis but also allows us to get rid of the first constraint (2.4) in
the dual problem. This is significant because the remaining constraints can be
enforced locally, in the sense that they do not mix different components of a*).
From this point on we assume that this transformation has been performed and
we drop the “bar” notation.

In [14] two sequential algorithms for learning support vector classification
and regression, respectively, were introduced. While conventional SV learning
algorithms operate in batch mode, requiring all training samples to be given in

Sparse Online Greedy Support Vector Regression 87

advance; in these two algorithms a single training sample is observed at each time
step and the update is based solely on that sample, keeping the time complexity
per time step O(1). The regression algorithm they propose (SVRseq) solves the
kernel regression problem sequentially, and is presented in pseudo-code form in
Table 1. The notation |[u] is shorthand for the truncation function defined by
|u] = max(0, min(C,u)); i.e., values are truncated so as to remain within the
bounds specified by the constraints (2.5).) is a learning rate parameter.

Table 1. The SVRseq Algorithm

1. Parameters: 7, ¢, C.
Initialize: a* =0, a = 0.
3. Fori=1,...,¢
di = yi — f(x:)
Aaj =n(d; —€)
Aa; = —U(di + 8)
o = loj + Aaj]
a; = |ai + Ay
4. If training has converged stop, else repeat step 3.

N

3 Sparsity by Approximate Linear Dependence

When dealing with very large data sets we may not be able to afford, memory-
wise, to maintain the parameter vectors a™ and « for the entire training sample.
A large number of SVs would also slow the system down at its testing/operation
phase. Moreover, sequential SV algorithms rely on multiple passes over the train-
ing set, since each update affects only one component of a* and « and makes
only a small uphill step on the dual Lagrangian. In online learning no train-
ing sample is likely to be seen more than once, so, an alternative approach is
required. Hence, we must devise a way to select which input samples should
be remembered in the kernel representation, and to update their corresponding
coefficients.

In [6] a sparsification step is performed after a conventional SV solution is ob-
tained. This is done by eliminating SVs that can be represented as linear combi-
nations of other SVs in feature space, and appropriately updating the coefficients
of the remaining ones in order to obtain exactly the same classifier /regressor!.

Our aim is to incorporate a similar selection mechanism into an online learn-
ing scheme based on the sequential SV learning algorithm of [14]. The general
idea is as follows. Let us assume that, at time step t, after having observed ¢ — 1
training samples we have collected a dictionary of m linearly independent basis
vectors {¢(X;)}7L; (X; represent those elements in the training set which were
retained up to the ¢-th step). Now we are presented with a new sample x;. We

! Note however, that the resulting solution does not necessarily conform to the con-
straints of the original problem.

88 Yaakov Engel et al.

test whether ¢(x;) is linearly dependent on the dictionary vectors. If not, we
add it to the dictionary and increment m by 1. Due to the online mode of oper-
ation we do not wish to revisit and revise past decisions, and for this reason the
addition of vectors to the dictionary must be done in a greedy manner.

The requirement for exact linear dependence may lead us to numerical in-
stabilities. Instead, for training sample x;, we will be content with finding coef-
ficients {a;;}7., with at least one non-zero element satisfying the approzimate
linear dependence condition

2

6 = Zat,qu(scj) —d(x)|| <v . (3.8)

In other words, ¢(x;) can be approximated to within a squared error of v by
some linear combination of current dictionary members. By minimizing the left
hand side of (3.8) we can simultaneously check whether this condition is satisfied
and obtain the coefficient vector for input sample x¢, a; = (a1, - . 7at,m)T that
best satisfies it. For reasons of numerical stability, we may sometimes prefer to
sacrifice the optimality of a; in return for a reduction in the size of its compo-
nents. In this case we can add an £ norm regularization term of the form ~|al|?
to the minimization problem defined in (3.8), ending up with the optimization
problem

alél]glm {aT(R' + ’y[)a — QaTEt + ktt} (39)

where [K]i; = k(Xi,%;), (ki)i = k(Ri, X¢), ke = k(xs, %), with i,5 = 1,...,m.
Solving (3.9) yields a; = (K + vI)~'k;, and the condition for approximate
linear dependence becomes

6t = ktt — (Rt + Wat)Tat é |2 (310)

By defining [A]; ; = a; ; and taking the linear dependence (3.8) to be exact (i.e.,
v = 0), we may express the full £ x ¢ training set Gram matrix K as AK AT For
v sufficiently small, AKAT is a good approximation of K, and from this point
on we will assume that indeed K = AK AT

4 Sparse Online Greedy SVR

In this section we show how the idea of sparsification by linear dependence can
be utilized in an online SVR algorithm.

4.1 A Reduced Problem

As already hinted above, we would like to end up with a SVR algorithm with
time and memory requirements that are independent of the number of training
samples ¢ that, for online algorithms, equals the time index ¢. Our aim is to

Sparse Online Greedy Support Vector Regression 89

obtain an algorithm with memory and time bounds, per time step, that are
dependent only on the intrinsic dimensionality m of the data in feature space.
In order to do that we define a new set of 2m “reduced” variables
a =ATa™ | (4.11)
where it should be observed that &*) € IR™, while a*) € RY, and typically
m < L.
For clarity let us first consider the case where £ and m are fixed, i.e., we have
a predefined set of dictionary vectors on which all other £—m training-set feature
vectors are linearly dependent. Let y = (y1,...,y¢)7, f = AK(&" — &). In this
case the following rule can be used repeatedly to update the reduced variables:

Aa* =" AT (y — f — ce)

Aa = —nAT (y — £ + ce)

& =a"+ Aa”

x=a+ Aa (4.12)

where 1*, 1 are small positive learning rate parameters. There are several points
worth stressing here. First, while the update in SVRseq is scalar in nature, with
only a single component of a* and a updated in each step; here, in each up-
date, all of the components are affected. Second, in the online case A becomes A;
which is a growing ¢ x m matrix to which the row vector a is appended at each
time step t. y¢, f; and e are also increasingly large t-dimensional vectors. Luckily,
we need only maintain and update their m-dimensional images under the trans-
formation AT: ATy, ATf, = ATA,K(&* — &) and ATe. Third, the evaluation
of the regressor at point x; can be performed using the reduced variables:

Fox) = S(af — ank(xix)

=1
t m
= > (0 —)Y ai k(%) x)
i=1 j=1
"= (@~ a)TAKk = (& — &) Tk, (4.13)

where the third equality above is exact only when v = 0. Fourth, due to the
quadratic nature of the dual Lagrangian, optimal values for the learning rates
n™*) can be analytically derived. We defer discussion of this issue to a longer
version of the paper. Finally, note that here we do not truncate the updates
Ad(*), namely the &) vectors are not bounded within some box, nor do they
necessarily correspond to any a*) obeying the constraints (2.5). We will discuss
the implications of this omission later.

If, at time ¢, a new training sample is encountered for which the approxi-
mate linear dependence condition (3.8) is not satisfied, we append ¢(x;) to the
dictionary, increasing m by 1. This has the following consequences:

90 Yaakov Engel et al.

— A is first appended with an additional column of ¢-1 zeros and then with

the row vector al. Consequently, A; is lower triangular.

— K is also appended with a column and a row, first the column k; and then
the row (k7 k). Note that, contrary to K, K has always full rank and is

therefore invertible.

— &" and & are each appended with an additional component, initialized at 0.

A detailed pseudo-code account of the algorithm is given in Table 2. Concerning
notation, we use “,” to denote horizontal concatenation, similarly, we use “;” to

denote vertical concatenation. In order to make the distinction between matrices

and vectors clear, we use [-] for a matrix and () for a vector.

Table 2. The SOG-SVR Algorithm

— Parameters: ¢, C, v, .

1. Get new sample: (x¢,y:)

2. Compute ke (Et)l = k(Xi, x¢)

3. Approximate linear dependence test:
atr = (Km +~’y.[)71kt
0 = ke — (ke + ’Yaz)Tat
if 6: > v % add x: to dictionary

km+1 = [[}m,l‘;t;l‘;?,kn]
at:(O,...;l)

Afe= (A?—1e§ 1)

Alyr = (Al 1yi-v;ye)
AT Ay = [AT 1 A-1,0;07 1]
a;_1 = (aj_1;0)

at—1 = (01—1;0)

I=1[1,0;07,1]
0 = (0;0)
m=m-+1
else % dictionary remains unchanged

ATe = AT e + a

A?Yt = Azl1y'z—1 + agys

AzTAt = AzT—1At71 + atazT
4. Update &* and a:

AT, = AT ALK (&7_1 — &)
AG* = nf AL (yr — £, — ce)
Ad = _ntA?(yt — ft + 56)

a; = [aj_ + Aa™]
oy = I_dtfl + Aéﬂ

(0), I

(1],

— Initialize: af = (max(0,y1/k11)), o1 = min(0, —y1/k1,1)),
Ki = [ki], ATAr = [1], Alyr = (1), Ale = (1), 0
e=(1),m=1.

— fort=23,...

Sparse Online Greedy Support Vector Regression 91

4.2 SOG-SVR Convergence

We now show that the SOG-SVR performs gradient ascent in the original La-
grangian, which is the one we actually aim at maximizing. Let us begin by noting
that £(a*,) from (2.3) may be written as the sum of two other Lagrangians,
cach defined over orthogonal subspaces of IR’.

Lla* o) = L(&", &)+ L(&, &) (4.14)

where
a® = A4ta™ | a® = (1 - A4hHa) | (4.15)
L(&" &) = —%(a* —a)TK@& —a)+ (6" — &)y —e(a* +&)Te (4.16)
L@ a)= (@ —a)Ty—ca +a)le, (4.17)

and AT = (AT A)~1 AT is the pseudo-inverse of A. It is easy to see that £ may be
written entirely in terms of &) (AAT is symmetric and therefore & = (A1)T&*):

(& —a)TK@ —a)+ (@ —a)TAly —¢(a* +a)TATe , (4.18)

Theorem 1. Forn* andn sufficiently small, using the update rule (4.12) causes
a non-negative change to the Lagrangian L; i.e.,

AL™ F(ar + A&* &+ Aé) — L(a%, &) >0 . (4.19)

Proof. To first order in %, AL is proportional to the inner product between the
update A&™ and the gradient of £ w.r.t. &*. Differentiating (4.18) yields

oL -
FEu Aly —K(&@* —a) —cAle= AT (y —f —ce) . (4.20)
The inner product mentioned above is:

oL

A-*T
* P&

=t (y—f—ce)l AAt (y —f—ce) >0 . (4.21)
The last inequality is based on the fact that AA" is positive semi-definite?. The
exact same treatment can be given to the update Aa, completing the proof. O

2 More specifically, AA" is the projection operator on the subspace of IR’ spanned by
the columns of A; therefore, its eigenvalues equal either 1 or 0.

92 Yaakov Engel et al.

A direct consequence of Theorem 1 is that, since &*) is not updated during
learning, the change to the Lagrangian £ is also non-negative. However, for a
positive g, if &™) and @™ are not constrained appropriately, neither L nor L may
possess a maximum. Currently, we do not see a way to maintain the feasibility
of @) w.r.t. the original constraints (2.5) on a*) with less than O(¢) work per
time-step. For the purposes of convergence and regularization it is sufficient to
maintain box constraints similar to (2.5), in IR™; i.e,

—Ce<a*,a<Ce . (4.22)

Proving the convergence of SOG-SVR under the constraints (4.22) is a straight-
forward adaptation of the proof of Theorem 1, and will not be given here for
lack of space. In practice, maintaining such constraints seems to be unnecessary.

5 Experiments

Here, we report the results of experiments comparing the SOG-SVR to the state-
of-the-art SVR implementation SVMTorch [4]. Throughout, except for the pa-
rameters whose values are reported, all other parameters of SVMTorch are at
their default values.

We first used SOG-SVR for learning the 1-dimensional sinc function sin(z)/x
defined on the interval [—10, 10]. The kernel is Gaussian with standard deviation
o = 3. The other SVR parameters are C = 10*/¢ and e = 0.01, while the
SOG-SVR specific parameters are A = 0.1, v = 0.01 and v = 0. Learning was
performed on a random set of samples corrupted by additive i.i.d. zero-mean
Gaussian noise. Testing was performed on an independent random sample of
1000 noise-free points. All tests were repeated 50 times and the results averaged.
Figure 1 depicts the results of two tests. In the first we fixed the noise level
(noise std. 0.1) and varied the number of training samples from 5 to 5000, with
each training set drawn independently. We then plotted the generalization error
(top left) and the number of support vectors as a percentage of the training set
(top-right). As can be seen, SOG-SVR produces an extremely sparse solution
(with a maximum of 12 SVs) with no significant degradation in generalization
level, when compared to SVMTorch. In the second test we fixed the training
sample size at 1000 and varied the level of noise in the range 10=6 to 10. We
note that SVMTorch benefits greatly from a correct estimation of the noise level
by its parameter €. However, at other noise levels, especially in the presence of
significant noise, the sparsity of its solution is seriously compromised. In contrast,
SOG-SVR produces a sparse solution with complete disregard to the level of
noise. It should be noted that SOG-SVR was allowed to make only a single pass
over the training data, in accordance with its online nature.

We also tested SOG-SVR on two real-world data-sets - Boston housing and
Comp-activ, both from Delve®. Boston housing is a 13-dimensional data-set with

3 http://www.cs.toronto.edu/ delve/data/datasets.html

Sparse Online Greedy Support Vector Regression 93

Generalization Errors Percent of SVs
2 120
— — TORCH
1 — SOG
100 -
I-r ¢
ofF \}/I‘ q-F ===

80 -

60

%SVs

40 -

20

o 2 3 a o 2 3 a
log sample size log sample size
Generalization Errors Percent of SVs
1 120
— — TORCH — — TORCH
ot — soa — SOG
100 [-
/) =
/ ’
—1 ;
80 - !
!
ol /
3 = I
= @ eo
= =2
= I
3t
1
ao !
_al = I
- —x /)
¥ ! | soa
\ 20
s 7
\Y = /
T~ a4
_e o
8 —6 o 2 —8 —6 o 2

—a — —a —2
log sample size log sample size

Fig. 1. SOG-SVR compared with SVMTorch on the sinc function. The horizon-
tal axis is scaled logarithmically (base 10). In the generalization error graph we
use a similar scale for the vertical axis, while on the SV percentage graph we use
a linear scale

506 samples. Our experimental setup and parameters are based on [11]. We di-
vided the 506 samples randomly to 481 training samples and 25 test samples.
The parameters used were C' = 500, € = 2 and ¢ = 1.4. The SOG-SVR parame-
ters are A = 0.1, v = 0.01 and v = 0. Preprocessing consisted of scaling the input
variables to the unit hyper-cube, based on minimum and maximum values. since
this is a relatively small data-set, we let SOG-SVR run through the training data
5 times, reporting its generalization error after each iteration. The results shown
in Table 3 are averages based on 50 repeated trials. The Comp-activ data-set is a
significantly larger 12-dimensional data-set with 8192 samples. Training and test
sets were 6000 and 2192 samples long, respectively, and the same preprocessing
was performed as for the Boston data-set. Due to the larger size of the training
set, SOG-SVR was allowed to make only a single pass over the data. We made
no attempt to optimize learning parameters for neither algorithm. The results
are summarized in Table 4. As before, results are averaged over 50 trials.

94 Yaakov Engel et al.

Table 3. Results on the Boston housing data-set, showing the test-set mean-
squared error, its standard deviation and the percentage of SVs. SVMTorch
is compared with SOG-SVR after 1-5 iterations over the training set. SOG-
SVR performs comparably using less than 1/2 of the SVs used by SVMTorch.
Throughout, Percentage of SVs has a standard deviation smaller than 1%

|Boston|[SVMTorch[SOG-SVR 1]SOG-SVR 2]SOG-SVR 3[SOG-SVR 4[SOG-SVR 5]

MSE 13.3 40.9 14.1 13.6 13.3 13.1
STD 11.8 69.2 9.3 8.9 8.6 8.4
% SV 37 17 17 17 17 17

Table 4. Results on the Comp-activ data-set, again comparing SOG-SVR with
SVMTorch. Here SOG-SVR delivers a somewhat higher test-set error, but ben-
efits from a much more sparse solution

|Parameters |Comp-activ|SVMTOrch|SOG—SVR|
£ =6000, C' =10°/¢ = 167, MSE 8.8 10.9
e=1,06=05 \=0.1, STD 0.4 1.0

v =20.001,v=0 % SV 63 9

6 Conclusions

We presented a gradient based algorithm for online kernel regression. The algo-
rithm’s per-time-step complexity is dominated by an O(m?) incremental matrix
inversion operation, where m is the size of the dictionary. For this reason sparsi-
fication, resulting in a small dictionary, is an essential ingredient of SOG-SVR.

Somewhat related to our work are incremental algorithms for SV learn-
ing. [12] presented empirical evidence indicating that large data-sets can be split
to smaller chunks learned one after the other, augmenting the data in each new
chunk with the SVs found previously; with no significant increase in generaliza-
tion error. This idea was refined in [2], where an SVM algorithm is developed
which exactly updates the Lagrange multipliers, based on a single new sample.
While the method of [12] lacks theoretical justification, it seems that both meth-
ods would be overwhelmed by the increasingly growing number of support vec-
tors found in large online tasks. In [10] an incremental SVM method is suggested
in which the locality of RBF-type kernels is exploited to update the Lagrange
multipliers of a small subset of points located around each new sample. It is
interesting to note that, for RBF kernels, proximity in input space is equivalent
to approximate linear dependence in feature space. However, for other, non-local
kernels (e.g., polynomial), sparsification by eliminating linear dependencies re-
mains a possible solution. In [7] an incremental kernel classification method is
presented which is capable of handling huge data-sets (¢ = 10%). This method re-
sults from a quadratic unconstrained optimization problem more closely related
to regularized least squares algorithms than to SVMs. The reported algorithm
performs linear separation in input space - it would be interesting to see if it

Sparse Online Greedy Support Vector Regression 95

could be extended to non-linear classification and regression through the use of
Mercer kernels.

The current work calls for further research. First, a similar algorithm for clas-
sification can be developed. This is rather straightforward and can be deduced
from the current work. Second, application of SOG-SVR to problems requir-
ing online learning is underway. In particular, we plan to apply SOG-SVR to
Reinforcement Learning problems. As indicated by the results on the Boston
data-set, SOG-SVR may also be used in an iterative, offline mode simply in or-
der to obtain a sparse solution. Additional tests are required here as well. Third,
some technical improvements to the algorithm seem worthwhile. Specifically,
the learning rates may be optimized resulting in faster convergence. Fourth, self
tuning techniques may be implemented in the spirit of [3]. This would make
the algorithm more resilient to scaling problems. Fifth, conditions on the data
distribution and the kernel under which the effective rank of the Gram matrix is
low, should be studied. Preliminary results suggest that for “reasonable” kernels
and large sample size the effective rank of the Gram matrix is indeed much lower
than the sample size, and is in fact asymptotically independent of it.

References

1. C. J. C. Burges and B. Scholkopf. Improving the accuracy and speed of support
vector machines. In Advances in Neural Information Processing Systems, volume 9.
The MIT Press, 1997. 85

2. G. Cauwenberghs and T. Poggio. Incremental and decremental support vector
machine learning. In Advnaces in Neural Information Systems, pages 409-415,
2000. 94

3. O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple pa-
rameters for support vector machines. Machine Learning, 46:131-160, 2002. 95

4. R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale
regression problems. Journal of Machine Learning Research, 1:143-160, 2001. 85,
92

5. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, England, 2000. 84

6. T. Downs, K. Gates, and A. Masters. Exact simplification of support vector so-
lutions. Journal of Machine Learning Research, 2:293-297, December 2001. 85,
87

7. G. Fung and O. L. Mangasarian. Incremental support vector machine classification.
In Second SIAM Intrnational Conference on Data Mining, 2002. 94

8. R. Herbrich. Learning Kernel Classifiers. The MIT Press, Cambridge, MA, 2002.
84

9. J. Platt. Fast training of support vector machines using sequential minimal opti-
mization. In Advances in Kernel Methods - Support Vector Learning, pages 42—65.
MIT Press, 1999. 85

10. L. Ralaivola and F. d’Alché Buc. Incremental support vector machine learning: a
local approach. In Proceedings of ICANN. Springer, 2001. 94

11. B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002. 84, 85, 93

96

12.

13.

14.

15.

Yaakov Engel et al.

N. Syed, H. Liu, and K. Sung. Incremental learning with support vector ma-
chines. In Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI-99), 1999. 94

V. N. Vapnik. Statistical Learning Theory. Wiley Interscience, New York, 1998.
84

S. Vijayakumar and S. Wu. Sequential support vector classifiers and regression. In
Proceedings of the International Conference on Soft Computing (SOCO’99), 1999.
86, 87

G. Wabha. Spline models for observational data. CBMS-NSF Regional Conference
Series in Applied Mathematics, Vol. 59, Philadelphia: STAM, 1990. 86

	Sparse Online Greedy Support Vector Regression
	Introduction
	Support Vector Regression
	Sparsity by Approximate Linear Dependence
	Sparse Online Greedy SVR
	A Reduced Problem
	SOG-SVR Convergence

	Experiments
	Conclusions
	References

