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Abstract. In this paper we investigate the performance of pairwise (or
round robin) classification, originally a technique for turning multi-class
problems into two-class problems, as a general ensemble technique. In
particular, we show that the use of round robin ensembles will also
increase the classification performance of decision tree learners, even
though they can directly handle multi-class problems. The performance
gain is not as large as for bagging and boosting, but on the other hand
round robin ensembles have a clearly defined semantics. Furthermore, we
show that the advantage of pairwise classification over direct multi-class
classification and one-against-all binarization increases with the number
of classes, and that round robin ensembles form an interesting alternative
for problems with ordered class values.

1 Introduction

In a recent paper (Fürnkranz, 2001), we analyzed the performance of pairwise
classification (which we call round robin learning) for handling multi-class prob-
lems in rule learning. Most rule learning algorithms handle multi-class problems
by converting them into a series of two-class problems, one for each class, each
using the examples of the corresponding class as positive examples, and all others
as negative examples. This procedure is known as one-against-all class binariza-
tion. Round robin binarization, on the other hand, converts a c-class problem into
a series of two-class problems by learning one classifier for each pair of classes,
using only training examples for these two classes and ignoring all others. A new
example is classified by submitting it to each of the c(c− 1)/2 binary classifiers,
and combining their predictions via simple voting. The most important result
of the previous study was that this procedure not only increases predictive ac-
curacy, but that it is also no more expensive than the more commonly used
one-against-all approach.

Obviously, round robin classifiers may also be interpreted as an ensemble clas-
sifier that, similar to error-correcting output codes (Dietterich and Bakiri, 1995),
constructs an ensemble by transforming the learning problem into multiple other
problems and learning a classifier for each of them.1 In this paper, we will in-
vestigate the question whether round robin class-binarization can also improve
1 In fact, Allwein et al. (2000) show that pairwise classification (and other class bi-
narization techniques) are a special case of a generalized version of error-correcting
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performance for learning algorithms that can naturally handle multi-class prob-
lems, in our case decision tree learners. We will start with a brief recapitulation
of our previous results on round robin learning (Section 2), and then investigate
two questions: First, in Section 3, we will investigate the performance of round-
robin binarization as a general ensemble technique and compare its performance
to bagging and boosting. We will also evaluate a straight-forward integration of
bagging and round robin learning. As more classes result in a larger ensemble of
classifiers, it is reasonable to expect that the performance of round robin ensem-
bles depends crucially on the number of classes of the problem. In Section 4, we
will investigate this relation on classification problems with identical attributes
but varying numbers of classes, which we obtain by discretizing the target vari-
ables of regression problems. Our results will show that round robin learning
can indeed improve the performance of the c4.5 and c5.0 decision tree learners,
and that a higher number of classes increases its performance, in particular in
comparison to a one-against-all binarization.

2 Round Robin Classification

In this section, we will briefly review round robin learning (aka pairwise classi-
fication) in the context of our previous work in rule learning (Fürnkranz, 2001;
2002). Separate-and-conquer rule learning algorithms (Fürnkranz, 1999) are typ-
ically formulated in a concept learning framework, where the goal is to find a
definition for an unknown concept, which is implicitly defined via a set of pos-
itive and negative examples. Within this framework, multi-class problems, i.e.,
problems in which examples may belong to (exactly) one of several categories,
are usually addressed by defining a separate concept learning problem for each
class. Thus the original learning problem is split into a series of binary concept
learning problems—one for each class—where the positive training examples are
those belonging to the corresponding class and the negative training examples
are those belonging to all other classes. This technique for dealing with multi-
class problems in rule learning has been proposed by Clark and Boswell (1991),
but is also well-known in other areas such as neural networks, support vector
machines, or statistics (cf. multi-response linear regression). A variant of the
technique, in which classes are first ordered (e.g., according to their relative fre-
quencies in the training set) is used in the ripper rule learning algorithm (Cohen,
1995).

On the other hand, the basic idea of round robin classification is to trans-
form a c-class problem into c(c − 1)/2 binary problems, one for each pair of
classes. Note that in this case, the binary decision problems not only contain
fewer training examples (because all examples that do not belong to the pair
of classes are ignored), but that the decision boundaries of each binary problem
may also be considerably simpler than in the case of one-against-all binarization.

output codes, which allows to specify that certain classes should be ignored for
some problems (in addition to assigning them to a positive or a negative class, as
conventional output codes do).
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Fig. 1. One-against-all class binarization (left) transforms each c-class problem
into c binary problems, one for each class, where each of these problems uses the
examples of its class as the positive examples (here o), and all other examples as
negatives. Round robin class binarization (right) transforms each c-class problem
into c(c−1)/2 binary problems, one for each pair of classes (here 0 and x) ignoring
the examples of all other classes

In fact, in the example shown in Figure 1, each pair of classes can be separated
with a linear decision boundary, while more complex functions are required to
separate each class from all other classes.2 While this idea is known from the
literature (cf. Section 8 of (Fürnkranz, 2002) for a brief survey), in particu-
lar in the area of support vector machines (Hsu and Lin, 2002, and references
therein), the main contributions of (Fürnkranz, 2001) were to empirically eval-
uate the technique for rule learning algorithms and to show that it is preferable
to the one-against-all technique that is used in most rule learning algorithms.
In particular, round robin binarization helps ripper to outperform c5.0 on multi-
class problems, whereas c5.0 outperforms the original version of ripper on the
same problems. Our second, more important contribution was an analysis of the
computational complexity of the approach. We demonstrated that despite the
fact that its complexity is quadratic in the number of classes, the algorithm is no
slower than the conventional one-against-all technique. It is easy to see this, if one
considers that in the one-against-all case each training example is used c times
(namely in each of the c binary problems), while in the round robin approach
each example is only used c − 1 times, namely only in those binary problems,
where its own class is paired against one of the other c− 1 classes. Furthermore,
2 Similar evidence was also seen in practical applications: Knerr et al. (1992) observed
that the classes of a digit recognition task were pairwise linearly separable, while the
corresponding one-against-all task was not amenable to single-layer networks, while
Hsu and Lin (2002) obtained a larger advantage of round robin binarization over
unordered binarization for support vector machines with a linear kernel than for
support vector machines with a non-linear kernel.
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Fig. 2. Error reductions ratios of boosting vs. round robin

the advantage of pairwise classification increases for computationally expensive
learning algorithms. The reason is that super-linear learning algorithms learn
many small problems faster than a few large problems. For details we refer to
(Fürnkranz, 2002).

3 Round Robin Ensembles

In this section we suggest that round robin classification may also be interpreted
as an ensemble technique, and its performance gain may be viewed in this con-
text. Like with conventional ensemble techniques, the final prediction is made
by exploiting the redundancy provided by multiple models, each of them being
constructed from a subset of the original data. However, contrary to subsampling
approaches like bagging and boosting, these datasets are constructed determinis-
tically.3 In this respect pairwise classification is quite similar to error-correcting
output codes (Dietterich and Bakiri, 1995), but differs from them through its
fixed procedure for setting up the new binary problems, and the fact that each
of the new problems is smaller than the original problem. In particular, the latter
fact may often cause the subproblems in pairwise classification to be conceptually
simpler than the original problem (as illustrated in Figure 1).

In previous work (Fürnkranz, 2001), we observed that the improvements
in accuracy obtained by r3 (a round robin version of ripper) over ripper were
quite similar to those obtained by c5.0-boost (c5.0 called with the option -b,
i.e., 10 iterations of boosting) over c5.0 on the same problems. Round robin
binarization seemed to work whenever boosting worked, and vice versa. Figure 2
plots the error ratios of r3/ripper versus those of c5.0-boost/c5.0. The correlation
coefficient r2 is about 0.618, which is in the same range as correlation coefficients
3 Boosting is also deterministic if the base learner is able to directly use weighted
examples. Often, however, the example weights are interpreted as probabilities which
are used for drawing the sample for the next boosting iteration.
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Table 1. Boosting: A comparison between round robin binarization and boost-
ing, both with c5.0 as a base learner. The first column shows the error-rate of
c5.0, while the next three column pairs show the results of round robin learning,
boosting, and the combination of both, all with c5.0 as a base learner. For these,
we give both the error rate and the performance ratio relative to the base learner
c5.0. The last line shows the geometric average of all ratios (except letter). The
final four columns show the run-times of all algorithms

dataset c5.0 round robin boosting both run-times (for training)

letter 12.48 8.80 0.705 5.78 0.463 5.45 0.437 7.04 107.06 70.17 325.94
abalone 78.48 75.08 0.957 77.88 0.992 74.67 0.951 2.587 38.532 28.019 81.883
car 7.58 5.84 0.771 3.82 0.504 1.85 0.244 0.351 6.710 2.725 9.319
glass 35.05 24.77 0.707 27.57 0.787 22.90 0.653 0.228 5.252 1.960 8.710
image 3.20 2.90 0.905 1.60 0.500 1.73 0.541 0.230 5.259 2.150 7.523
lr spectrometer 51.22 51.79 1.011 46.70 0.912 51.98 1.015 0.051 2.520 0.184 3.863
optical 9.20 5.04 0.547 2.46 0.267 2.54 0.277 0.052 1.386 0.481 1.912
page-blocks 3.09 2.98 0.964 2.58 0.834 2.78 0.899 0.050 0.903 0.410 1.132
sat 13.82 13.16 0.953 9.32 0.675 9.00 0.651 5.582 93.241 58.605 102.235
solar flares (c) 15.77 15.69 0.995 16.41 1.041 16.70 1.059 0.033 2.351 0.265 2.883
solar flares (m) 4.90 4.90 1.000 5.90 1.206 5.83 1.191 5.398 44.581 44.319 92.370
soybean 9.66 6.73 0.697 6.59 0.682 6.44 0.667 0.991 6.559 8.653 19.376
thyroid (hyper) 1.11 1.14 1.024 1.03 0.929 1.33 1.190 4.854 21.997 44.672 70.576
thyroid (hypo) 0.58 0.69 1.182 0.32 0.545 0.53 0.909 0.662 6.181 5.260 9.000
thyroid (repl.) 0.72 0.74 1.037 0.90 1.259 0.90 1.259 0.111 9.245 0.788 9.578
vehicle 26.24 29.20 1.113 24.11 0.919 23.17 0.883 0.246 1.602 2.686 4.009
vowel 21.72 19.49 0.898 8.89 0.409 14.75 0.679 0.597 3.845 5.443 6.453
yeast 43.26 40.63 0.939 41.85 0.967 40.77 0.942 0.341 3.996 3.880 9.417
average 0.909 0.735 0.757

for bagging and boosting (Opitz and Maclin, 1999). We interpreted this as weak
evidence that the performance gains of round robin learning may be comparable
to those of other ensemble methods and that it could be used as a general
method for improving a learner’s performance on multi-class problems. We will
further investigate this question in this section and will in particular focus upon
a comparison of round robin learning with boosting (Section 3.1) and bagging
(Section 3.2), and upon the potential of combining it with these techniques.
Large parts of this section also appeared in (Fürnkranz, 2002).

3.1 Comparison to Boosting

As a first step, we perform a direct comparison of the performance of c5.0 and
c5.0-boost to c5.0-rr, a round robin procedure with c5.0 as the base learning algo-
rithm. It transforms each c-class problem into c(c − 1)/2 binary problems and
uses c5.0 to learn a decision tree for each of them. For predicting its class, a test
example is submitted to all c(c − 1)/2 classifiers and their predictions are com-
bined via unweighted voting. Ties are broken in favor of larger classes. Table 1
shows the results of 18 datasets with 4 or more classes from the UCI repository
(Blake and Merz, 1998). For all datasets we estimated error rates with a 10-fold
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stratified cross-validation, except for letter, where we used the standared 4000
examples hold-out set.4

The first thing to note is that the performance of c5.0 does indeed improve
by about 10% on average5 if round robin binarization is used as a pre-processing
step for multi-class problems. This is despite the fact that c5.0 can directly han-
dle multi-class problems and does not depend on a class binarization routine.
However, the direct comparison between round robin classification and boosting
shows that the improvement of c5.0-rr over c5.0 is not as large as the improve-
ment provided by boosting: although there are a few cases where round robin
outperforms boosting, c5.0-boost seems to be more reliable than c5.0-rr, producing
an average error reduction of more than 26% on these 17 datasets. The corre-
lation between the error reduction rates of c5.0-boost and c5.0-rr is very weak
(r2 = 0.276), which refutes our earlier hypothesis, and brings up the question
whether there is a fruitful combination of boosting and round robin classification.
Unfortunately, the last column of Table 1 answers this question negatively: al-
though there are some cases where the combination performs better than both of
its constituents, the results of using round robin classification with c5.0-boost as
a base learner does—on average—not lead to performance improvements over
boosting. In some sense, these results are analogous to those of Schapire (1997)
who found that integrating error-correcting output codes into boosting did not
improve performance.

With respect to run-time, the performance of c5.0-rr (2nd column) cannot
match that of c5.0 (first column). This was not to be expected, as c5.0 can directly
learn multi-class problems and does not need to perform a class binarization (as
opposed to ripper, where round robin learning is competitive; Fürnkranz 2001).
However, in many cases, c5.0-rr, despite its inefficient implementation as a perl
program that repeatedly writes training sets for c5.0 to the disc, can match the
performance of c5.0-boost (3rd column), which tightly integrates boosting into
c5.0.

3.2 Comparison to Bagging

A natural extension of the round robin procedure is to consider training multiple
classifiers for each pair of classes (analogous to sports and games tournaments
where each team plays each other team several times). For algorithms with
random components (such as ripper’s internal split of the training examples,
or the random initialization of back-propagation neural networks) this could
simply be performed by running the algorithm on the same dataset with different
random seeds. For other algorithms there are two options: randomness could be
injected into the algorithm’s behavior (Dietterich, 2000) or random subsets of the
available data could be used for training the algorithm. The latter procedure is
4 For this reason, we did not include the letter dataset into the computation of averages
in this and subsequent sections

5 As these are relative performance measures, we use a geometric average so that x
and 1/x average to 1.
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Table 2. Bagging: A comparison of round robin learning versus bagging and of
the combination of both using ripper, c5.0 and c5.0-boost as the base classifiers

base round robin bagging both

ripper 1.000 0.747 0.811 0.685
c5.0 1.000 0.909 0.864 0.838
c5.0-boost 1.000 1.029 0.977 1.019

more or less equivalent to bagging (Breiman, 1996). We will evaluate this option
in this section.

Bagging was implemented by drawing 10 samples with replacement from the
available data. Ties were broken in the same way as for round robin binariza-
tion, i.e., by simple voting using the a priori class probability as a tie breaker.
Similarly, bagging was integrated with round robin binarization by drawing 10
independent samples of each pairwise classification problem. Thus we obtained
a total of 10c(c − 1)/2 predictions for each c-class problem, which again were
simply voted. The number of 10 iterations was chosen arbitrarily (to conform to
c5.0-boost’s default number of iterations) and is certainly not optimal (in both
cases).

Table 2 shows the results of a comparison of round robin learning, bagging,
and a combination of both for ripper, c5.0, and c5.0-boost as base learners. We omit
the detailed results here and show only the geometric average of the improvement
rates of the ensemble techniques.6 The results show that the performance of the
simple round robin (2nd column) can be improved considerably by integrating it
with bagging (last column), in particular for ripper. The bagged round robin pro-
cedure reduces ripper’s error on the datasets to about 68.5% of the original error.
Again, the advantage of the use of round robin learning is less pronounced for
c5.0 (it is even below the improvement given by our simple bagging procedure),
and the combination of c5.0-boost and round robin learning does not result in
additional gains.

Note that these average performance ratios are always relative to the base
learner. This means they are only comparable within a line but not between
lines. For example, c5.0’s performance as a base learner was considerably better
than ripper’s by a factor of about 0.891. In terms of absolute performances, the
best performing algorithm (on average) was bagged c5.0-boost, which has about
64% of the error rate of basic ripper. This confirms previous good results with
combinations of bagging and boosting (Pfahringer, 2000; Krieger et al., 2001).
In comparison, the combination of round robin and bagging for ripper (68.5% of
ripper’s error rate) is relatively close behind, in particular if we consider the bad
performance of ripper in comparison to c5.0. An evaluation of a boosting variant
of ripper (such as slipper; Cohen and Singer, 1999) would be of interest.

Even though they do not reach the same performance level as alternative
ensemble methods, we believe that round robin ensembles nevertheless deserve
6 Detailed results for ripper can be found in (Fürnkranz, 2002).
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attention because of the fact that each classifier in the ensemble has a clearly
defined semantics, namely to predict whether an unseen example is more likely
to be of class i or class j. This may result in a better comprehensibility of the
predictions of the ensemble. In fact, Pyle (1999, p.16) proposes a very similar
technique called pairwise ranking in order to facilitate human decision-making in
ranking problems. He claims that it is easier for a human to determine an order
between n items if one makes pairwise comparisons between the individual items
and then adds up the wins for each item, instead of trying to order the items
right away.

4 Dependence on Number of Classes

The size of a round robin ensemble depends on the number of classes in the
problem. In this section, we will analyze the behavior of round-robin learning
when varying the number of classes. With this goal in mind, we decided to fol-
low the experimental set-up described by Frank and Hall (2001). They used a
set of regression problems and transformed each of them into a series of classi-
fication problems, each with a different number of classes. The transformation
was performed using equal-frequency discretization on the target variable. Thus
the resulting problems were class-balanced. We use exactly the same datasets for
our evaluation, and compare j48 (the c4.5 clone implemented in the Weka data
mining library; Witten and Frank 2000) to j48-rr, a version that uses pairwise
classification with j48 as a base learner.7

Table 3 shows the 10-fold cross-validation error rates of each algorithm on
the 29 problems, together with a sign that indicates whether j48 (+) or the round
robin version (−) had the higher estimated accuracy. No significance test was
used to compute these individual differences, but in all three settings, j48-rr out-
performed j48 in 22 out of 29 datasets. Even with the conservative sign test,
which has a comparably high Type II error, we can reject the null hypothesis
that the overall performance of j48 and j48-rr is identical on these 29 datasets
with 99% confidence. However, four of the datasets (Pole Telecom, MV Artifi-
cial, Auto MPG, and Triazines) seem to be completely unamenable to pairwise
classification, i.e., j48 performs better in all three classification settings.

This, however, tell us nothing about the size of the improvement. Inspec-
tion of a few cases in Table 3 reveals that on several datasets the advantage of
j48-rr over j48 seems to increase with the number of classes, at least for the step
from three to five classes (cf., e.g., Abalone). In an attempt to make this ob-
servation more objective, we summarized the results of these two algorithms in
Table 4, and also included the results of j48-1a, a version of j48 that uses a one-
against-all binarization. We show the average performance of all algorithms, and
7 The implementation of j48-rr was provided by Richard Kirkby, which gave us the
opportunity to check our previous findings with an independent implementation of
the algorithm.
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Table 3. Comparison of the error rates of j48 and j48-rr on 29 regression datasets,
which were class-discretized to classification problems with 3, 5, and 10 class
values.

3 classes 5 classes 10 classes
dataset j48 j48-rr j48 j48-rr j48 j48-rr
Abalone 36.10 35.37 − 53.66 49.37 − 73.16 68.83 −
Ailerons 25.21 24.87 − 43.02 41.83 − 63.35 61.17 −
Delta Ailerons 19.67 19.61 − 44.46 42.54 − 58.73 54.80 −
Elevators 37.76 35.30 − 52.24 47.80 − 71.38 66.29 −
Delta Elevators 30.13 29.17 − 52.31 49.00 − 63.09 57.64 −
2D Planes 13.39 13.39 − 24.63 24.66 + 46.95 45.75 −
Pole Telecom 4.37 4.40 + 4.95 5.08 + 9.16 9.38 +
Friedman Artificial 19.73 19.52 − 35.15 34.31 − 58.96 56.79 −
MV Artificial 0.47 0.48 + 0.81 0.82 + 1.82 1.91 +
Kinematics 36.29 35.74 − 56.37 53.70 − 75.70 72.92 −
CPU Small 21.54 21.01 − 36.19 34.32 − 57.81 54.83 −
CPU Act 19.25 18.82 − 33.23 31.46 − 54.27 51.63 −
House 8L 30.46 29.53 − 49.75 47.32 − 69.59 65.81 −
House 16H 31.79 30.52 − 50.98 47.65 − 70.72 65.97 −
Auto MPG 21.98 24.10 + 40.50 41.58 + 60.40 62.74 +
Auto Price 14.97 14.40 − 37.92 34.53 − 63.21 66.29 +
Boston Housing 25.10 24.11 − 40.38 38.44 − 61.05 58.16 −
Diabetes 48.84 53.26 + 74.42 64.19 − 77.44 75.12 −
Pyrimidines 50.54 46.35 − 58.24 60.81 + 75.81 78.51 +
Triazines 46.72 46.88 + 61.08 63.17 + 83.06 83.17 +
Machine CPU 28.04 25.79 − 42.87 39.86 − 63.44 60.96 −
Servo 24.31 19.88 − 44.67 39.52 − 65.33 57.72 −
Wisconsin Breast C. 63.20 63.35 + 76.60 74.43 − 88.87 86.65 −
Pumadyn 8NH 34.02 33.43 − 53.96 49.22 − 76.18 71.72 −
Pumadyn 32H 22.44 21.54 − 37.35 35.17 − 58.12 54.93 −
Bank 8FM 13.98 14.16 + 26.86 26.25 − 50.29 48.33 −
Bank 32NH 44.21 43.53 − 62.59 60.84 − 75.74 71.04 −
California Housing 20.97 20.68 − 36.66 35.45 − 57.30 56.41 −
Stocks 8.75 8.51 − 13.09 13.42 + 27.40 28.05 +

the geometric averages of the performance ratios of j48-rr over j48, and j48-1a over
j48.8

The results show that the performance improvement of round robin over a
one-against-all approach increases steadily by both measures. The performance
improvement over j48 also increases in absolute terms, but stays about the same
in relation to the error rate of j48 (the improvement is always approximately
3% of j48’s error rate). This seems to indicate that the one-against-all class
binarization becomes more and more dangerous for larger numbers of classes.
A possible reason could be that the class distributions of the binary problems in
8 Note that both measures are somewhat problematic: the average is dominated by
results with large variations among the algorithms (particularly so for the run-time
results, which are discussed below), while the performance ratios, which may be
viewed as differences normalized by the performance of j48, are somewhat influenced
by the fact that the default accuracy of the problems decreases with an increasing
number of classes. Consequently, error differences for problems with more classes
receive a lower weight (assuming there is some correlation of the performance of the
algorithms and the default accuracy of the problem).
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Table 4. Error and training time for a round robin version of j48, a one-against-
all version of j48, regular j48, and the binarization technique for ordered classi-
fication of Frank and Hall (2001)

error rates run-times (for training)
j48-rr j48-1a j48 j48-ORD j48-rr j48-1a j48

3 26.82 26.57 0.99 27.39 1.02 26.30 17.65 35.34 1.66 15.99 0.82
5 40.92 42.48 1.04 42.93 1.04 41.43 27.90 53.52 1.53 24.58 0.78
10 58.40 63.83 1.10 60.63 1.03 58.92 45.47 84.78 1.38 35.76 0.64

the one-against-all case become more and more skewed for an increasing number
of classes (because the number of examples for each class decreases).

The fact that we chose almost the same experimental setup as Frank and Hall
(2001) allows us to evaluate the performance of round robin learning in domains
with ordered classification. The only difference is that we only used a single
10-fold cross-validation, while Frank and Hall (2001) averaged ten 10-fold cross-
validation runs. However, these differences are negligible: in the six experiments
that we both performed—those using j48 and j48-1a—their average accuracy esti-
mates and our estimates differed by at most 0.05. Hence we are quite confident,
that the results for j48-ORD, which we computed from the tables published
by Frank and Hall (2001), are comparable to our results for j48-rr. The inter-
esting result is that there is almost no difference between the two. Apparently
general round robin learning is as good for ordered classification as the modifi-
cation to one-against-all learning that was suggested by Frank and Hall (2001).
This opens up the question whether a suitable adaptation of round robin learning
could further improve these results, which we leave open for future work.

We also used these experiments to get the confirmation of an independent
implementation for round robin’s favorable run-time results over one-against all.
The right-most part of Table 4 shows the summaries for the training times. As
expected, round robin binarization is considerably faster than a one-against-
all approach, despite the fact that round robin binarization generates c(c −
1)/2 binary problems for a c-class problem, while the one-against-all technique
generates only c problems. However, the advantage seems to decrease with an
increasing number of classes. This is not consistent with our expectations that the
performance loss induced by the class binarization decreases with an increasing
number of classes (Fürnkranz, 2002, Theorem 11). We are not exactly sure about
the reason for this failed expectation. One explanation could be that the overhead
for initializing the binary learning problems (which we did not take into account
in our theoretical analysis) is worse than expected and may dominate the total
run-time. Another reason could be memory swapping if not all c(c−1)/2 training
sets can be held in memory. The first hypothesis is confirmed when we look at
the average run-times, which are dominated by the performance on a few slow
datasets. There, round robin is consistently almost twice as fast as one-against
all, which is approximately what we would expect from our theoretical results.
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5 Conclusions

Pairwise classification is an increasingly popular technique for efficiently and
effectively converting multi-class problems into binary problems. In this paper,
we obtained two main results: First, we showed that round robin class binariza-
tion may be used as an ensemble method and improve classification performance
even for learning algorithms that are in principle capable of directly handling
multi-class problems, in particular the decision tree algorithms of the c4.5 family.
However, the observed improvements are not as significant as the improvements
we have obtained in previous experiments for the ripper rule learning algorithm,
and do in general not reach the same performance level as boosting and bag-
ging. We also showed how a straight-forward extension of round robin learning
(namely to perform multiple experiments for each binary problem) may improve
over the performance of both its constituents, round robin and bagging. Despite
the fact that they did not reach the performance levels of bagging and boosting,
we believe that round robin ensembles have advantages that make them a viable
alternative, most notably the clearly defined semantics of each member in the
ensemble.

Our second main result shows that the performance improvements of round
robin ensembles increase with the number of classes in the problem (at least for
ordered classes). While the improvement over j48 grows approximately linearly
with j48’s error rate, the growth of the performance increase over one-against-all
class binarization is even more dramatic. We believe that this illustrates that
handling many classes is a major problem for the one-against-all binarization
technique, possibly because the resulting binary learning problems have increas-
ingly skewed class distributions. At the same time, we were unable to confirm
our expectations that the relative efficiency of round robin learning should im-
prove with a larger number of classes. This might be due to the fact that our
previous theoretical results underestimated the effect of the constant overhead
that has to be spent for each binary problem. Nevertheless, run-times are still
comparable to those of regular c4.5, so that the accuracy gain provided by round
robin classification comes at very low additional costs.

Finally, we also showed that round robin binarization is a valid alterna-
tive to learning from ordered classification. We repeated the experiments of
Frank and Hall (2001) and found that round robin ensembles perform similar
to the special-purpose technique that was suggested in their work.

The most pressing issue for further research is an investigation of the effects
of different voting schemes. At the moment, we have only tried the simplest tech-
nique, unweighted voting where each classifier may vote for exactly one class.
A further step ahead might be to allow multiple votes, each weighted with a
confidence estimate provided by the base classifier, or to allow a classifier only
to vote for a class if it has a certain minimum confidence in its prediction.
Several studies in various contexts have compared different voting techniques
for combining the predictions of the individual classifiers of an ensemble (e.g.,
Mayoraz and Moreira, 1997; Allwein et al., 2000; Fürnkranz, to appear). Al-
though the final word on this issue remains to be spoken, it seems to be the
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case that techniques that include confidence estimates into the computation of
the final predictions are in general preferable, and should be tried for round robin
ensembles (cf. also Hastie and Tibshirani, 1998; Schapire and Singer, 1999).
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