Skip to main content

Self-Adaptation for Multi-objective Evolutionary Algorithms

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2632))

Included in the following conference series:

Abstract

Evolutionary Algorithms are a standard tool for multi-objective optimization that are able to approximate the Pareto front in a single optimization run. However, for some selection operators, the algorithm stagnates at a certain distance from the Pareto front without convergence for further iterations.

We analyze this observation for different multi-objective selection operators. We derive a simple analytical estimate of the stagnation distance for several selection operators, that use the dominance criterion for the fitness assignment. Two of the examined operators are shown to converge with arbitrary precision to the Pareto front. We exploit this property and propose a novel algorithm to increase their convergence speed by introducing suitable self-adaptive mutation. This adaptive mutation takes into account the distance to the Pareto front. All algorithms are analyzed on a 2- and 3-objective test function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3 (1999) 257–271

    Article  Google Scholar 

  2. Ranjithan, S.R., Chetan, S.K., Dakshima, H.K.: Constraint Method-Based Evolutionary Algorithm (CMEA) for Multiobjective Optimization. In Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D., eds.: First International Conference on Evolutionary Multi-Criterion Optimization, Springer-Verlag. Lecture Notes in Computer Science No. 1993 (2001) 299–313

    Google Scholar 

  3. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

    Google Scholar 

  4. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8 (2000) 125–147

    Article  Google Scholar 

  5. Horn, J.: Multicriterion decision making. In Bäck, T., Fogel, D.B., Michalewicz, Z., eds.: Handbook of Evolutionary Computation, Sec. F1.9: pp. 1–15. (1997)

    Google Scholar 

  6. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P., eds.: Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, France, Springer. Lecture Notes in Computer Science No. 1917 (2000) 849–858

    Chapter  Google Scholar 

  7. Büche, D., Dornberger, R.: New evolutionary algorithm for multi-objective optimization and the application to engineering design problems. In: Proceedings of the Fourth World Congress of Structural and Multidisciplinary Optimization, Dalian, China, International Society of Structural and Multidisciplinary Optimization (ISSMO) (2001)

    Google Scholar 

  8. Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In Schwefel, H.P., Männer, R., eds.: Parallel Problem Solving from Nature. 1st Workshop, PPSN I. Volume 496 of Lecture Notes in Computer Science., Berlin, Germany, Springer-Verlag (1991) 193–197

    Chapter  Google Scholar 

  9. Laumanns, M., Rudolph, G., Schwefel, H.P.: Mutation Control and Convergence in Evolutionary Multi-Objective Optimization. In: Proceedings of the 7th International Mendel Conference on Soft Computing (MENDEL 2001), Brno, Czech Republic (2001)

    Google Scholar 

  10. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)

    MATH  Google Scholar 

  11. Sbalzarini, I.F., Müller, S., Koumoutsakos, P.: Microchannel optimization using multiobjective evolution strategies. In Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D., eds.: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO), Zürich, Switzerland, Springer Lecture Notes in Computer Science (2001) 516–530

    Google Scholar 

  12. Abbass, H.A.: The Self-Adaptive Pareto Differential Evolution Algorithm. In: Congress on Evolutionary Computation (CEC’2002). Volume 1., Piscataway, New Jersey, IEEE Service Center (2002) 831–836

    Google Scholar 

  13. Storn, R., Price, K.: Minimizing the real functions of the icec’96 contest by differential evolution. In: IEEE Conference on Evolutionary Computation. (1996) 842–844

    Google Scholar 

  14. Büche, D., Milano, M., Koumoutsakos, P.: Self-Organizing Maps for Multi-Objective Optimization. In Barry, A.M., ed.: GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, New York, AAAI (2002) 152–155

    Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps. 3 edn. Springer series in information sciences (2001)

    Google Scholar 

  16. Fonseca, M.C., Fleming, P.J.: Multi-objective genetic algorithms made easy: Selection, sharing and mating restrictions. In: Proceedings of the 1st International Conference on Genetic Algorithms in Engineering Systems: Innovations and Application. (1995) 45–52

    Google Scholar 

  17. Bäck, T.: Self-adaptation. In Bäck, T., Fogel, D.B., Michalewicz, Z., eds.: Handbook of Evolutionary Computation, Sec. C7.1: pp. 1–15. (1997)

    Google Scholar 

  18. Coello Coello, C.A.: An updated survey of evolutionary multiobjective optimization techniques: State of the art and future trends. In: Congress on Evolutionary Computation. (1999) 3–13

    Google Scholar 

  19. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9 (1995) 115–148

    MATH  MathSciNet  Google Scholar 

  20. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9 (2001) 159–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Büche, D., Müller, S., Koumoutsakos, P. (2003). Self-Adaptation for Multi-objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds) Evolutionary Multi-Criterion Optimization. EMO 2003. Lecture Notes in Computer Science, vol 2632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36970-8_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-36970-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01869-8

  • Online ISBN: 978-3-540-36970-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics