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Abstract. In this paper a Population-based Ant Colony Optimization
approach is proposed to solve multi-criteria optimization problems where
the population of solutions is chosen from the set of all non-dominated
solutions found so far. We investigate different maximum sizes for this
population. The algorithm employs one pheromone matrix for each type
of optimization criterion. The matrices are derived from the chosen pop-
ulation of solutions, and can cope with an arbitrary number of criteria.
As a test problem, Single Machine Total Tardiness with changeover costs
is used.

1 Introduction

The Ant Colony Optimization (ACO) metaheuristic (see Dorigo and Di Caro
[8]) has recently been applied to solve multi-criterion optimization problems
(see [3, 1] for an overview over metaheuristics for multi-criteria optimization).
In most of the earlier works it is assumed that the optimization criteria can be
weighted by importance. Mariano and Morales [16] proposed a multi colony ACO
approach where for each objective there exists one colony of ants. They studied
a problem where every objective is influenced only by parts of a solution, so that
an ant from colony i receives a (partial) solution from ant of colony i − 1 and
then tries to improve or extend this solution with respect to criterion i. A final
solution that has passed through all colonies is allowed to update the pheromone
information when is is part of the non-dominated front. Gambardella et al. [11]
developed an ant algorithm for a bi-criterion vehicle routing problem where they
also used one ant colony for each criterion. Criterion 1 — the number of vehicles
— is considered to be more important than criterion 2 — the total travel time of
the tours. The two colonies share a common global best solution which is used
for pheromone update in both colonies. Colony 1 tries to find a solution with
one vehicle less than the global best solution, while colony 2 tries to improve
the global best solution with respect to criterion 2 under the restriction that
the solution is not worse than the global best solution with respect to the first



criterion. Whenever colony 1 finds a new global best solution both colonies start
anew (with the new global best solution).

Gagné et al. [10] tested a multi-criterion approach for solving a single ma-
chine total tardiness problem with changeover costs and two additional criteria.
In their approach the changeover costs were considered to be most important.
Heuristic values for the decisions of the ants were used that take all criteria into
account. However, the amount of pheromone that an ant adds to the pheromone
matrix depends solely on the changeover costs of the solution. A similar approach
was used in [12] for a four criterion industrial scheduling problem.

In [7, 6] Doerner et al. proposed to solve a transportation problem were the
aim was to minimize the total costs by searching for solutions that minimize
two different criteria. The general approach was two use two colonies of ants
where each colony concentrates on a different criterion by using different heuris-
tics. In [7] one criterion was considered the main criterion. Every k iterations, the
master population which minimizes the main criterion updates its pheromone in-
formation according to the good solutions found in the slave population, which
minimizes the minor criterion. However, no information flow occurs from the
slave to the master colony. In [6], both criteria were considered to be of equal
importance. The size of both populations was adapted so that the colony that
found the better solution with respect to costs became larger. Information ex-
change between the colonies is done by so called spy ants that base their decisions
on the pheromone matrices in both colonies.

The only ACO approaches so far that aim to cover the pareto-front of a
multiobjective optimization problem have been proposed by Doerner at al. [4, 5]
and Iredi at al. [15].

Doerner at al. [4, 5] studied a portfolio optimization problem with more than
two criteria. For each criterion, a separate pheromone matrix is used. Instead of
a population of ants for each criterion each ant assigns weights to the pheromone
information for all criteria according to a random weight vector when construct-
ing a solution. Pheromone update is done by ants that found the best or the
second best solution with respect to one criterion. A problem with this approach
is that solutions in the non-dominated front that are not among the best with
respect to a single criterion do not update the pheromone information.

Iredi et al. [15] studied an approach to solve bi-criterion optimization prob-
lems with a multiple colony ant algorithm were the colonies specialize to find
good solutions in different parts of the front of non-dominated solutions. Cooper-
ation between the colonies is established by allowing only ants with solutions in
the global front of non-dominated solutions to update the pheromone informa-
tion (i.e. in contrast to [4, 5], all solutions in the non-dominated front influence
the future search process). Two methods for pheromone update in the colonies
were proposed. In the update by origin method an ant updates only in its own
colony. For the other method the sequence of solutions along the non-dominated
front is split into p parts of equal size. Ants that have found solutions in the
ith part update in colony i, i ∈ [1, p]. This update method is called update by
region in the non-dominated front. It was shown that cooperation between the



colonies allows to find good solutions along the whole Pareto front. Heteroge-
neous colonies were used where the ants have different preferences between the
criteria when constructing a solution. For the SMTTP with changeover costs test
problem, two pheromone matrices were used: M = (τij) for the total tardiness
criterion, where τij is the desirability that job j is on place i of the schedule,
and M ′ = (τ ′

ij) for the changeover cost criterion, where τ ′

ij is the desirability to
schedule job j immediately after job i.

In this paper, a Population-based Ant Colony Optimization (PACO) ap-
proach to solve multi-criteria optimization problems is proposed where the pop-
ulation of solutions is chosen from the set of all non-dominated solutions found
so far (see [14] for the concept of Population-based ACO). The aim is to find a
set of different solutions which covers the Pareto-optimal front. One advantage
of the proposed algorithm is that it can be applied to problems with more than
two criteria and is not biased to solutions that are the best for one criterion.

The PACO approach for single-criteria problems is described in Section 2. In
Section 3, we introduce the new methods for applying PACO to multi-criterial
problems. The test instances and parameters are described in Section 4. The
Results are discussed in Section 5 and conclusions are given in Section 6.

2 Monocriterial Optimization and Population-Based

ACO

In this section, we describe the general principle employed by ACO to build
solutions for single-criteria optimization problems and the modifications to the
standard approach by PACO (see [14, 13] for more details). As example problems,
we use two Single-Machine Scheduling problems that are also used for later for
evaluating the proposed methods. We also describe the Summation Evaluation
method for pheromone evaluation as introduced by Merkle and Middendorf in
[17], which is included in our algorithm.

2.1 Solution Construction

When constructing solutions to an optimization problem with ACO, (artificial)
ants proceed in an iterative fashion, making a number of decisions until the global
solution is completed ([9]). Ants that found a good solution mark their paths
through the decision space by putting some amount of pheromone along the
path. The following ants of the next generation are attracted by the pheromone
so that they will search in the solution space near good solutions. For a single
machine scheduling problem, an ant will choose an initial job and proceed by
deciding which job to place next until all jobs have been scheduled. The decisions
an ant makes are probabilistic in nature and influenced by two factors: the
pheromone information, which is gained from the choices made by previous good
ants, and heuristic information, which indicates the immediate benefit of making
the corresponding choice. Depending on the type of problem being processed, the
pheromone and heuristic information have different interpretations. Consider the
Single Machine Total Tardiness Problem (SMTTP) which is defined as follows:



– Given: n jobs, where job j ∈ [1, n] has a processing time pj and a due date
dj .

– Find: A non-preemptive one machine schedule that minimizes the value of
T =

∑n

j=1 max{0, Cj − dj}, where Cj is the completion time of job j.

T is called the total tardiness of the schedule. For this problem, the pheromone
information τij and the heuristic information ηij usually give information about
the expected benefit of assigning job j to place i in the schedule, with i, j ∈
[1, n]. In this context we speak of the pheromone being stored in a job×place
pheromone matrix. The heuristic information is defined via the modified due
date rule ([17]):

ηij =
1

max{T + pj , dj} − T
(1)

where T is the total processing time of all jobs already scheduled. The Single
Machine problem with changeover costs is defined as follows:

– Given: n jobs, where for every pair of jobs i, j, i 6= j there are changeover
costs c(i, j) that have to be paid when j is the direct successor of i in a
schedule.

– Find: A non-preemptive one machine schedule that minimizes the sum of
the changeover costs C =

∑n−1
i=1 cπ(i)π(i+1), where the permutation π is the

sequence of jobs in the schedule.

C is called the cost of the schedule. For this problem, the actual place in
the schedule is no longer important for a given job. Rather, its predecessor
determines the cost incurred. Hence, the pheromone information τij and heuristic
information ηij refer to placing job j after job i in the schedule, again with
i, j ∈ [1, n]. For this case we say that the pheromone is located in a job×job
pheromone matrix. The heuristic information is defined by

ηij =
1

cij + 1
(2)

for non-negative changeover costs. Note that this problem is closely related
to the Travelling Salesman Problem. Also, in contrast to the dynamic heuristic
information for tardiness, ηij is constant. Although only the predecessor of a
job j ∈ [1, n] is important for determining the resulting cost, it can still make
sense to gain information about which job is placed first in the schedule, since
this job has no predecessor and thereby no incurred changeover cost. To realize
this, a dummy-job 0 is included, with ∀j ∈ [1, n] : c0j = 0. This job is always
scheduled first and given a row in the pheromone matrix, so that τ0j will contain
the information how beneficial it has previously been to schedule job j ∈ [1, n]
as the first “real” job.

For any given place, the set of jobs that can still be assigned is denoted
by S. With probability q0, where 0 ≤ q0 < 1 is a parameter of the algorithm,
the ant chooses the job j ∈ S which maximizes τα

ij · ηβ
ij , where α > 0 and



β > 0 are constants that determine the relative influence of the heuristic and
the pheromone values on the decision of the ant. With the probability of 1− q0,
an ant chooses according to the selection probability distribution over S defined
by ([9]):

∀j ∈ S : pij =
τα
ij · η

β
ij

∑

h∈S τα
ih · ηβ

ih

(3)

2.2 Summation Evaluation

Merkle and Middendorf [17] have proposed an alternative method for evaluating
the pheromone information stored in the matrix [τij ] when dealing with tardiness
minimization scheduling problems. Instead of using only the pheromone value τij ,

the sum over all pheromone values up to and including i, that is τ ′

ij =
∑i

l=1 τlj

is used. A study of combining a weighted version of this summation evaluation
and regular evaluation was performed for the problem of Single Machine Total
Weighted Tardiness in [18] and shown to be superior to regular evaluation. In
this combination, instead of τij , the value

τ∗

ij = c · xi · τij + (1 − c) · yi ·

i
∑

l=1

γi−lτlj (4)

is used in Formula 3. The parameters of τ ∗

ij are c, which determines the rel-
ative influence of weighted summation evaluation, γ, which indicates the weight
of previous pheromone values, and xi and yi, which are used for scaling, which is
necessary since the value provided by the weighted summation evaluation can be
a lot larger than the standard pheromone value. Specifically, the scaling values
are xi =

∑

h∈S

∑i

l=1 γi−lτlh and yi =
∑

h∈S τih.

2.3 Pheromone Update

After m ants have constructed solutions, the pheromone information is updated.
This is the point where PACO differs from the standard ACO heuristic. The
standard ACO employs evaporation to reduce all pheromone values by a relative
amount ρ, τij 7→ (1 − ρ)τij and afterwards performs a positive update with the
ant(s) that found the best solutions. For each of these solutions all pheromone
values τij corresponding to the choices ij of the solution an update is done
according to:

τij 7→ τij + ∆ (5)

PACO employs a population P = {π1, . . . , πk} of k good solutions, from
which the pheromone information τij is derived as follows. Each element of the
pheromone matrix has an initial value τinit. Whenever a solution enters the
population P , a positive update is performed as in Formula 5. If a solution
is removed from the population, its influence is explicitly removed from the



pheromone matrix by performing a negative update, i.e. using −∆ in Formula
5. As a result, if π(i) = j signifies that job j was positioned at place i, then a
job×place interpretation of the population P would yield the pheromone matrix
[τij ] with

τij = τinit + ∆ · |{π ∈ P |π(i) = j}|. (6)

We denote the maximum possible value an element of the pheromone matrix
can achieve by Equation 6 as τmax := τinit +k ·∆. Reciprocally, if τmax is used as
a parameter of the algorithm instead of ∆, we can derive ∆ := (τmax−τinit)/k so
that with Equation 6, τmax is indeed the maximum attainable value for any τij .
Note that the actual value for τinit is arbitrary, as τmax could simply be scaled
in accordance to achieve an identical probability distribution in Equation 3. For
reasons of clarity, we wish the row/column-sum of initial pheromone values to
be 1, which means that τinit = 1/(n − 1) for the job×job pheromone matrix
where the diagonal is 0, and τinit = 1/n for the job×place matrix.

3 Multi-Criteria Optimization

In this section we introduce a PACO approach for finding solutions in multi-
criteria environments. We also propose a new method for ants to make decisions
based on pheromone and heuristic information originating from different criteria.

3.1 Population of Solutions

Some methods for updating the population of PACO for single-criteria optimiza-
tion problems have been studied by Guntsch and Middendorf in [14, 13]. In this
subsection, we describe a novel way to employ the population for multi-criteria
optimization problems.

Let Q denote the set of non-dominated solutions that have been found so far.
This set will act as the super-population for PACO, from which the population
P ⊆ Q is derived to construct the pheromone matrices for the ants to work with.
First, the algorithm chooses one starting solution π from Q at random. Then,
the k − 1 solutions in Q which are closest to π with respect to some distance
measure are determined (if |Q| ≥ k − 1). Here distance is defined simply by the
sum of absolute differences in solution quality over all criteria. Together, these
k solutions form the population P = {π1, π2, . . . , πk}, with π1 = π, from which
the two pheromone matrices are determined according to Formula 6. After a
solution has been constructed by an ant the set Q is updated. After m ants have
constructed a solution a new population P is chosen.

3.2 Average-Rank-Weight Method

For multi-criteria problems the ants make their decisions based on pheromone
and heuristic information originating from different criteria. The method pro-
posed here differs from the one employed by Merkle and Middendorf [17], where



each ant is assigned a weight λ ∈ [0, 1] which defines the relative influence of the
two criteria on the decisions of an ant. Instead, we calculate a probability dis-
tribution pζ

ij for each criterion ζ (according to Formula 3 and using summation
evaluation as described in subsection 2.2 when ξ is a tardiness criterion) and
from these construct the final selection probability distribution

pΣ
ij =

∑

ζ

wζ · p
ζ
ij , (7)

with each individual weight wζ determining the influence of criterion ζ on the
decision process, and

∑

ζ wζ = 1. This method has the advantage of remaining
feasible for an arbitrary number of criteria and not requiring any corrective
scaling of pheromone or heuristic values.

Population P is used to determine the weights wζ = wζ(P ) for each criterion
ζ needed for Formula 7. The general idea is to give a criterion a higher weight
the better the solutions in P are with respect to this criterion compared to all
solutions in Q. Formally, to compute these weights we assign each solution π ∈ P
a reverse rank rζ(π) ∈ [0, |Q| − 1] for each criterion ζ. By reverse rank we mean
that rζ(π) = 0 is worst and rζ(π) = |Q| − 1 is best. Let qζ(π) denote the quality
of solution π with respect to criterion ζ, where, since we are minimizing, lesser
values of qζ(π) indicate a better solution. Then

rζ(π) = |Q| − |{σ ∈ Q|qζ(σ) < qζ(π)}| − 1 (8)

and using this reverse rank, we define the solution weights via

wζ(π) =
rζ(π)

∑

ξ rξ(π)
(9)

Finally, from the individual solution weights, we calculate the combined
weight for the population P = {π1, . . . , πk} by aggregating the weights of all
solutions in P with respect to the criterion ξ

wζ(P ) =
1

|P |

k
∑

i=1

wζ(πi) (10)

4 Test Setup

We now describe the problem, instances, and parameter settings used to eval-
uate the methods proposed in Section 2. As mentioned previously, we let the
algorithm run on a Single Machine Total Tardiness problem with changeover
costs. This problem is a combination of the two scheduling problems defined in
Subsection 2.1, and thereby a bi-criterial optimization problem, with one matrix
[cij ] for changeover costs when switching from job i to job j, and for each job
i a processing time and a due date [pi, di]. However, it is possible to scale this
problem to more criteria by utilizing several matrices for changeover costs, each
representing one criterion, as well as having more than one processing time and



due date for each job, which again leads to multiple criteria. Hence, for n jobs
the quality qζ(π) of a solution π with respect to criterion ζ is defined as

qζ(π) =







∑n−1
i=1 cζ

π(i)π(i+1) if ζ is a changeover criterion,
∑n

i=1 max(Cζ

π(i) − dζ

π(i), 0) if ζ is a tardiness criterion
(11)

where Cζ

π(i) (cζ

π(i)π(i+1),d
ζ

π(i)) is the completion time (respectively, changeover

cost, deadline) of job i according to the processing times of criterion ζ, that is

Cζ

π(i) =
∑i

j=1 pζ

π(j). In both cases a lower value of qζ(π) is better.

We used two bi-criterial test instances, with one changeover and one due
date criterion, from Iredi et al. in [15]. From these two instances a four-criterial
instance with two changeover and two due date criteria was constructed. For
the one bi-criterial instance, called instance A from here on, the changeover
costs between the jobs were chosen randomly from the interval [1, 100], while
for the other one, dubbed instance B, interval [50, 100] was used. The process-
ing times and due dates were chosen according to an often employed scheme
from [2]: for each job j ∈ [1, 100], an integer processing time pj is drawn ran-
domly from the interval [1, 100], and after all jobs have been assigned a pro-
cessing time, the due dates for each job j are drawn randomly from the interval
[

∑100
j=1 pj · (1 − TF − RDD

2 ) ,
∑100

j=1 pj · (1 − TF + RDD
2 )

]

. RDD is the relative

Range of Due Dates and determines the size of the interval from which the due
dates are drawn. TF is the Tardiness Factor and indicates where the center
of the above interval is located. For both instances, RDD = 0.6 was used; in
instance A, we set TF = 0.4 and in instance B, TF = 0.6. The four-criterial
instance that is a combination of instance A and B and is called instance AB.

For the algorithm, we used several parameter configurations. All combina-
tions of population sizes k ∈ {1, 3, 5}, q0 ∈ {0.0, 0.5, 0.9} (see Subsection 2.1),
and τmax ∈ {1, 5, 25, 125, 500, 2500} (see Subsection 2.3) were tested for each of
the two bi-criterial instances. The ants used α = 1, β = 5 for the changeover
based probability distributions and α = 1, β = 1 for the tardiness based ones
respectively. The reason for choosing different values of β is that these values
are often used in the literature for the corresponding single-criterion versions of
the two problems (i.e., TSP and SMTTP). Unless otherwise stated, only one ant
constructed a solution in each iteration before a new population was constructed,
i.e. the number of ants m per generation is one. For some configurations, using
more than one ant was also tested. The four-criterial problem composed of the
two bi-criterial ones was only studied for q0 = 0.9, τmax = 1 and k ∈ {1, 3}
since these values performed well for the bi-criterial problems. Each run of the
algorithm was stopped after 50000 solutions have been constructed.

In the following section we present and compare the median attainment sur-
faces of the fronts of non-dominated solutions found for 15 runs of the ant algo-
rithm with different randoms seeds (the median attainment surface is the median
line of all the attainment surfaces connecting the fronts of non-dominated solu-
tions in every of the 15 runs).



5 Results

We start the evaluation of the performance of the ant algorithm with the results
for problem instance A. Figure 1 shows the influence of different values of q0

on the behaviour of the algorithm for k = 1 and τmax = 25. It can be seen
that a higher value of q0 leads to a set of solutions which completely dominates
those attained by a smaller q0 (This behaviour can also be observed for the other
parameter settings of τmax and k). This is a good indication of the ants being
able to find new good solutions by making only minor adjustments to a solution
already located in Q.
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Fig. 1. Median attainment surface for instance A for q0 ∈ {0.0, 0.5, 0.9} after 50000
ants have built a solution. The other parameters are τmax = 25 and k = 1.

The influence of population size k is shown in Figure 2. For instance A, the
small population size 1, where exactly one pheromone value in each row equals
τmax and all other values are τinit, performed best. Especially when combined
with a good heuristic value and a high value of q0 = 0.9, population size 1 keeps
the ants very close to the solution from which the pheromone matrices were
derived. Note, that the population sizes k ∈ {3, 5} also performed worse than
k = 1 for q0 ∈ {0.0, 0.5}.

Finally for instance A, we look at the impact of changing the maximum
pheromone value τmax, as shown for two different cases in Figures 3 and 4. In
Figure 3, where we have a population size of k = 1, increasing the maximum
pheromone value seems to have a beneficial effect on optimizing the tardiness
criterion at the expense of some solution quality in the changeover criterion.
A significant effect on the front of non-dominated solutions by different values
of τmax is only evident for k = 1 however (compare the results for a larger
population size k = 5 in Figure 4).

It seems that the tardiness criterion and the changeover criterion require
different values of τmax. We therefore explored a combination of setting τmax = 5
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Fig. 2. Median attainment surface for instance A for k ∈ {1, 3, 5} after 50000 ants have
built a solution. The other parameters are τmax = 25 and q0 = 0.9.
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Fig. 3. Median attainment surface for instance A for τmax ∈ {1, 25, 125, 2500} after
50000 ants have built a solution. The other parameters are k = 1 and q0 = 0.9.

for the job×job matrix and τmax = 25 for the job×place matrix, the result of
which is shown in Figure 5. The median attainment surface for this case lies
between those with the same value of τmax for both criteria.

We now show the results for instance B. The effect of different values of q0

on the median attainment surface is shown in Figure 6 for τmax = 1 and k = 3.
Similar as for instance A, a higher value of q0 outperforms a lower one (this
holds also for other values of τmax and k).

Considering the influence of the population size k, the results for instance
B differ from those for A (see Figure 7). Whereas for instance A a population
size of k = 1 performed best, here it performs worst everywhere except in the
region of the median attainment surface with the low tardiness values. This
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Fig. 4. Median attainment surface for instance A for τmax ∈ {1, 25, 125, 2500} after
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max = 25) for the job×job and job×place matrix respectively.
Results are shown after 50000 ants have built a solution, with k = 1 and q0 = 0.9.

behaviour suggests that in comparison to instance A, a more diverse supply
of pheromone is necessary to enhance different options for finding schedules
with small changeover costs. The reason might be that the changeover costs
for instance B are more similar and therefore possibly a relatively large set of
different good solutions exist.

The influence of the maximum pheromone value τmax on solution quality
for instance B is shown in Figure 8 for q0 = 0 (left) and q0 = 0.9 (right).
For q0 = 0.0, a higher maximum pheromone value leads to a better median
attainment surface, with τmax = 1 performing comparatively poor (this was
observed also for q0 = 0.5). This changes when setting q0 = 0.9, where τmax = 1
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Fig. 7. Median attainment surface for instance B for k ∈ {1, 3, 5} after 50000 ants have
built a solution. The other parameters are τmax = 1 and q0 = 0.9.

outperforms the higher maximum pheromone values significantly. This differs
from the results for instance A. A reason could be that the possibly different
good solutions with respect to changeover costs for instance B might be difficult
to find for the ants when using a combination of high τmax and high q0.

The progression of PACO over time for instance B is shown in Figure 9. It
can be seen that in relation to the tardiness criterion, the relative improvement of
the changeover costs criterion is by far larger, continuing to explore this outside
edge of the set of non-dominated solutions for the entire runtime.

We now move our attention to the four-criterial instance AB. In order to
evaluate the performance of the algorithm on this instance, we projected the
resulting four-criterial median attainment surface to a 2-dimensional one for
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Fig. 8. Median attainment surface for instance B for τmax ∈ {1, 25, 125, 2500} after
50000 ants have built a solution. The other parameters are k = 3 and q0 = 0.0 (left)
and q0 = 0.9 (right).
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Fig. 9. Median attainment surface for instance B after an indicated number of ants
have built solutions. The parameters are τmax = 1, k = 3 and q0 = 0.9.

each of the original instances A and B respectively. Thus we can compare the 2-
dimensional fronts of the algorithm that ran on instance AB with the algorithm
that, with the same parameter settings, was used to solve only A or B exclusively.
The results are shown in Figure 10.

As can be seen, the 2-dimensional projection of the 4-dimensional front is
worse for both original instances A and B. Note that this comparison is, of
course, not completely fair for the algorithm working on instance AB, in the
sense that it has to manage a much larger set Q then the algorithm working
only on A or B; the size of Q was between 31 and 58 solutions for the bi-criterial
instances and ranged from 2739 to 5102 for instance AB, after 50000 iterations.
Therefore, it can be argued that each solution of set Q could not be exploited as
exhaustively as in the case of a 2-dimensional instance. Despite performing worse
than on the bi-criterial instances, the performance of PACO on the four-criterial
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Fig. 10. Median attainment surface for instance A (left) and B (right) and instance AB

projected to the corresponding two dimensions after 50000 ants have built a solution.
The parameters are τmax = 1, k = 1 and q0 = 0.9.

instance is not actually bad, and signifies to us that the general approach is
indeed feasible for more than bi-criterial instances.

6 Conclusion

We have successfully modified the PACO algorithm to deal with multi-criteria
optimization problems, including the introduction of the Average-Weight-Rank
method for constructing the selection probability distribution for the ants and
the new derivation of the active population to determine the pheromone matrices.
Specifically, the algorithm was tested when used in conjunction with the Single
Machine Total Tardiness with changeover costs problem, and the influence of the
different parameter settings on the behaviour of the algorithm was investigated.

For future work, we will focus more on many-dimensional problems and the
specific handling they require when managing the candidate set for the popula-
tion, like not biasing the algorithm towards dense parts of the non-dominated set
of solutions and limiting the size of the set of solutions from which the population
is derived. Also, different possibilities for combining solutions in the pareto-front
exist and will be researched further.
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