Skip to main content

A Real-World Test Problem for EMO Algorithms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2632))

Abstract

In this paper, a real-world test problem is presented and made available for use by the EMO community. The problem deals with the optimization of polymer extrusion, in terms of setting the operating conditions and/or the screw geometry. The binary code of a computer program that predicts the thermomechanical experience of a polymer inside the machine, as a function of geometry, polymer properties and operating conditions, is developed. The program can be used through input and output data files, so that the parameters to optimize and the criteria evaluated data is communicated in both directions. Two distinct EMO algorithms are used to illustrate and test the optimization of this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schafer, J.D.: Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms, Ph. D. Thesis, Nashville, TN, Vanderbilt University (1984)

    Google Scholar 

  2. Deb, K.: Multi-Objective Optimisation using Evolutionary Algorithms, Wiley (2001)

    Google Scholar 

  3. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer (2002)

    Google Scholar 

  4. Deb, K.: Multi-objective Genetic Algorithms: Problems Difficulties and Construction of Test Problems, Evolutionary Computation Journal, 7 (1999) 205–230

    Article  Google Scholar 

  5. Deb, K., Pratap, Meyarivan, T: Constrained Test Problems for Multiobjective Evolutionary Optimization, Proceedings of the First Int. Conf. On Evolutionary Multiobjective Optimization (EMO-2001), Zurich, Switzerland (2001) 284–298

    Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems, Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC 2002) (2002)

    Google Scholar 

  7. Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello, David Corne (Eds.): Evolutionary Multi-Criterion Optimization, First International Conference, EMO 2001, Zurich, Switzerland, March 2001, Proceedings, Lecture Notes in Computer Science (LNCS) Vol. 1993, Springer-Verlag, Berlin (2001)

    Google Scholar 

  8. Deb, K., Thiele, L., Yen, G., Zitzler, E. (eds.): Special Track on Evolutionary Multi-Objective Optimization (EMO), Congress on Evolutionary Computation (CEC), Honolulu, Hawaii (2002)

    Google Scholar 

  9. Amellal, K., Lafleur, P.G., Arpin, B.: Computer Aided Design of Single-Screw Extruders, in A.A. Collyer, L.A. Utracki (eds): Polymer Rheology and Processing, Elsevier (1989) 277–317

    Google Scholar 

  10. Rauwendaal, C.: Polymer Extrusion, Hanser Publishers, Munich (1986)

    Google Scholar 

  11. O’Brian, K.: Computer Modelling for Extrusion and Other Continuous Polymer Processes, Carl Hanser Verlag, Munich (1992)

    Google Scholar 

  12. Agassant, J.F., Avenas, P., Sergent, J.: La Mise en Forme des Matiéres Plastiques, 3rd edn, Lavoisier, Paris (1996)

    Google Scholar 

  13. Stevens, M.J., Covas, J.A.: Extruder Principles and Operation, 2nd ed., Chapman & Hall, London (1995)

    Google Scholar 

  14. Walker, D.M.: An Approximate Theory for Pressures and Arching in Hoppers, Chem. Eng. Sci., 21 (1966) 975–997

    Article  Google Scholar 

  15. E. Broyer, Z. Tadmor, Solids Conveying in Screw Extruders — Part I: A modified Isothermal Model, Polym. Eng. Sci., 12, pp. 12–24 (1972).

    Article  Google Scholar 

  16. Tadmor, Z., Broyer, E.: Solids Conveying in Screw Extruders — Part II: Non Isothermal Model, Polym. Eng. Sci., 12 (1972) 378–386

    Article  Google Scholar 

  17. Tadmor, Z., Klein, I.: Engineering Principles of Plasticating Extrusion, Van Nostrand Reinhold, New York (1970)

    Google Scholar 

  18. Kacir, L., Tadmor, Z.: Solids Conveying in Screw Extruders — Part III: The Delay Zone, Polym. Eng. Sci., 12 (1972) 387–395

    Article  Google Scholar 

  19. Gaspar-Cunha, A.: Modelling and Optimisation of Single Screw Extrusion, Ph. D. Thesis, University of Minho, Guimarães, Portugal (2000)

    Google Scholar 

  20. Lindt, J.T., Elbirli, B.: Effect of the Cross-Channel Flow on the Melting Performance of a Single-Screw Extruder, Polym. Eng. Sci, 25 (1985) 412–418

    Article  Google Scholar 

  21. Elbirli, B., Lindt, J.T., Gottgetreu, S.R., Baba, S.M.: Mathematical Modelling of Melting of Polymers in a Single-Screw Extruder, Polym. Eng. Sci., 24 (1984) 988–999

    Article  Google Scholar 

  22. Pinto, G., Tadmor, Z.: Mixing and Residence Time Distribution in Melt Screw Extruders, Polym. Eng. Sci., 10 (1970) 279–288

    Article  Google Scholar 

  23. Bigg, D.M.: Mixing in a Single Screw Extruder, Ph. D. Thesis, University of Massachusetts (1973)

    Google Scholar 

  24. Press, W.H., Teukolsky, A.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computation, 2nd edition, Chapter 9, Cambridge University Press, Cambridge (1992)

    Google Scholar 

  25. Brent, R.P.: Algorithms for Minimization without Derivatives, Englewood Cliffs, Prentice-Hall, New Jersey (1973)

    MATH  Google Scholar 

  26. Web Page: http://www.dep.uminho.pt/pp/index.php3?gaspar@dep.uminho.pt (2002)

  27. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGAII, IEEE Transactions on Evolutionary Computation, 6 (2002) 182–197

    Article  Google Scholar 

  28. Gaspar-Cunha, A.: Reduced Pareto Set Genetic Algorithm (RPSGAe): A Comparative Study, The Second Workshop on Multiobjective Problem Solving from Nature (MPSN-II), Granada, Spain (2002)

    Google Scholar 

  29. Kanpur Genetic Algorithm Laboratory (KANGAL) web page: http://www.iitk.ac.in/kangal/soft.htm

  30. Gaspar-Cunha, A.; Covas, J.A.: The Design of Extrusion Screws: An Optimisation Approach, Intern. Polym. Process., 16, pp. 229–240 (2001)

    Google Scholar 

  31. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, PhD Thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaspar-Cunha, A., Covas, J.A. (2003). A Real-World Test Problem for EMO Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds) Evolutionary Multi-Criterion Optimization. EMO 2003. Lecture Notes in Computer Science, vol 2632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36970-8_53

Download citation

  • DOI: https://doi.org/10.1007/3-540-36970-8_53

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01869-8

  • Online ISBN: 978-3-540-36970-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics