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Abstract. For Rayleigh fading channels, there exists an interesting sim-
ilarity between resistive circuits and time and path diversity mechanisms
in multihop wireless sensor networks. A resistor-like circuit element, the
erristor, representing the normalized noise-to-signal ratio, is introduced.
Given an end-to-end packet delivery probability (as a QoS requirement),
the nonlinear mapping from link reception probabilities to erristor values
greatly simplifies the problems of power allocation and the selection of
time and path diversity schemes. Thanks to its simplicity, the formal-
ism that is developed also provides valuable insight into the benefits of
diversity mechanisms, which is illustrated by a number of examples.

1 Introduction

The lifetime of wireless sensor network is crucial, since autonomous oper-
ation must be guaranteed over an extended period [1, 2]. Energy and in-
terference considerations often necessitate multihop routing, where sensor
nodes also act as routers, forwarding other nodes’ packets [3]. Routing
schemes that were developed for wired networks will perform subopti-
mally since they are based on virtually error-free point-to-point links,
thereby ignoring two fundamental properties of the wireless link: 1) the
fragility of the channel due to fading and interference [4, 5] and 2) the
inherent broadcast property of wireless transmissions1. Whereas the first
property is adverse, the second one can be exploited by transmission
schemes that are based on the principle of cooperative diversity [6], where
nodes coordinate both direct and relayed transmissions. Cooperative di-
versity is a form of spatial diversity, which, in the case of static single-
antenna nodes, reduces to path diversity. The other promising strategy (in
the case of narrowband channels) against fading is time diversity, which,
for slow fading channels and relatively short packets, is mainly exploited
in the form of retransmissions.
1 We assume that omnidirectional antennas are employed.
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In this paper, we present a simple but powerful formalism that allows
an efficient analysis and design of time and path diversity strategies for
Rayleigh fading channels. In the analysis, the transmit power levels are
given and the end-to-end reliability pEE is to be determined, whereas in
the (more interesting) design problem, we assume that the application
dictates a certain end-to-end reliability pD, and the question is how to
choose the transmit powers, the relays (paths), and the number of trans-
missions over each link in order to minimize energy consumption and/or
maximize network lifetime under the constraint pEE > pD.
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Fig. 1: A two-hop connec-
tion with two transmis-
sions over the second hop.

Example 1. Consider the simple example in Fig. 1.
A packet is transmitted with reception probability
p01 over the first hop and transmitted twice over
the second hop, with probabilities p12,1 and p12,2,
respectively. The end-to-end reliability of the con-
nection is pEE = p01 ·

(

1 − (1 − p12,1)(1 − p12,2)
)

.
Let pD = 90%. What combination(s) of transmit
powers satisfy pEE > pD, and which one is energy-
optimal? �

2 The Link Model

We assume a narrowband multipath wireless channel, modeled as a slow
Rayleigh fading channel [7] with an additive noise process z. The received
signal at time k is yk = ak xk + zk , where ak is the large-scale path loss
multiplied by the fading coefficient. The variance of the noise process is
denoted by σ2

Z .
The transmission from node i to node j is successful if the signal-to-

noise-and-interference ratio (SINR) γ is above a certain threshold Θ that
is determined by the communication hardware and the modulation and
coding scheme [5]. With the assumptions above, γ is a discrete random
process with exponential distribution pγ(x) = 1/γ̄ e−x/γ̄ with mean

γ̄ =
P̄

σ2
Z + σ2

I

. (1)

P̄ denotes the average received signal power over a distance d = ‖xi−xj‖2:
P̄ = P0d

−α, where P0 is proportional to the transmit power2, and the
2 This equation does not hold for very small distances. So, a more accurate model

would be P̄ = P ′

0 · (d/d0)
−α, valid for d > d0, with P ′

0 as the average value at
the reference point d0, which should be in the far field of the transmit antenna. At
916MHz, for example, the near field may extend up to 3-4ft (several wavelengths).
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path loss exponent is 2 6 α 6 5. σ2
I is the interference power affecting

the transmission. It is the sum of the received power of all the undesired
transmitters.

The following theorem shows that for Rayleigh fading networks, it is
possible to analyze noise and interference separately.

Theorem 1. In a Rayleigh fading network, the reception probability P[γ >
Θ] can be factorized into the reception probability of a zero-noise network
and the reception probability of a zero-interference network.

Proof: The probability that the SINR is bigger than a given threshold
Θ follows from the cumulative distribution fγ(x) = 1 − e−x/γ̄ :

P[γ > Θ] =e−Θ/γ̄ = e−
Θ
P̄

(σ2

Z+σ2

I )

=e−
Θσ2

Z
P̄ · e−

Θσ2

I
P̄ = P[γZ > Θ] · P[γI > Θ] , (2)

where γZ := P/σ2
Z denotes the signal-to-noise ratio (SNR) and γI :=

P/σ2
I denotes the signal-to-interference ratio (SIR). The first factor is the

reception probability in a zero-interference network as it depends only on
the noise, and the second factor is the reception probability in a zero-noise
network, as it depends only on the interference. It follows from (2) that
γ̄ = (γ̄Z γ̄I)/(γ̄Z + γ̄I).

This allows an independent analysis of the effect caused by noise and the
effect caused by interference. The focus of this paper is put on the noise,
i.e., on the first factor in (2). If the load is light (low interference prob-
ability), then SIR�SNR, and the noise analysis alone provides accurate
results. For high load, a separate interference analysis3 has to be carried
out, as in [9]. Most energy-constrained sensor networks aim at minimizing
the communication, which justifies the focus on noise.

In a zero-interference network, the reception probability over a link of
distance d at a transmit power P0, is given by

pr := P[γZ > Θ] = e
−

Θσ2

Z
P0 d−α . (3)

Solving for P0, we get for the necessary transmit power to achieve pr:

P0 =
dαΘσ2

Z

− ln pr
. (4)

3 Note that power scaling, i.e., scaling the transmit powers of all the nodes by the
same factor, does not change the SIR, but (slightly) increases the SINR. This has
been pointed out also in [8]
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3 The Erristor Representation

3.1 Connections without retransmission

Assume a n-hop connection from node 0 to node n in a wireless sensor net-
work. The desired end-to-end reliability is pD. The reception probability
over a chain of n nodes is

pEE = e
−Θ

∑n
i=1

1

γ̄i (5)

where γ̄i denotes the mean SNR at receiver i. Let R denote the normalized
average noise-to-signal ratio (NSR) at the receiver, i.e., R := Θ/γ̄. We
get

− ln pEE =

n
∑

i=1

Ri = Rtot . (6)

Hence the condition pEE > pD translates into the condition that the sum
or the series connection4 of the NSR values Ri is at most RD := − ln pD.
So, the individual Ri’s can be replaced by an equivalent Rtot. For a single
link, we have

R = − ln pr ⇐⇒ pr = e−R . (7)

For probabilities close to 1 (or R � 1), the following first-order approxi-
mations are accurate:

R̂ := 1 − pr / R ⇐⇒ p̂r := 1 − R / pr (8)

This approximation shows that for small values, the NSR can be con-
sidered equivalent to the packet error probability. To emphasize this fact
and the resistor-like series connection property of the NSR, we denote R
as an “erristor” and its value as its “erristance”.

Eq. (8) shows that, when determining the erristance from a given
probability, the approximated value will be on the safe side, and from
(6), we see that over a multihop connection, the noise accumulates and
the error probabilities simply add up.

The relationship between the transmit power and R is

P0 = dαγ̄σ2
Z =

dαΘσ2
Z

R
. (9)

Henceforth, P := dα/R denotes the normalized (by Θσ2
Z) transmit power.

4 In terms of the SNR values, this corresponds to a parallel connection, which was
pointed out in [10].
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Example 2. Fig. 2 (left) shows an example with three links and their recep-
tion probabilities. From (6) we know that a series of hops translates into a
series connection of erristors, hence we find the corresponding erristor net-
work in Fig. 2 (right). For pD = 90%, for example, the value of R1+R2+R3

must be at most − ln pD ≈ 0.105. If all the power levels are equal, this
can be achieved by setting R1 = R2 = R3 = 0.105/3 = 0.035. A possible
solution with unequal power is R1 = R2 = 0.05 and R3 = 0.005. Here, the
probability after two links is e−0.05e−0.05 ≈ 90.5%, which is already close
to 90%. Consequently, a lot of of energy is consumed at the third link to
ensure packet reception with the required probability e−0.005 = 99.5%.

p
1

p
2

p
3

0 321 0 1 2 3

R1 R2 R3

Fig. 2: A three-hop connection with link reception probabilities p1, p2, and p3 (left)
and the erristor circuit (right). The erristor values are the normalized noise-to-signal
ratios R1, R2, and R3. Ri = − ln pi.

If the internode distances di (between node i−1 and node i) are given,
a solution can be determined that ensures that all the transmit power
levels have the same value P . From (dα

1 + dα
2 + dα

3 )/P 6 − ln pD, we get

P >
dα
1 + dα

2 + dα
3

− ln pD
. (10)

For di = i, α = 2, and pD = 90%, for example, we get P ≈ 14 · 9.5 ≈ 133
and R1 ≈ 0.0075, R2 ≈ 0.03, and R3 ≈ 0.0677. �

3.2 Connections with time diversity (retransmissions)

Coming back to example 1 (Fig. 1), the question is how to incorporate
retransmissions into the erristor formalism. Considering the second link,
we found that p12 = 1 − (1 − p12,1)(1 − p12,2), which is equivalent to

p12 = 1 −
(

1 − e−R12,1
)(

1 − e−R12,2
)

. (11)

In general, for n transmissions over one link at NSR levels Ri, we have

pn = 1 −
n

∏

i=1

(1 − e−Ri) . (12)

To derive a general rule for the simplification of these expressions, we
apply the following theorem.
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Theorem 2.
For (x1, x2, . . . , xn) ∈ (R+

0 )n,

1 −
n

∏

i=1

(1 − e−xi) > e−
∏n

i=1
xi . (13)

The identity holds if and only if
∏n

i=1 xi = 0.

R12,1
R01 20 1

R12,2

Fig. 3: The erristor cir-
cuit of Fig. 1.

The proof is presented in the Appendix.

Example 1 (cont.). So, in example 1, e−R12,1R12,2 is
a lower bound for p12, and for R1 � 1 and R2 � 1,
the bound is tight. Thus we may replace the erris-
tors R21 and R22 by an erristor R2 = R21R22. In
the erristor diagram, the two transmissions are il-
lustrated by a parallel connection (see Fig. 3). So,
erristors connected in series behave like regular re-
sistors, whereas the values of erristors connected in parallel have to be
multiplied. Due to the bound derived above, the resultant end-to-end re-
liability will be slightly higher than the one required. �

For n transmissions with the same power level R, the difference be-
tween the precise probability value 1 − (1 − e−R)n and the lower bound
e−Rn

is plotted in Fig. 4. The erristance threshold where the bound is
within 1% is R = 0.236 for n = 2 and R = 0.375 for n = 4. Thus
for R < 1/4 (p > 78%), the bound is sufficiently tight for all practical
purposes.

For values R ' 1, the bound is loose, and the multiplication does
not make sense, since the overall erristance increases, although, of course,
even a retransmission with low power still leads to an improvement in
the total link reception probability. However, for R ' 1/2, a single trans-
mission outperforms splitting the power into two transmissions: For two
transmissions at NSR 2R, the reception probability is pr = 1−(1−e−2R)2,
whereas for a single transmission at NSR R, we get p′

r = e−R. The two
probabilities are equal for

R = ln2 − ln(
√

5 − 1) ≈ 0.48. (14)

So, for R ' 1/2, the reception probability is higher for a single trans-
mission at NSR R.

Note that a peak transmit power constraint P < Pmax translates into
the minimum resistor value that can be used. Over a link of distance d,
the minimum erristor value is Rmin = dα/Pmax.
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Fig. 4: The difference between the exact probability and the lower bound for n =
2, 4, 6, 8, 10 transmissions with equal erristance R.

4 Path Diversity

4.1 Transmissions over independent paths

The analysis in the previous Section is valid if retransmissions have in-
dependent reception probabilities. This is not guaranteed if the channel’s
coherence time is substantially larger than a packet transmission time or
if shadowing is the cause for packet loss, in which case a form of path
diversity is required.

Example 3. Fig. 5 displays an example of a network where path indepen-
dence is guaranteed even when the channels have a long coherence time.
By conventional analysis, the end-to-end reception probability is

pEE =
(

1 − (1 − e−R01e−R12)(1 − e−R02)
)

×
(

1 − (1 − e−R23e−R34)(1 − e−R24)
)

. (15)

How to choose the Rij’s to guarantee pEE > pD = 95%? This is a non-
trivial question that can easily be answered using the erristor formalism.
The equivalent erristor (see Fig. 5 (right)) is

Rtot = (R01 + R12)R02 + (R23 + R34)R24 , (16)

and pEE = e−Rtot . For a desired pD = 95%, we have Rtot ≈ 0.05. Thanks
to the symmetry, (R01 + R12)R02 = (R23 + R34)R24 = 0.025 is a so-
lution; hence we may set nearest-neighbor hops to Ri−1,i = 0.05 and
R02 = R24 = 0.25. Note that the value for the two longer hops is 5 times
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Fig. 5: A network that exploits path diversity (left) and its erristor circuit (right).

bigger, which means that the necessary transmit powers are comparable
if the nodes have equal distances and the path loss exponent is between 2
and 3. So, using the erristor formalism, the diversity scheme and power al-
location should guarantee pEE = e−0.05 ≈ 95.1% > pD. The conventional
analysis (15) yields pEE ≈ 95.8% which is, as expected, slightly bigger
than the one from the erristor analysis. The formalism also permits a
rapid reallocation of resources, if necessary. Assume node 3 runs out of
energy. With R34 → ∞, we see immediately that R23 becomes useless,
and the only path in the lower half of the diagram will be the one with
R24. What value does R24 need to have to ensure pD? Without changing
the other erristances, we immediately find R24 = 0.025. �

The total energy consumption (per packet) at each node can easily be
determined:

Ei =

m
∑

j=1

dα
ij

Rij
, (17)

where m is the number of outgoing paths from node i.

4.2 Implicit transmissions

In the first example (Fig. 1), if node 2 listens to the transmission from
node 0 to node 1, then this implicit transmission has to be modeled by
an additional erristor for an accurate analysis. This implicit erristor is
free in terms of transmit power (but still requires power to receive the
packet)5.

Assume pD = 99%, so Rtot ≈ 0.01. This is achieved by setting R01 =
0.005 and R12,1 = R12,2 = 0.07. However, since there is an implicit trans-
mission from 0 to 2, there is a erristor in parallel with a value of Ri

02 =
R01(d02/d01)

α (the superscript i indicates an implicit transmission). As-
suming d02 = 2d01 and α = 3, we get Ri

02 = 0.04, Rtot = 0.01 · 0.04 and
pEE ≈ 99.96%, which is much better than the target of 99%. So we can

5 This advantage of omnidirectional transmission is often denoted as the wireless mul-
ticast advantage [5, 11].
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reduce R01 to a value that guarantees (R01+0.005)R01 ·88 = 0.01. Solving
the resulting quadratic equation yields R01 ≈ 1/30, which corresponds to
less than 1/6 of the original power.

For large path loss exponents and smaller transmit powers, the benefit
to listeners that are farther away than the intended receiver becomes
small, since the implicit erristances will be close to one or even above
However, if the implicit receiver is closer than the intended one or if the
transmit power is relatively high, it is worthwile having the nodes awake
and listening.

12R

R02

R34

R240 2 4

01 23R

R23R01

Ri i

1 3

Fig. 6: The erristor circuit for
Fig. 5 including implicit transmis-
sions. Implicit erristors are gray-
shaded.

Example 3 (cont.). In example 3 (Fig. 5),
there is an implicit transmission from node
2 to node 3 when node 2 is transmitting to
node 4. If node 3 ignores this transmission,
then the analysis in the previous Subsec-
tion was correct. If it takes advantage of
that information, we have to add another
erristor, as shown in Fig. 6.

Assuming equal distances between
neighboring nodes, Ri

01 = 2−αR02 and
Ri

23 = 2−αR24. For α = 2 and using the same values as before,
Ri,i−1 = 0.05 and R02 = R24 = 0.25, we find Ri

01 = Ri
23 = 0.0625

and

Rtot = 2
( 1

20
· 1

16
+

1

20

)

· 1

4
≈ 0.027 , (18)

resulting in pEE ≈ 97.3%, which is larger than the target of 95%. Consid-
ering that 1/16 � 1, we may try to omit the explicit transmission com-
pletely, which results in Rtot = (1/16+1/20)/2 ≈ 0.056 and pEE = 94.4%.
A slight decrease of R02 and R24 by 10% each brings pEE to 95.2%.

In general, we can say that whenever there are two erristors in series
with one significantly smaller than the other one, the power is better
distributed differently. �

Example 4. A simple cooperative scheme. In Fig. 7, a situation is shown
where node 0 wants to transmit to node 1, and the cooperative node C
may help as a relay. From the erristor circuit it can be seen that there
is no explicit transmission from 0 to C. The goal is to determine which
transmission strategy minimizes the total transmit energy Etot given a
certain total erristance Rtot.

Let D :=
(

d
2

)α
. With Rtot = R01(R

i
0C +RC1) and Ri

0C = DR01, we get
Rtot = R01(R01D + RC1) and Etot = 2αR01 + dαRC1 = 2α(R01 + DRC1).
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Fig. 7: A simple cooperative scheme (left) and the corresponding erristor circuit (right).
Node C is relaying a packet from node 0 to assist node 0. The distances 0C and C1
are d = 1/ cos φ.

Strategy A: Equal received power. A possible strategy is to have C
transmit at a power level that makes the received power at node 1 equal to
that from the direct transmission 01, i.e., RC1 = R01 =: R. Rtot simplifies

to Rtot = R2(1 + D), and thus R =
√

Rtot

1+D . Inserting this expression into

the transmit energy Etot = 2α

R (1 + D) yields

EA
tot =

2α(1 + D)3/2

√
Rtot

. (19)

Strategy B: Equal transmit power. Here, we assume that both node 0
and C use the same transmit power. With R := R01 and RC1 = Ri

0C =

RD we have Rtot = 2DR2 and R =
√

Rtot

2D . The total energy consumption

is simply Etot = 2 · 2α/R, or, as a function of Rtot,

EB
tot = 2α+1

√

2D

Rtot
. (20)

The energy consumption ratio of strategies A and B is

ρ :=
EB

tot

EA
tot

=
2
√

2D

(1 + D)3/2
. (21)

ρ = 1 for D = 1 and D =
√

5 − 2 ≈ 0.236. For
√

5 − 2 < D < 1, strategy
A is preferable (ρ > 1). The maximum ρ, however, is only 4

9

√
6 ≈ 1.089,

occurring at D = 1
2 . So, strategy A is at most 8.9% better.

To get a complete view, we also discuss the case of a direct one-hop
transmission and an explicit two-hop scheme without a direct path from
0 to 1. For the one-hop case, we have Eone

tot = 2α/Rtot, and for the two hop
case (assuming equal transmit powers), there are two erristors in series
with value Rtot/2 and thus Etwo

tot = 4dα/Rtot = 4DEone
tot .
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Fig. 8: Visualization of the regions in the
(D, R−1

tot) plane where the different strategies
are optimum. Note that the curves D/8 and
(1+D)3 intersect at the points (

√

5−2, (
√

5−
1)3) and (1, 8). Values Rtot > 1/2 are not
practical, since the corresponding probabil-
ity is less than 60%.

The one-hop strategy is bet-
ter if 4D > 1, or, in terms of
the actual distance d, d > 21−2/α.
So, for α = 2 and for d > 2,
one-hop is always better, even for
α → ∞, which is easily explained,
since node C is then not closer
than node 1. As a function of the
angle φ = arccos(1/d), the con-
dition for one-hop to be better is
expressed as φ > arccos(22/α−1).
For α → ∞, the critical angle
is φ = π/3 (corresponding to an
equilateral triangle 0C1), as ex-
pected.

The last step is the compari-
son of these simple schemes with
the cooperative strategies A and
B. First we note that B always
outperforms the two-hop scheme, since it exploits “free” information that
is transmitted over the direct path. The tournament between A and one-
hop is won by A if Rtot < (1 + D)−3, and B wins against one-hop if
Rtot < 8

D . The resulting division of the (D,R−1
tot)-plane in the different

strategies is shown in Fig. 8. The erristor formalism transforms complex
logarithmic relationships into simple polynomial ones, which permits the
analytical derivation of these boundaries. �

Example 5. Virtual antenna arrays. Several nodes that are close may co-
operate and act as a virtual antenna array, exploiting spatial diversity.
The performance of such arrays was analyzed in [12] from an information-
theoretic perspective. Here, we are using the erristor formalism to com-
pare these schemes with conventional multihop routing. Fig. 9 shows the
erristor diagram of a simple scenario with two nodes assisting each other
at the source, in the middle, and at the destination. So, instead of indi-
vidual nodes, we have clusters of two nodes at positions 0, 1, and 2. It is
assumed that the intracluster distances are much smaller than the inter-
cluster distances d/2. When the source node in cluster 0 is transmitting
to cluster 1, his peer will receive that packet with probability (almost)
one since Ri

00 � R01. In the next time slot, this peer node will transmit
the same packet to cluster 0. Hence, the same packet is delivered over four
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different paths. Similarly, cluster 1 relays the packet to cluster 2 over four
paths. In the case that the actual destination node itself in cluster 2 does
not correctly receive the packet, an additional short intracluster trans-
mission is required, whose energy is neglected in the following analysis.

p01 p
12

d/2 d/2

0 1 2

0

01

R01

R01

R01

R

R

00

00

i

i

R

R

R

i

i

R R12

12

11

11

12

12

R

R

21

Fig. 9: A virtual antenna scheme and its erristor circuit.

We assume R01 = R12 := R. For the diversity scheme, with Ri
00 � R,

we get Rtot = 2R4 and

Etot = 4
(d/2)α

R
= 4

(d

2

)α( 2

Rtot

)
1

4

. (22)

For comparison, for a 4-hop connection with hops of length d/4, we have
Rtot = 4R′ and

E′

tot = 4
(d

4

)α 4

Rtot
= 24−α

(d

2

)α
R−1

tot . (23)

The ratio between the two energies is

Etot

E′

tot

= R3
tot2

4α−7 . (24)

Hence the diversity scheme is more efficient for

Rtot < 2
4α−7

3 or pD > exp
(

−2
4α−7

3

)

. (25)

This curve is plotted in Fig. 10 (left). Substantial energy gains are possible
for high pD (see Fig. 10 (right)). When the path loss exponent increases
by one, the energy gain decreases by a factor of 24/3 ≈ 4dB.
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Fig. 10: Left: The region in the (α, pD) plane where the diversity scheme outperforms
conventional multihop routing. Right: The energy gain as a function of the end-to-end
probability.

This diversity scheme can be generalized to clusters of size m that
transmit over n hops. In this case, Rtot = nRm2

and

Etot = mn
(d

n

)α( n

Rtot

)
1

m2

. (26)

For the multihop scheme with mn hops6, Rtot = mnR′ and

E′

tot = mn
( d

mn

)α mn

Rtot
. (27)

The ratio is
Etot

E′

tot

= R
1− 1

m2

tot n
1

m2
−1 mα−1 , (28)

from which we see that the energy gain is maximized for m = 2 (except
for α = 2, where m = 3 performs slightly better) and increases almost
linearly in n. We conclude that for high pD and smaller α, the diversity
scheme clearly outperforms conventional multihop routing. �

5 Concluding Remarks

The erristor formalism permits the mapping of unhandy probability ex-
pressions into a simple circuit-like framework, which greatly simplifies the
analysis and design of transmit schemes that are based on time diversity,

6 This comparison is fair both in terms of the number of nodes involved and in the
delay, since the total number of transmissions is mn for both schemes.
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path diversity, or a combination thereof. The erristor circuit is topolog-
ically equivalent to the network graph and can therefore be drawn in a
straightforward manner. Resource allocation and reallocation problems
can effortlessly be solved by simple arithmetic, which makes a real-time
implementation readily feasible. Further, the formalism may prove use-
ful for educational purposes, since the multiplication property of parallel
erristors impressively demonstrates the benefits of diversity schemes, and
the series connection shows how the noise and, in turn, the error proba-
bility accumulates over multiple hops.

While this work is mainly focused on noise-limited networks, it seems
possible to include the interference in the same framework, since SNR and
SIR exhibit a parallel combination property similar to the SNR values of
subsequent links (see Theorem 1). This will be part of future investiga-
tions.

Appendix: Proof of Theorem 2

From the inequality (see (13))

1 −
n

∏

i=1

(1 − e−xi) > e−
∏n

i=1
xi (29)

it is easy to see that both expressions are equal (to 1) if one of the xi

is zero. It remains to show that f(·) : R
n → R

fn(x1, x2, . . . , xn) = 1 −
n

∏

i=1

(1 − e−xi) − e−
∏n

i=1
xi . (30)

is positive if all xi are positive. We note that f goes to zero if ∀i, xi → ∞.
Hence f is positive for positive xi if its partial derivatives ∂f/∂xi are
positive at 0 and have at most one zero for positive xi. Since the function
is symmetric in all xi, it is sufficient to consider only one partial derivative.
An inductive technique is employed, discussing the case n = 2 first.

Consider

g2(x) := f2(x, y) = e−x + e−y − e−x−y − e−xy (31)

for a fixed y > 0. For y = 0, g2(x) ≡ 0, and for y > 0, we note that
g(0) = 0 and limx→∞ g(x) = e−y > 0. Since

g′(x) =
dg

dx
= e−x

(

−1 + e−y + yex(1−y)
)

, (32)
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there exists a single local extremum x̄ for y > 0 at

x̄ =
1

y − 1
ln

( y

1 − e−y

)

. (33)

As y > (1 − e−y) for y > 0, we find x̄ > 0 for y > 1 and x̄ < 0 for
0 < y < 1. For y = 1, no solution exists, and for y = 0, g ′(x) ≡ 0.
Since g′(0) = −1 + e−y + y > 0, it is clear that the extremum is a
maximum. So, we have g(0) = 0, and for 0 < y 6 1, g(x) is monotonically
increasing, whereas for y > 1, it is monotonically increasing up to x̄ and
then monotonically decreasing to e−y > 0. Hence g(x) > 0 for x > 0, and
we have proven the theorem for n = 2.

Now, assuming it is true for n − 1, we show that it holds for n.
For the general function gn(x) := f(x, x2, . . . , xn) with fixed xi > 0

for i > 1, we note that gn(0) = 0 and

lim
x→∞

= 1 −
n

∏

i=2

(1 − e−xi) > 0 . (34)

With Q :=
∏n

i=2 xi, we get

g′n(x) = e−x

(

−
n

∏

i=2

(1 − e−xi) + Qex(1−Q)

)

. (35)

Evaluation at x = 0 yields

g′(0) =Q −
n

∏

i=2

(1 − e−xi)

>1 − e−Q −
n

∏

i=2

(1 − e−xi)

=fn−1(x2, x3, . . . , xn)

>0 (36)

where we have made use of the induction. Again, equality holds for Q = 0
only. Solving g′n(x̄) = 0 yields the single extremum

x̄ =
1

Q − 1
ln

( Q
∏n

i=2(1 − e−xi)

)

. (37)

We already established in (36) that the numerator is greater than (or
equal to) the denominator in logarithm, so, analogously to (33), we find
that x̄ < 0 for 0 < Q < 1 and x̄ > 0 for Q > 1. Again, no solution for
Q = 1 and g′(x) ≡ 0 for Q = 0. This completes the proof.
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