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Abstract

In-network query processing is critical for reducing network traffic
when accessing and manipulating sensor data. It requires placing a tree
of query operators such as filters and aggregations but also correlations
onto sensor nodes in order to minimize the amount of data transmitted
in the network. In this paper, we show that this problem is a variant
of the task assignment problem for which polynomial algorithms have
been developed. These algorithms are however centralized and cannot
be used in a sensor network. We describe an adaptive and decentral-
ized algorithm that progressively refines the placement of operators
by walking through neighbor nodes. Simulation results illustrate the
potential benefits of our approach. They also show that our place-
ment strategy can achieve near optimal placement onto various graph
topologies despite the risks of local minima.

1 Introduction

Sensor networks are a promising platform for a new generation of monitoring
applications [7]. In the recent years, research has shown that clusters of
densely deployed sensor nodes arranged in a multi-hop network allow for
improved sensing (via collaborative signal processing [21]) and improved
energy efficiency [17]. Because data transmission is orders of magnitude
more costly than processing on a sensor node [17], data processing should
be pushed inside the sensor network whenever it reduces the amount of data
to be transmitted [10]. The term in-network processing has been tossed to
denote data processing that takes place inside the network [9].

It is now generally admitted that access to data in a sensor network
should be declarative [8]: Users formulate queries to access the data they



are interested in. The exact definition of these queries is an open issue. We
take a database perspective and consider that a query is a tree of operators
that aggregate, correlate or filter data streams [3, 6, 20]. In this paper we
tackle the issue of operator placement for in-network query processing, i.e.,
on which sensor nodes should query operators be placed?

We give an example to illustrate the importance of operator placement.
A wuser is correlating detections obtained from two distinct regions (in the
context of animal monitoring or vehicle observation): The user should be
notified whenever similar targets are detected in the two distinct regions
within a given time window. For the sake of simplicity we consider that one
node generates detections in each region'. A correlation operator is pushed
inside the network. This operator takes as input the detections from the two
regions and generates an output whenever a similar target has been detected
in the two regions within a given time window. A gateway node is the sink
that consumes the data generated by the correlation operator.

Let us now discuss the ideal placement for the correlation operator, i.e.
the operator placement that minimizes the amount of data transmitted in
the network. Consider that initially both regions produce detections that
are not correlated and that one region produces more detections than the
other. The correlation operator is very reductive (it does not output data).
Intuitively, its optimal placement is on the shortest path between the two
nodes that generate detections, and closer to the node that produce more
data (see Figure 1(a)). The exact position of the correlation operator de-
pends (i) on the rate at which data is produced by the operator and both
sources, as well as (ii) on the path length between the sources, the opera-
tors and the sink. In a second configuration, the detections are somewhat
correlated. As a result, the correlation operator produces more data and its
optimal placement is closer to the sink (see Figure 1(b)).

The optimal placement of the correlation operator corresponds to the
solution of a task assignment problem: The problem is to find the mapping
of operators to sensor nodes that minimizes the amount of data transferred
over the network. We give a more formal problem definition in Section
2. Even though polynomial algorithms exists for some versions of the task
assignment problem, they cannot be used for our purpose because:

1. We do not assume global knowledge about the sensor network. The
algorithms that solve the task assignment problem are centralized and

! Possibly, a collaborative signal processing algorithm generates detections and elects a
representative node in each region. At different points in time, different nodes might be
elected to produce the detections.
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Figure 1: Examples of Operator Placements

require complete topological information [1]. It would be expensive
in terms of data transfer and quite inaccurate for a central site to
maintain this information. In addition, the amount of information
maintained on each node should be minimal because of memory limi-
tation, In order to limit maintenance overhead, this information should
be local - each node should only maintain information about close-by
nodes. As a result, we need to devise a decentralized solution where
each node maintains local information.

2. The placement of an operator needs to be recomputed as the condi-
tions in the network change. In our example, the optimal placement
of the correlation operator changes as the correlation between the de-
tection evolves, but also as the number of detections produced in each
region changes. It would be inefficient to place an operator on a sensor
node once and for all. In our example, if the correlation operator is
permanently placed at the sink node while the detections from both
regions are not correlated, then data is transmitted all the way to the
sink for no result. It would have been more efficient to compute the
correlation as close to the sources as possible. Our solution must thus
be adaptive.

In this paper, we propose a decentralized and adaptive solution to the
operator placement problem. In our solution, sensor nodes continously re-
fine the placement of operators in order to minimize the amount of data



transferred over the network. While one node is active executing an opera-
tor, a set of candidate nodes, that we denote tentative nodes, estimate the
cost of running this operator (the cost is a function of the amount of data
received and produced by a node). At regular intervals estimated costs are
compared with the actual cost measured on the active node and execution
is transferred to the node with the lowest cost.

We first give a formal problem definition and then we detail our contri-
butions:

e We define neighbor exploration: a decentralized exploration strategy
that continously refine the placement of operators towards the nodes
with minimal costs.

e We describe a decentralized and adaptive algorithm that implements
the neighbor exploration strategy based on the notions of active and
tentative nodes.

e We present simultation results that illustrate the potential benefits of
our approach.

Our simulation results show that our approach is viable. However, they
do not allow us to lead a complete study. A key question that we do not
tackle in this paper concerns the overhead generated by our decentralized
algorithm - in terms of messages exchanged. Another interesting question
concerns the reactivity of our approach (how fast it can adapt to chang-
ing conditions — e.g., data rate, data correlation). In order to study these
issues, we have implemented our solution on top of directed diffusion [9].
We are currently running experiments using NS. Our initial results are very
promising.

2 Problem Statement

Before we proceed to the formal problem definition, let us state our assump-
tions:

1. Users formulate queries to access the data they are interested in. It is
now accepted that data processing within a sensor network should be
declarative [8]: users should formulate what data they are interested in
regardless of the physical organization of the sensor network. Queries
are long-running: They are submitted to the system and run until
the user decides to interrupt query execution. In our work, we assume



that the (collaborative) signal processing algorithms that produce sen-
sor data are implemented and deployed separately from the queries
formulated by users to access these data. Details of the tasking mech-
anism are beyond the scope of this paper?; alternative approaches,
such as active sensor networks, consider that queries are embedded
in scripts that are responsible for coordination in general and sensor
tasking in particular [19, 5].

2. We define a query as a tree of operators®. The leaves of the trees

correspond to the source nodes, i.e., the nodes that return data on
behalf of the (collaborative) signal processing algorithms that produce
data streams. The internal nodes of the trees are correlation, filtering,
aggregation, or duplicate elimination operators that take as input one
or several data streams and outputs another data stream. We assume
that there is only one instance of each operator executed at any point
in time. The root of the query is an operator that takes one data
stream as input and forwards it; typically this root operator is placed
on a gateway node that we denote sink in the rest of the paper. Note
that we assume that there is one fixed sink per query. Relaxing this
assumption is an interesting topic for future work.

Let us now proceed to the formal problem definition. We aim at placing
operators on sensor nodes in order to minimize data transfer in the network.
We consider a sensor network as a directed graph where vertices represent
sensor nodes and where edges represent communication links, and a query
as a tree of operators. We define:

1. An oriented sensor network graph (SNG) as

(a) ¢ - a set of sensor nodes. In the rest, p and g are elements of (.

(b) 7 - a set of communication links connecting the nodes in (. We
denote (p, q), the link between nodes p and ¢, an element of .

(€) wpq - a weight is a positive integer associated with the link (p, q)
of m

2. An oriented query tree (QT) as

2The tasking mechanism is the mechanism that executes the (collaborative) signal pro-
cessing algorihtms on the appropriate sensor nodes and with the appropriate parameters
depending on the query being executed [3]

3Possibly such a tree of operators is generated from a declarative query language [4, 20]



(a) n - a set of operators. In the rest, operators ¢ and j are elements
of n.

(b) A - a set of communication dependencies connecting the opera-
tors. We denote (7,7), the link between operators i and j, an
element of \. We denote 7 as the child and j as the parent in this
communication link. Because QT is an oriented query tree, each
operator has zero, one or more children and at most one parent.

(c) dij - a weight associated with the link (7, ) of A

wpq denotes the unit cost of communicating data through the link (p, g).
This cost might for example vary with the battery power of the sensor node.
We define the cost of a path P = {(p,z),---,(y,q)} between node p and ¢
as Cp(P) = X .cpwe — note that z and y are nodes in (. We denote the
cheapest path between p and ¢q by P, (p, q)-

d;; denotes the rate at which data is transmitted between operator 7 and
j. Because queries are long-running, the rate at which an operator produces
data might vary in time (e.g., more detections are produced or a correlation
operator produces more data as its input become more correlated).

The transfer cost of sending data between operator ¢ on node p and
operator ¢ on node j may be denoted by a function Sp,(d;;) defined by
Spqe(dij) = Cp(Prmin(p, q)) - dij, i.e., the transfer cost is a function of the path
cost and the amount of data sent through the path.

A placement of a query tree onto a sensor network graph may be ex-
pressed as a mapping, i.e., a set M = {(7,p), ...} where every operator i € n
is assigned to a node p € (.

The placement problem can now be stated as the assignment of operators
onto nodes that minimizes the following global cost:

Z TipT;jqSpq(dij) (1)
(B.5)€A
subject to
Y zip=1VienVpem:zye{0,1} (2)

PEC
where z;, = 1, if operator ¢ is assigned to node p, and z;, = 0, otherwise.
Equation (2) ensures that each operator is assigned to exactly one node of
the network.
This problem of operator placement is an instance of the task assignment
problem. The task assignment problem considers the problem of assigning



a set of tasks onto a network of processors. The general task assignment
problem is known to be NP-complete. Bokhari [1, 2] has devised an O(mn?)
algorithm for the case where the set of tasks is tree-structured, which is the
case of our query tree (m denotes the number of taks and n the number of
processors in the network). This algorithm is centralized; as a consequence
it cannot be used in a sensor network.

3 Placement Strategy

We aim at defining a decentralized and adaptive algorithm for the placement
of a query tree onto a sensor network. More precisely, our objective could be
stated as follows: Given an initial arbitrary placement of operators, our goal
s to define a decentralized algorithm that progressively refine the placement
of operators towards an optimal placement.

It can be shown that the optimal placement of a query tree is composed
of local optimal placements for each operator in the query tree. By local
optimal placement we mean an assignment of operator ¢ on node p that
minimizes the amount of data that ¢ receives from its children and transmits
to its parent*. We give a proof of this result in Appendix ?7.

This notion of local optimal placement constitutes an objective for the
placement of individual operators. Now the question is: How can a decen-
tralized algorithm move individual operators to their local optimal place-
ment? Before we detail our algorithm in the next section, we give here the
intuition behind our placement strategy.

If we disregard the limitations imposed by the sensor network topology
in terms of operator placement and shortest paths, we may imagine that
operators could be placed anywhere in a euclidean space. Data could be
transferred along straight lines between operators. Transfer cost would be
proportional to the distance between operators (multiplied by the transfer
rate).

We could then view the transfer cost between two operators as a force
pulling the operator towards one another. From the laws of physics we know
that the equilibrium is the center of gravity of n particles. The net force
determining the direction of the movement is the sum of the individual force
vectors acting on the body. As the body moves in the direction dictated by
the net force it reaches the optimal position through the shortest path (a
straight line). The net force (and cost) will decrease monotonically along

“Recall that we denote 4 as the child and j as the parent in any communication link
between operators (7,7) € A



this path. In the equilibrium the net force acting on the body is zero and
the cost is minimal. This equilibrium constitutes the local optimal operator
placement. This analogy with forces has previously been used by Heiss and
Schmitz [11] to develop a decentralized algorithm that achieves dynamic
load balancing in a multicomputer system.

To understand the usefulness of these observations we now restrict oper-
ator positioning and possible paths between operators to those of a Manhat-
tan graph. Such a graph is a simplified but useful idealization of a wireless
ad-hoc sensor network and is often used in analytic models (e.g. [18]). Pos-
sible operator positions are confined to the vertices of the graph. Assuming
equal weights on links and equal data rates, the cheapest paths between
operators corresponds to the path with the minimal Manhattan distance.

If an operator is not in the optimal position, there will exist a cheap-
est path between the operator and its local optimal position along which
operator placement becomes progressively cheaper. An operator can reach
its local optimal placement by walking this cheapest path. In a Manhattan
graph, an operator initially placed on an arbitrary node will thus progres-
sively reach its local optimal placement by greedily moving to the neighbor
with lowest estimated cost. We call this placement strategy neighbor explo-
ration.

We use the neighbor exploration as the placement strategy for the decen-
tralized algorithm that we present in the next section. Note that in a sensor
network with an arbitrary graph topology, the neighbor exploration policy
might reach local minima different from a global optimum. We present sim-
ulation results in Section 5 that show that our algorithm performs well in
sensor networks with various graph topologies despite the potential pitfall
of local minima.

4 Adaptative and Decentralized Operator Place-
ment

Let us assume that an operator assignment has been defined for a given
operator. We denote the node on which the operator is placed and executed,
the active node. The sink and the sources constitute special active nodes.
They run operators that respectively consume and produce data, they are
involved in the algorithm and their placement is fixed.

As we have seen in the introduction, any assignment may become sub-
optimal. In order to adapt to changing conditions (e.g., data rate, data
correlation), our decentralized algorithm implements the neighbor explo-



ration strategy: It (i) evaluates the cost incurred by the execution of the
operator at the active node, (ii) estimates the cost for alternative assign-
ments of the operator, (iii) compares the cost on the active node and on
alternative nodes, and (iv) transfers the operator to the node with lowest
cost that thus becomes the new active node.

4.1 Decentralized Cost Computation

We define the cost of an operator j assigned to node q as:

Co(jaQ) = Z (CO(iap) + SP(I(dZJ)) (3)
(i,7)EX

where variables and functions are as defined in Section 2.

Since equation (3) is recursive, the cost of an operator includes the ac-
cumulated cost of all operators delivering data for the operator. The cost
of the query tree — defined in equation (1) - is the cost of the root operator.

A node needs the cost of the child operators in order to evaluate the
cost of an operator. As a consequence child operators send cost messages
to their parent operator along the data path. The term S,4(d;;) represents
the cost of sending data between the child and parent operator. This cost
may be accumulated while the cost message travels the path between node
p and g if we assume (i) that the cost wy, of sending data to a neighbor y is
available at every node x and (ii) that we include the data rate d;; with each
cost message. The following equation states that the cost may be calculated
by summing the product of the data rate with the link cost of each hop in
the path’:

Spq(dij) = Cp(Prin(p,q)) - dij = ( > we) dig = Y (we-diy) (4)

e€Ppmin e€Pnin

As a matter of fact the accumulated cost may simply be added to the
cost of the child operator as the cost message travels to the parent operator,
since the parent operator is only interested in the total sum. Cost messages
flowing from each child to parent operator contain the accumulated cost
and the data rate, e.g., the message sent by node 7 on node p to operator
j on node ¢ is: (Co(4,p),d;;). Any operator in the query tree will have

SNote that though equation (3) refers to node mappings for technical reasons, infor-
mation about the actual mapping on the child operator is not necessary for the parent to
perform the cost calculation.



information about the cost attributed by each of its sub-trees and will be
able to calculate and forward its own cost.

4.2 Exploration

Exact data rates are necessary to calculate cost. The data rate of a given
operator does not depend on its placement (but on the rate of the input data
streams and on their contents). As a consequence the data rate calculated
by operators on active nodes may be used for calculating costs on alternative
nodes®

The idea is simply to have the active operators communicate their data
rates to alternative nodes so that cost can be computed. Since there is a
set of alternative nodes associated to each active node that only serve to
probe the solution space for better alternatives we shall term them tentative
nodes. These tentative nodes execute tentative operators responsible for the
cost calculation. Cost is computed in the same way as for the active node.
Cost messages flow from children (both active and tentative) to parents
(both active and tentative) operators, while data flows from active children
to active parent operators.

To explore the space of tentative nodes, we need to define:

1. An exploration policy for choosing what nodes should be elected ten-
tative nodes. The sheer complexity of the solution space prohibits
considering more than a tiny fraction, so the policy must choose the
tentative nodes based on heuristics that will increase the probability
of including an optimal, or at least better assignment in the face of
data rate variations. Following our neighbor exploration strategy, only
immediate neighbors of an active node are considered as its associated
tentative nodes.

2. We also need an adaptation policy for choosing a new active node
among the tentative nodes explored. We only consider two possible
actions: either to continue query execution using the active node or
switching to a new active node. Following our neighbor exploration
strategy, the adaptation policy simply greedily picks the cheaper ten-
tative node as the new active position since this would be closer to the
optimal position than more expensive neighbors.

6 Alternative methods would consist in executing several instances of the same operator,
which would be costly if complete data streams were duplicated, and inaccurate if cost
was estimated using a non-representative fraction of a data stream.



The close proximity of tentative nodes means that the communication
overhead incurred by the transmission of data rates between the active and
tentative nodes will be minimal. No tentative node is more than one hop
away so multi-hop path establishment will not be necessary. If the MAC
layer supports message multicasting all tentative nodes may receive infor-
mation from the active node using only one transmission.

The cost of an operator relative to its neighbors depends on the incoming
as well as outgoing transfer cost. Since the outgoing transfer cost is not
available until the transfer has actually been made through a path between
the operator and its parent, it is natural to have the parent operator make
decisions on active child operator assignments, i.e. the adaptation policy is
executed by the active parent nodes.
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Figure 2: Tentative and active Nodes

Figure 2 illustrates the flow of cost messages and data between active
and tentative operators in the context of a complex query tree composed of
an operator correlating the output of two aggregation operators.



4.3 Node switching

At any point in time, there is only one active instance of each operator.
The cost information received by the active parent operator allows it to
implement the adaptation policy. When a tentative child operator instance
has a lower estimated cost than the active child, the active operator may
initiate a node switch. This switch consists of recursive signaling down
two subtrees. Active operators in the active subtree must be informed that
data flow is to cease. The cheaper tentative operator, on the other hand,
must be informed that active dataflow is to start. The cheaper tentative
operator will propagate this signal to its cheapest child instances. When
the signal reaches the leaves, the leaf operators then begin to send data
through the new active path. We shall term the two signal types activation
and deactivation respectively.

There is one more issue to active plan switching: we need to support
operator state transfer. Long-running operators on continuous data streams
often need historic or accumulated information for their operation. Aggre-
gation operators may keep sliding window of values [16, 20] and correlation
operators usually store two sets of tuples that are probed and updated when
new tuples arrive [3]. For the transition to be seamless such information
must be transferred between the old and new active operators. Since we
have already assumed that data rates can be communicated from the active
operator to tentative operators, the same channel may be used for operator
state transfer’.

Operator state transfer could also be used to replicate the state of the
active operator so that tentative nodes could take over in case the active node
fails or runs out of energy. Designing an efficient fault tolerant placement
of operators is a topic for future work.

4.4 Summary

Our algorithm, based on the exchange of cost messages and data between
active and tentative operators, is adaptive and decentralized. It is adaptive
because the placement of active operators is continuously refined depending
on the estimated cost on their associated tentative nodes. It is decentralized
because decisions are taken at the level of each operator. The information

"The design of efficient mobile operators is beyond the scope of this paper. Topics
for future work include the design of operators requiring minimal internal states, and the
design of efficient mechanisms supporting the marshalling/unmarshalling of the internal
state and ensuring the continuity of execution while an operator is being moved from one
node to another.



maintained on each node is local: active nodes maintain information about
their children and their associated tentative nodes (their direct neighbors),
tentative nodes maintain information about their associated active node
(also a neighbor node). Cost messages are transmitted on the network in
addition to the data streams. The frequency at which cost messages are
exchanged is a parameter of our algorithm (resulting in a trade-off between
the responsivity of operator placement and the transmission overhead).

Note that our algorithm does not dictate how data should be routed
between operators. We can thus use any routing protocol that relies on
logical naming of nodes; we are namely implementing our algorithm on
top of directed diffusion [9], using the filter mechanism to implement cost
computation.

Tentativeop. | Active op.

rate(p) state(p), election
I

deactivate

Child operator p

rate(p),‘i;tate(p),election

Figure 3: Summary of the Communications between Active and Tentative
Operators

Figure 3 summarizes the exchanges between active and tentative opera-
tors (both parents and children) in our neighbor exploration policy:

e An active operator is defined as the instance of an operator which is
actually executed; it receives input data streams, process them and
generates an output data stream. An active operator is located on an
active node.

e A tentative operator is associated to an active operator in order to
explore the cost of execution on alternative nodes (called tentative
nodes). A tentative operator computes cost messages and transmits
them to its parent. In order to compute cost, tentative operators
receive data rate from their associated active node.

e Given the cost obtained from its children (both tentative and active),
an active parent operator can decide to switch execution to a new



active child operator. It then sends a deactivate message to the current
active child operator and an activate message to the new chosen child
active operator. The current active child operator transfers its state
to the new chosen active child operator.

5 Simulation Results

Our objective was to verify that the neighbor exploration strategy for opera-
tor placement is viable in sensor networks with various topologies. We focus
on the placement of a single operator towards its local optimal placement,
which is the basis of the neighbor exploration strategy.

The results we present in this section are essentially a proof-of-concept.
We have now implemented our decentralized and adaptive algorithm on
top of directed diffusion in order to measure the overhead incurred by our
approach. This implementation allows us to experiment with the placement
of complex query trees (with several operators) and with the adaption of
the placement to changing conditions in the sensor network. Initial results
confirm the good performances suggested by the simulations.

6 Empircal support

In this section we describe how a number of simulations of operator adap-
tation have been performed on generated irregular network topologies.

The objective has been to see how well our adaptation scheme adapts in
realistic networks of different connectivity.

Our preliminary findings showed that global optimality follows from local
optimality. To keep simulations simple we shall therefore limit these to single
mobile operator query plans. The adaptation achieved will therefore be what
may be expected from local operators in bigger query plans. If these results
are encouraging we will have the necessary motivation to continue with a
full-scale implementation.

6.1 Method

6.1.1 Topologies

Three types of basic network topologies were used in the simulations: (i)
the maximal planar graph (MPG), (ii) the Manhattan graph (MG) and (iii)
controlled random graphs (CRG). We term these graphs controlled random
because we tried to avoid unrealistically close nodes during generation.



The topologies were gradually degraded in terms of connectivity. This
was done in one of two ways: (i) for the MPG and MG by removing a
percentage of the nodes at random (fig.4) and (ii) for CRG by increasing
the area in which a number of nodes were deployed thereby reducing the
number of reachable neighbors gradually (fig.5).

The CRG was produced by spreading a fixed number of nodes across
a square area at random. When placing a node we try to ensure that the
distance to any other node is at least half of the reach of the node. This is to
avoid unrealistically close nodes. If we don’t succeed in a few attempts we
place the node anywhere. The z and y dimensions of the area is calculated
as:

Vi R-f

where R is the reach of node radios and f is a factor varied between 0.55
and 0.90. A number of topologies where the area is gradually increased this
way produce quite realistic random networks with decreasing density (10 to
<3.8 neighbors) (fig.5). At higher values of f connected networks becomes
harder to generate and less realistic.

6.1.2 Query plan

The query plan used for the simulations consists of two fixed sources, a mo-
bile join operator and a fixed sink at which the join result is delivered. The
two sources are equally productive and the join operator half as productive
as the sources. I.e. the operator simulates the join operator joining 25 %
of the incoming tuples. We consider this to be slightly more challenging
than having different rates of the source operators because the equal pull
from the sources may get our mobile operator stuck on one side of a hole in
topologies with a source on either side of the hole (see section 77?).

6.1.3 Simulations

For each type of topology and density, we generated thirty 225-node net-
work instances with equally weighted links. On each network instance 100
simulations with random initial placements of the fixed operators (sources
and sink) were run.

In order not to favor our scheme we have disregarded easy adaptation
scenarios where the optimal assignment was less than 4 hops away from the
initial operator assignment. In particular this does away with all the trivial
cases where the operator is already in the optimal position.



For each run, the cost of the optimal assignment, the assignment achieved
through adaptation as well as the cost of data extraction to the sink was
calculated. These results were averaged for each topology type and density
type and used for depicting the cost development of a topology as density
decreases. This should provide a good statistical picture of the adaptation
behaviour for a given topology and density.

Adaptation was simulated by an AWK program. The program was fed
the generated network graphs, query graph and operator data rates. Ini-
tially the program calculates a node-to-node path cost matrix with cost of
all cheapest paths between nodes using Dijkstra’s algorithm. With this in-
formation the cost of any assignment may quickly be found by multiplying
the path costs with the data rates between operators and summing for all
paths. Thus extraction cost was simply calculated with the mobile operator
mapped to the sink.

Adaptation progress as follows: The mobile operator is placed on the
node of the sink initially to simulate a query injection. The cost of assigning
the mobile operator in its current position as well as the cost of assignment
to all neighbor nodes is calculated using information in the node-to-node
path cost matrix. If a neighbor provides a cheaper assignment cost than the
current position, the cheapest neighbor now becomes current position and
the set of neighbors is recalculated. This iterative process continues until no
neighbor provides a cheaper assignment at which the achieved cost is logged.

The optimal assignment of the mobile operator was found by performing
an exhaustive search for cheapest position. Doing so was feasible because
only one mobile operator was at play. With more mobile operators the
mapping complexity would have required a more efficient method like that
of bokhari [1].

6.2 Results
6.2.1 Cost

For each basic typology (MG, MPG, CRG) the cost of the cost of the as-
signment achieved CAOP is presented together with the cost of optimal
assignment as the cost of data extraction (i.e., data is extracted to be pro-
cessed outside the sensor network) that we use as references (figs. 6(a), 7(a),
8(a)).

At high densities perfect or near-perfect adaptation is achieved. For
the complete Manhattan and maximal planar graphs this is not surprising.
Also the dense random graphs are very likely to have Manhattan subgraphs



explaining the initial coinciding graphs of optimal and adapted assignment
costs.

The somewhat surprising findings are that our simple scheme does very
well even in the least dense topologies. In no case the average cost deviation
is greater than 12% of the optimal cost.

The slightly increasing tendency of all curves is caused by longer average
inter-operator shortest paths as the networks get less connected. I.e. the
direct way to a neighbor operator becomes less direct. These longer paths
result in higher data transfer costs.

Since average measures says little about worst-cases, we also depict the
constituents of the cost achieved through adaptation grouped by percentual
deviation from the optimal cost (figs. 6(b), 7(b), 8(b)).

Even for the random graphs of lowest density more than 70 % of the
cost is attributed by adaptations deviating less than 10 % from the optimal
assignment and more that 80% by adaptations deviating less that 20%.

With respect to the extraction costs we have included this merely to
give a notion of the potential gains. In our simulations the extraction cost
was approximately twice the optimal cost due to the network size, the spe-
cific number of operators, their productivity and selectivity. We have been
conservative with these parameters not to favor our approach unreasonably.
Still our results indicate that the approach is promising and that the poten-
tial gains leave room for the overhead of managing such an approach. All
the more so as long-running query costs accumulates over time (fig.9).

6.2.2 Transition paths

Since our adaptation policy greedyly picks the cheapest neighbors for its
transition path to the optimal position, we would expect to reach the op-
timum through the shortest path when network links are equally weighted.
As can be seen from figure 10(a) this is not exactly so. The figure depicts the
average shortest paths to the optimal position achieved vs. average transi-
tion path length for the CRG simulations. As the network density decreases
the transition path length converges to the shortest path length.

Figure 10(b) shows a scenario where a suboptimal transition path may
occur. Node numbers are given next to the nodes. Node 55 is the sink
and two sources (s1,s3) are placed on node 30 and node 37 respectively.
Sources are equally productive. If we imagine a reductive mobile join op-
erator initially placed at the sink its optimal position will be on node 30,
collocated with s;. Hence the shortest transition path would be the four
hop 55 — 46 — 71 — 87 — 30 indicated by the dotted arrow left.



With relative datarates 0.5 for the mobile operator and 1.0 for the sources
the cost of assigning the join operator to the different nodes are shown in
figure 11.

After the initial step 55 — 46, our greedy algorithm is faced with the
dilemma of two equally cheap neighbor nodes (71 and 88). Our localized
algorithm has no way of knowing that node 71 leads to a shorter transition
path and must thus randomly choose one of the nodes. Choosing node 71
does indeed lead to the shortest transition path, but choosing node 88 leads
to the transition path indicated by the dotted arrow right.

As the network density decreases, equally cheap alternatives will occur
less frequently. This explains the path lenght convergence as density de-
creases.

The tendency of increasing path length with decreasing density is due
to the presence of more shortcut paths in a dense network.

It should be noted that transition paths may be longer in a non-uniformly
weighted network where the shortest path may be avoided in favor of longer
but processingwise cheaper paths.

7 Conclusion

The problement of operator placement is crucial for in-network query pro-
cessing. We showed that it was a variant of the task assignment problem and
we described an adaptive and decentralized algorithm based on the neighbor
exploration strategy: the placement of operators is progressively refined from
neighbor node to neighbor node until a local optimal placement is reached.
Simulation results stress the potential benefits of in-network query process-
ing. They also show that neighbor exploration can achieve near optimal
placement of a single operator with various graph topologies, despite the
risks of local minima.

Future work includes a complete performance study of our algorithm.
We have implemented it on top of directed diffusion and we have started
to run experiments using NS. These experiments include a measure of the
communication overhead introduced by our algorithm, as well as measures
of the quality of adaptation with changing network conditions for single
operators as well as complex query trees.

Other topics for future work are the design of query operators that can
be moved from node to node with minimal overhead as well as the design of
fault tolerant operator placement algorithms.
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