
Freeform User Interfaces for Graphical Computing

Takeo Igarashi

Department of Computer Science, The University of Tokyo / PRESTO, JST
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Tokyo, JAPAN

takeo@acm.org
http://www-ui.is.s.u-tokyo.ac.jp/~takeo

Abstract. It is difficult to communicate graphical ideas or images to computers
using current WIMP-style GUI. Freeform User Interfaces is an interface design
framework that leverages the power of freeform strokes to achieve fluent inter-
action between users and computers in performing graphical tasks. Users ex-
press their graphical ideas as freeform strokes using pen-based systems, and the
computer takes appropriate actions based on the perceptual features of the
strokes. The results are displayed in an informal manner to facilitate exploratory
thinking. This paper explores the concept of Freeform UI and shows its possi-
bilities with four example systems: beautification and prediction for 2D geo-
metric drawing, a stroke-based 3D navigation, an electronic office whiteboard,
and a sketch-based 3D freeform modeling. While Freeform UI is not suitable
for precise, production-oriented applications because of its ambiguity and im-
precision, it does provide a natural, highly interactive computing environment
for pre-productive, exploratory activities in various graphical applications.

1 Introduction

Graphical User Interface (GUI) has been the predominant user interface paradigm for
almost 30 years. But because the purpose of computing is changing, we clearly need
next-generation user interface framework. In the near future, computers’ main applica-
tion will no longer be as a tool for supporting knowledge workers in office environ-
ments. As they become smaller and still less expensive, they will become ubiquitous
and their goal will be to support every aspect of human life. At that stage, a new form
of user interfaces, post-WIMP [16] or non-command [13] user interfaces, will be
needed. In [13], Nielsen argued that current GUI is essentially the same as command-
line user interface in that users have to translate their tasks into machine-
understandable sequences of commands. Pressing buttons or selecting items in menus
in GUI is essentially identical to typing commands in command-line user interface. In
non-command user interfaces, computers take appropriate action based on the users
activity, allowing the user to concentrate on the task itself without worrying about
commands.

Candidates for post-WIMP, non-command user interface include virtual realities
and augmented realities, multi-modal and multi-media interfaces, natural language
interfaces, sound and speech recognition, portable and ubiquitous computers. Each

new interface is designed to support specific new uses of computers. The increasing
number of applications dealing with three-dimensional information require virtual
reality techniques and various three-dimensional input devices. The need to support
people in situations where one cannot use hands or keyboards has spurred the growth
of voice input technologies. Highly complicated, spatial applications gave birth to the
idea of physical (graspable or tangible) interfaces that can provide more affordable,
space-multiplexed input channels. The essence of the next-generation user interface is
its diversity. While current user interfaces are characterized simply as “WIMP-style
GUI,” post-WIMP or non-command user interfaces will be characterized as collec-
tions of task-oriented, tailored interfaces. An important task for user interface research
is to identify an emerging application domain and find the ideal user interface for that
domain beyond WIMP-style GUI.

This paper explores a user interface framework, Freeform User Interfaces, as a
post-WIMP, non-command user interface in the domain of graphical interaction. Cur-
rent point-click-drag style interaction is suitable for specific kinds of graphical interac-
tion, namely object-oriented graphics such as block diagrams or flow charts. However,
the point-click-drag interface does not work well for expressing arbitrary graphical
ideas or geometric shapes in computers. The user has to do this manually by placing
many control points one by one or combining editing commands in a nested menu. On
the other hand, people have been using pen and paper to express graphical ideas for
centuries. Drawing freeform strokes is a convenient, efficient, and familiar way to
express graphical ideas. Freeform UI is an attempt to bring the power of freeform
strokes to computing.

Section 2 introduces the concept of Freeform UI, a pen-based non-command user
interface for graphical applications. We define the concept with three properties:
stroke-based input, perceptual processing, and informal presentation. Section 3 briefly
introduces four independent example systems embodying the idea of Freeform UI.
They as a whole form a concrete basis for discussing the nature of Freeform UI. Sec-
tion 4 discusses the limitation of Freeform UI and several design principles to mitigate
the problems.

2 Freeform User Interfaces

Freeform UI is an interface design framework using pen-based input for computer-
supported activities in graphical domains. In Freeform UI, the user expresses visual
ideas or messages as freeform strokes on pen-based systems, and the computer takes
appropriate action by analyzing the perceptual features of the strokes. This is based on
the observation that freeform sketching is the most intuitive, easiest way to express
visual ideas. The fluent, lightweight nature of freeform sketching makes Freeform UI
suitable for exploratory, creative design activities. Freeform UI embodies a non-
command user interface for two- and three-dimensional graphical applications in that
the user can transfer visual ideas into target computers without converting the ideas
into a sequence of tedious command operations.

Specifically, Freeform UI is characterized by the following three basic properties:
the use of pen-based stroking as input, perceptual processing of strokes, and informal
presentation of the result. We describe each property in detail in the following subsec-
tions.

2.1 Stroke-based Input

Freeform UI is characterized by its use of strokes as user input. A stroke is a single
path specified by the movement of a pen and is represented as a sequence of points
internally. Stroking is usually recognized as a dragging operation in a standard pro-
gramming environment: it is initiated by “button press” event, followed by a sequence
of “mouse move” event, and terminated by “button release” event. However, stroking
is actually a significantly different interface model than dragging. In short, stroking
corresponds to physical drawing activity using real pen and paper, while dragging
corresponds to a physical grab-and-move operation of objects. During a stroking op-
eration, the trajectory of the pen’s movement is shown on the screen, and the system
responds to the event when the user stops stroking by lifting the pen. The system’s
reaction is based on the entire trajectory of the pen’s movement during the stroking,
not just the pen’s position at the end (Fig. 1). In contrast, in a typical dragging opera-
tion, the current cursor position is shown on the screen. Possibly, the object shape
specified by the current cursor position is shown as a feedback object, but the trajec-
tory of the cursor movement is not shown. The system’s action is based on the final
cursor position and possibly the starting position of dragging. In stroking, the user first
imagines the desired stroke shape and then draws the shape on the screen at once,
while the user constantly adjusts the cursor position observing the feedback objects
during dragging.

Start Intermediate End

Stroking

Dragging

Fig. 1. Stroking vs. dragging.

Pen-based stroking is an intuitive, fast, and efficient way to express arbitrary
graphical ideas in computing environments. This is because a pen-based stroking
operation, or sketching, has been for centuries the primary interaction technique for
expressing graphical ideas, and is therefore familiar to us. Specifically, stroking is
suitable for quickly entering rough images that internally consist of many parameters

from the computer’s point of view. On the other hand, mouse-based dragging is suit-
able for more-delicate control of simple parameters. Dragging has been the dominant
interaction technique because traditional computer-based drawing applications are
designed for the careful construction of precise diagrams. The argument of this paper
is that graphical computing in the future should support informal drawing activities
and thus require a pen-based stroking interface.

2.2 Perceptual Processing

The next important property that characterizes Freeform UI as a non-command user
interface, and that makes Freeform UI different from plain pen-based scribbling sys-
tems, is its advanced processing of freeform strokes inspired by human perception.
Scribbling programs such as those used in commercial electronic whiteboards simply
convert the user’s pen movement into a painted stroke on the screen without any fur-
ther processing. Character-recognition and gesture-recognition systems convert a
stroke into a predefined character or command, using pattern-matching algorithms. In
these recognition systems, the output of the recognition is represented as a single sym-
bol. The stroking operation in these systems is essentially equivalent to key-typing and
button-pressing. "Perceptual processing" refers to mechanisms that infer information
from simple strokes that is richer than mere symbols. The idea behind perceptual
processing is inspired by the observation that human beings perceive rich information
in simple drawings, such as possible geometric relations among line primitives, three-
dimensional shapes from two-dimensional silhouettes (Fig. 2). Perceptual processing
is an attempt to simulate human perception at least in limited domains.

Symmetry 3 groups

3D geometry

Bear

Fig. 2. Human beings perceive rich information in a simple drawing.

The goal of perceptual processing is to allow the user to perform complicated tasks
with a minimum amount of explicit control. In traditional command-based interfaces,
the user must decompose a task into a sequence of machine-understandable, fine-
grained command operations, then input the commands one by one. As we discussed
in Section 1, non-command user interfaces try to avoid this process and allow the user
to directly interact with tasks without worrying about low-level commands. Freeform
UI frees users from detailed command operations by this perceptual processing of
freeform strokes. For example, Pegasus (Section 3.1) frees the user from tedious geo-
metric operations such as rotation and duplication by automatically inferring desired

geometric constraints, and Teddy (Section 3.4) eliminates the manual positioning of
many vertices in 3D space by automatically constructing 3D geometry from the input
stroke. This simplicity also significantly reduces the effort spent on learning com-
mands. In traditional command-based systems, the user has to learn many fine-grained
editing commands to do something simple. In Freeform UI, on the other hand, the user
can do a variety of things simply after learning a single operation.

2.3 Informal Presentation

The last property of Freeform UI is informal presentation of contents. The system
displays the materials to manipulate or the result of computation in an informal man-
ner, using sketchy representation without standard, cleaned-up graphics. This informal
presentation is important not only for an aesthetically pleasing appearance, but also to
arouse appropriate expectations in the user’s mind about the system’s functionality. If
the system gives feedback in precise, detailed graphics, the user naturally expects that
the result of computation will be precise and detailed. In contrast, if the system’s feed-
back is in informal presentation, the user can concentrate on the general structure of
the information without worrying about the details too much. The importance of in-
formal presentation in exploratory design activities has been discussed in many papers
[1,2,13,17].

Several experimental systems implemented sketchy presentation techniques.
Strothotte et al. introduced a non-photorealistic renderer for an architectural CAD
system [15]. The system used irregular curves for representing straight line segments
to make them appear hand-drawn. The SKETCH system [18] also used non-
photorealistic rendering to give a sketchy appearance to a 3D scene being constructed.
The system intentionally displaced the vertex position when rendering projected 2D
line segments. Teddy uses a real-time pen-and-ink rendering technique developed by
Markosian et al. [10]. It efficiently detects the silhouette lines of a 3D model, and
renders the silhouettes in various styles.

While these systems are designed for 3D graphics, some systems introduced
sketchy rendering for 2D applications. The EtchaPad system [11] used synthesized
wiggly lines for displaying GUI widgets in order to give them an informal look. Other
systems employ the user’s freeform strokes as-is to represent recognized primitives
without cleaning up the drawings. SILK [9] allows the user to interact with the GUI
widgets sketched on the screen. The Electronic Cocktail Napkin system [3] also re-
tains and displays the as-inked representation of hand-drawn graphical primitives.
Pegasus used intentionally thick line segments to show beautified drawings to give
them an informal look.

3 Example Systems

This section presents four independent example systems embodying the idea of Free-
form UI. While each of these systems contributes independently to the improvement
of existing applications, taken as a whole they form a concrete basis for discussing the
nature of Freeform UI, including its strengths and limitations.

3.1 Pegasus: Beautification and Prediction for 2D Geometric Drawing [5,6]

Pegasus is a system that allows the user to construct precise illustrations such as
shown in Fig. 3 without using complicated editing commands such as copy, flip, and
move. The idea is to automate complicated drawing operations by having the com-
puter infer possible geometric constraints and the user’s next steps from the user’s
freeform strokes. Interactive beautification receives the user’s free stroke input and
beautifies it by considering possible geometric constraints among line segments such
as connection, parallelism, and congruence. The system generates multiple alternatives
to prevent recognition errors. Predictive drawing predicts the user’s next drawing
operation based on the spatial relationships among existing segments on the screen.

Fig. 3. A diagram drawn using interactive beautification and predictive drawing.

3.2 Path-drawing Technique for Virtual Space Navigation [7]

This technique allows the user to navigate through a virtual 3D space by drawing the
intended path directly on the screen. After drawing the path, the avatar and camera
automatically move along the path (Fig. 4). The system calculates the path by project-
ing the stroke drawn on the screen onto the walking surface in the 3D world. Using
this technique, with a single stroke the user can specify not only the goal position, but
also the route to take and the camera orientation at the goal. This is faster and more
intuitive than to turn and advance using arrow buttons or a joystick.

Fig. 4. An example of a path-drawing walkthrough.

3.3 Flatland: An Electronic Office Whiteboard for Informal Activities [4, 12]

Flatland is an augmented whiteboard interface designed for informal office work. Our
research has investigated approaches to building an augmented whiteboard in the
context of continuous, long-term office use. In particular, the system is characterized
by the following three features: techniques for the efficient management of space on
the board, the ability to flexibly apply behaviors to support varied domain specific
activities, and mechanisms for managing history on the board. We implemented a
calculator that takes hand-written numbers as input, map drawing program that takes
freeform strokes and turns them into streets and intersections, to-do list manager that
organizes handwritten to-do items. These facilities provide support for pre-productive
activities, rather than final production work, in an office setting.

Fig. 5. Flatland example.

3.4 Teddy: A Sketch-based 3D Freeform Modeling System [8]

This technique allows the user to quickly and easily design freeform models, such as
stuffed animals and other rotund objects, using freeform strokes. The user draws sev-
eral 2D freeform strokes interactively on the screen and the system automatically
constructs plausible 3D polygonal surfaces. Our system supports several modeling
operations, including the operation to construct a 3D polygonal surface from a 2D
silhouette drawn by the user: the system inflates the region surrounded by the silhou-
ette, making wide areas fat and narrow areas thin. Teddy, our prototype system, is
implemented as a Java program, and the mesh construction is done in real-time on a
standard PC. Our informal user study showed that a first-time user typically masters
the operations within 10 minutes, and can construct interesting 3D models within
minutes.

Fig. 6. Teddy in use on a video tablet (left). Example 3D models designed using Teddy (right).

4 Discussions

4.1 Fundamental Limitations of Freeform UI

Freeform UI achieves fluent interaction that is not possible with traditional GUI, but
several difficulties are inherent in it. This section discusses three major difficulties
(ambiguity, imprecision and learning), and the next section proposes possible solu-
tions to mitigate the problems.

Freeform UI is characterized by its indirect interaction style. Traditional command-
based interfaces accept explicit command input and perform the command directly
without any hidden processing. In contrast, Freeform UI accepts highly ambiguous
freeform strokes as input, and performs complicated processing internally to infer the
user’s intention from the strokes. The indirect operation is inherently associated with
the problem of ambiguity. It is difficult to infer appropriate interpretation from the
user’s ambiguous freeform strokes, and the behavior of perceptual processing can be
seen as ambiguous from the user’s perspective.

Imprecision is another problem inherent in Freeform UI. While mouse-based care-
ful manipulation of each control point in traditional GUI is suitable for editing precise
diagrams, handwritten freeform strokes are not good at precise control. Perceptual
processing and informal presentation are also incompatible with precise manipulation.

The indirect nature of Freeform UI also requires a learning process by the novice
user. Because a simple stroke can transform to a variety of results, the user has to try
many strokes and accumulate experience to master the operation. In other words,
Freeform UI imposes certain implicit rules to infer complicated information from
simple strokes, and the user has to learn the implicit rules through experience.

4.2 Guidelines to Mitigate the Limitations

Based on our implementation and user study experience, we found several techniques
and design guidelines to mitigate these problems. Although it is impossible to remove

these difficulties entirely because they are strongly associated with the essential nature
of Freeform UI, the following tips work as basic guidelines to design a good Freeform
UI system.

First, it is important to give users an appropriate impression that the system is not
designed for precise, detailed editing; this will help prevent frustration over ambigu-
ous, imprecise operation. In addition to informal presentation describe in Section 2, a
designer can install similar tricks in many places, such as in the introduction to the
system, in the system’s feedback messages and in the user manuals.

From a technical point of view, construction of multiple alternatives is an effective
way to mitigate ambiguity. This strategy is commonly used in Japanese text input
systems to type thousands of Chinese characters using a limited alphabet. Pegasus
constructs multiple alternatives as a result of beautification and prediction; this feature
turned out to be essential to making beautification and prediction perform practically.

As for the problems of learning and ambiguity, it is important to make the interface
quick-responding and to ensure that changes can be easily undone so as to encourage
trial-and-error experience. For example, Teddy deliberately uses simple algorithms to
calculate geometry quickly sacrificing surface quality, instead of using more advanced,
time-consuming algorithms. Construction of multiple alternatives is definitely an im-
portant feature one should consider when developing a system based on Freeform UI.

Finally, it is necessary to give explanatory feedback for each operation so that the
user can easily understand why the system returned the unexpected result. This kind of
informative feedback is not very important in traditional command-based interfaces
because the system response is always predictable. However, well-designed informa-
tive feedback is a crucial feature to prevent frustration and to facilitate the learning
process in Freeform UI. For example, Pegasus displays small marks indicating what
kinds of geometric constraints are satisfied by the beautified segment. We believe that
informative feedback can allow the user to learn how to use the system without having
to read manuals or tutorials beforehand.

4.3 User Experience

Although we have a limited amount of user experiences with the prototype systems, it
is our future work to obtain further insight by accumulating more experience with real
users. Initial user feedback has been quite positive. Users are excited by the demon-
strations given by the authors and they successfully start playing around after a min-
utes of practice. However, the prototype systems are not designed to handle large
problems and it is not clear to what extend the Freeform UI approach scales. The
scalability problem is actually serious in the Pegasus system; the system generates too
many candidates as the diagram becomes complicated. We are currently exploring
various ways to solve the problem.

Fortunately, the Teddy system is now widely used as a commercial modeling soft-
ware and a video game. The users (mostly children) have created various interesting
3D models with them. We believe that the reason for this success is the choice of right
application domain: video games do not require precise or large, complicated models
which is a perfect match for Freeform UI.

5 Summary

We proposed an interface design framework for graphical computing based on pen-
based input, and named it Freeform UI. It uses freeform handwriting strokes as input,
recognizes the configuration of the strokes and performs appropriate actions automati-
cally, and presents the result of computation using informal rendering. We introduced
four example user interface systems embodying the concept of Freeform UI and dis-
cussed its strengths and limitations.

References

1. Black, A.: Visible Planning on Paper and on Screen: The Impact of Working Medium on
Decision-making by Novice Graphic Designers. Behavior & Information Technology.
Vol.9 No.4 (1990) 283-296

2. Goel, V.: Sketches of Thought. The MIT Press (1995)
3. Gross, M.D., Do, E.Y.L.: Ambiguous intentions: A Paper-like Interface for Creative De-

sign. Proceedings of UIST’96 (1996) 183-192
4. Igarashi, T., Edwards, W.K., LaMarca, A., Mynatt, E.D.: An Architecture for Pen-based

Interaction on Electronic Whiteboards. Proceedings of AVI 2000 (2000) 68-75
5. Igarashi, T., Matsuoka, S., Kawachiya, S., Tanaka, H.: Interactive Beautification: A Tech-

nique for Rapid Geometric Design. Proceedings of UIST’97 (1997) 105-114
6. Igarashi, T., Matsuoka, S., Kawachiya, S., Tanaka, H.: Pegasus: A Drawing System for

Rapid Geometric Design. CHI’98 summary (1998) 24-25
7. Igarashi, T., Kadobayashi, R., Mase, K., Tanaka, H.: Path Drawing for 3D Walkthrough.

Proceedings of UIST’98 (1998) 173-174
8. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: A Sketching Interface for 3D Freeform

Design. SIGGRAPH 99 Conference Proceedings (1999) 409-416
9. Landay, J.A., Myers, B.A.: Interactive Sketching for the Early Stages of User Interface

Design. Proceedings of CHI’95 (1995) 43-50
10. Markosian, L., Kowalski, M.A., Trychin, S.J., Bourdev, L.D., Goldstein, D., Hughes, J.F.:

Real-time Nonphotorealistic Rendering. SIGGRAPH 97 Conference Proceedings (1997)
415-420

11. Meyer, J.: EtchaPad - Disposable Sketch Based Interfaces. CHI’96 Conference Compan-
ion (1996) 195-198

12. Mynatt, E.D., Igarashi, T., Edwards, W.K., LaMarca, A.: Flatland: New Dimensions in
Office Whiteboards. Proceedings of CHI’99 (1999) 346-353

13. Nielsen, J.: Noncommand User Interfaces. Communications of the ACM Vol.36 No.4
(1993) 83-99

14. Schumann, J., Strothotte, T., Raddb, A., Laser, S.: Assessing the Effect of Non-
photorealistic Rendered Images in CAD. Proceedings of CHI’96 (1996) 35-41

15. Strothotte, T., Preim, B., Raab, A., Schumann, J., Forsey, D.R.: How to Render Frames
and Influence People. Proceedings of Eurographics’94 (1994) 455-466

16. van Dam, A.: Post-WIMP User Interfaces. Communications of the ACM Vol.40 No.2
(1997) 63-67

17. Wong, Y.Y.: Rough and Ready Prototypes: Lessons From Graphic Design. Proceeding of
CHI’92 (1992) 83-84

18. Zeleznik, R.C., Herndon, K.P., Hughes, J.F.: SKETCH: An Interface for Sketching 3D
Scenes. SIGGRAPH 96 Conference Proceedings (1996) 163-170

