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Abstract. Let G be a planar graph of n vertices, v1, . . . , vn, and let
{p1, . . . , pn} be a set of n points in the plane. We present an algorithm
for constructing in O(n2) time a planar embedding of G, where vertex
vi is represented by point pi and each edge is represented by a polygonal
curve with O(n) bends (internal vertices.) This bound is asymptotically
optimal in the worst case. In fact, if G is a planar graph containing at
least m pairwise independent edges and the vertices of G are randomly
assigned to points in convex position, then, almost surely, every planar
embedding of G mapping vertices to their assigned points and edges to
polygonal curves has at least m/20 edges represented by curves with at
least m/403 bends.

1 Introduction

A planar embedding of a planar graph G is a drawing of G in the plane, where
the edges are represented by simple continuous curves which intersect only at
endpoints representing common vertices. By definition, every planar graph has a
planar embedding. In 1948, Fáry showed that every planar graph has a straight-
line embedding, i.e., a planar embedding where every edge is represented by
a single line segment. Numerous algorithms exist for constructing straight-line
embeddings. These algorithms construct and report a set of locations for the
vertices of G. The line segments representing the edges of G are implicitly given
by the locations of their endpoints.

In this paper, we consider the problem of constructing a planar embedding
where vertices are mapped to prespecified fixed locations. If {v1, . . . , vn} is the
vertex set of G and {p1, . . . , pn} is the set of vertex locations, then each vi must
be mapped to the point pi. In most cases, the edges of G can no longer be
represented by disjoint line segments. However, they can be represented by non-
crossing polygonal curves. What is the complexity of these polygonal curves, i.e.,
how many bends (internal vertices) must they have? By a slight modification of
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the algorithm presented in Souvaine and Wenger [6], we obtain that if G is a
single path, then it has a planar embedding with a total of O(n2) bends. Here
we prove a stronger result, which answers a question asked by Richard Pollack.

Theorem 1. Every planar graph on n vertices admits a planar embedding which
maps each vertex to an arbitrarily prespecified distinct location and each edge to
a polygonal curve with O(n) bends.

Moreover, such an embedding can be constructed in O(n2) time.

We apply an idea of Pach, Shahrokhi, and Szegedy [5] to show that the
bound in Theorem 1 is tight. We say that two edges of a graph are independent,
if they do not share an endpoint. A set of pairwise independent edges is often
called a matching. A set of n/2 pairwise independent edges in a graph with n
vertices is called a perfect matching.

Theorem 2. Let G be a planar graph of n vertices, v1, . . . , vn, which contains at
least m pairwise independent edges and let (p1, . . . , pn) be a random permutation
of the vertices of a convex n-gon.

Then, as n tends to infinity, in every planar embedding of G which maps vi

to pi and the edges to polygonal curves, there are almost surely at least m/20
edges represented by curves with at least m/403 bends.

Note that a path of length n or a perfect matching of n vertices have bn/2c
pairwise independent edges.

The nature of the problem drastically changes if we only require that {v1, . . . ,
vn} be mapped to a set {p1, . . . , pn} of points in general position but we do not
insist on the particular order. It is known that in this case there always exists
a straight-line embedding which maps vi to pπ(i), 1 ≤ i ≤ n, for a suitable
permutation π (see [2], [4]).

2 Embedding Algorithm – Proof of Theorem 1

Let G be a planar graph with vertex set V = {v1, . . . , vn}, and let {p1, . . . , pn}
be a set of n points in the plane. In this section, we give an algorithm for
constructing a planar embedding of G such that vertex vi is represented by
point pi and each edge of G is represented by a polygonal curve with O(n)
bends (internal vertices.) Our algorithm runs in O(n2) time.

A Hamiltonian cycle is a cycle which visits each vertex of the graph exactly
once. A planar embedding of a cycle divides the plane into a bounded and an
unbounded component. If the edges are represented by polygonal curves, then
the bounded component is a simple polygon.

The general outline of our algorithm is as follows. We first bound the number
of bends in a polygonal curve which follows the boundary of a tree at constant
distance under the l1 metric (Lemma 1). We next assume that G contains a
Hamiltonian cycle and show how to construct a planar embedding of G mapping
each vertex vi to point pi (Lemma 2). Finally, we show how to add vertices and
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edges to a planar graph forming a new planar graph which has a Hamiltonian
cycle (Lemma 3). Combining the last two results gives a proof of Theorem 1.

To construct the planar embedding of a graph containing a Hamiltonian cycle,
we construct a polygonal, planar embedding of a tree whose leaves are the points
p1, . . . , pn. Curves representing the edges of the cycle will follow the boundary
of this tree or one of its subtrees at a fixed distance. We use the l1 metric to
measure this distance. The distance between points (x1, y1) and (x2, y2) in the
l1 metric is |x1 − x2| + |y1 − y2|. Let Bε be the ball of radius ε in the l1 metric.
The Minkowski sum of a point set S and Bε, written S + Bε, is the set of all
points which are at distance less than or equal to ε from some point in S.

Lemma 1. Let T be a straight-line embedding of a tree with N > 1 vertices. If
ε > 0 is smaller than the l1-distance between any line segment (edge) e and any
vertex of T not incident to e, then T + Bε/2 is a simple polygon whose boundary
contains at most 4N − 2 vertices.

Proof. Each vertex of the polygon T + Bε/2 is either a vertex of u + Bε/2 for
some vertex u of T or lies on the intersection of the boundary of e + Bε/2 and
e′ + Bε/2 for two adjacent edges e, e′ of T . The adjacent edges e and e′ share
some common endpoint u. Thus each vertex of the polygon T + Bε/2 can be
associated with a vertex u of T . The number of vertices associated with u is at
most 2 + du where du ≥ 1 is the degree of u. A tree has N − 1 edges so the sum
of the degrees of all tree vertices is 2N −2. Thus summing 2+du over all vertices
of the tree gives a bound of 4N − 2 on the number of vertices of T + Bε/2. 2

An embedding of a graph is outerplanar if it is a simple closed curve with
some non-crossing internal diagonals. The unbounded face of such an embedding
corresponds to the (uniquely determined) Hamiltonian cycle of the graph. A
graph is outerplanar if it has an outerplanar embedding. Mapping the vertices
of an outerplanar graph to vertices of a convex n-gon in the order (clockwise
or counter-clockwise) that they appear in the Hamiltonian cycle and its edges
to line segments between n-gon vertices gives a straight-line planar embedding
of the outerplanar graph. Every planar graph containing a Hamiltonian cycle
can be divided into two outerplanar graphs which have only the edges of the
Hamiltonian cycle in common.

We are ready to construct the planar embedding of a graph containing a
Hamiltonian cycle.

Lemma 2. Let G be a planar graph of n vertices, v1, . . . , vn, containing a Hamil-
tonian cycle C and let {p1, . . . , pn} be a set of n distinct points in the plane.
Graph G has a planar embedding such that

(i) every vertex vi of G is represented by the point pi;
(ii) every edge of G is represented by a polygonal curve with at most 8n + 9

bends.
Moreover, such an embedding can be constructed in O(n2) time.
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Fig. 1. Tree T and the simple polygonal curve Γ through p1, . . . , p5.

Proof. By relabeling vertices and points, we may assume that the vertices of G
appear in the Hamiltonian cycle C in the order (v1, . . . , vn). We first construct
an embedding of the edges of C.

Let p∗ be some point in the plane to the right of p1 and in general position
with respect to all the points pi, i.e., the line through any two distinct points,
pi and pj , does not contain p∗. In addition, p∗ should not share an x-coordinate
with any of the points pi. Let T1 be the line segment (p∗, p1) and Ti be the union
of Ti−1 and (p∗, pi). Set T equal to Tn. Note that the leaves of Ti are p1, . . . , pi

and that T1 ⊂ T2 ⊂ · · · ⊂ Tn = T . The edges of the cycle will be routed around
the embedded trees Ti.

Let ε > 0 be the smallest distance under the l1 metric between any pi and
any line segment (p∗, pj), where j 6= i. Let δ equal ε/(4n). Draw a simple closed
polygonal curve Γ through the points p1, . . . , pn in sequential order as follows.
Start by drawing a vertical line segment from p1 to a point at distance δ above
p1. From this point, draw a polygonal curve clockwise around T2 following the
boundary of T2 at a distance of δ in the l1 metric. Stop when this polygonal
curve crosses the vertical line through p2 and draw a vertical line segment of
length 3δ through p2. The endpoint of the curve is now a distance 2δ from p2.

For i = 2 to n − 1, draw a polygonal curve following the boundary of Ti+1

at distance of iδ in the l1 metric. Stop when this the curve crosses the vertical
line through pi+1 and connect it to a vertical line segment of length (2i + 1)δ
through pi+1. There are two possible such curves, one clockwise and one counter-
clockwise around Ti+1. Choose the one which does not cover p1. Note that at a
distance of iδ from Ti+1, the curve will not intersect any of the previously drawn
curves.

Complete Γ by drawing a polygonal curve clockwise around T at a distance
of nδ, and finally connecting the curve to p1 by a vertical line segment below
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p1. (See Figure 1.) The simple closed polygonal curve Γ will be the image of the
Hamiltonian cycle C in our embedding. Note that p∗ lies in the bounded region
defined by Γ and that the points p1, . . . , pn lie in clockwise order around Γ .

Except for the two line segments on either end, the curve from pi to pi+1 is
a subset of Ti + Biδ. Tree Ti is a subtree of T which has at most n + 1 vertices.
By Lemma 1, the curve from pi to pi+1 has at most (4(n+1)−2)+2 = 4(n+1)
bends. Similarly, the curve from pn to p1 has at most 4(n + 1) bends.

We now construct pairwise disjoint auxiliary paths between the points pi

and p1. For positive integers i ≤ n and k ≤ n − 1, let Λi,k be the boundary
of Ti + B(i−1)δ+kδ/n. The polygonal curve Λi,k intersects Γ at only two places,
once on a line segment incident with pi and once on a line segment incident with
p1. (See Figure 2.) Thus, Γ divides Λi,k into two polygonal curves, one in the
bounded region and one in the unbounded region defined by Γ . Truncate these
curves at a distance δ from their endpoints and connect their new endpoints to
pi and p1 by line segments, thus forming two paths between pi and p1. One of
these paths lies in the interior of the bounded region and one in the interior
of the unbounded region defined by Γ . Label these paths Λ′

i,k and Λ′′
i,k in the

bounded and unbounded regions, respectively. These paths are pairwise disjoint
except perhaps at their endpoints. Applying Lemma 1, shows that these paths
have at most 4(n + 1) bends.

p3
p5

p1

p∗

p5

p1 Λ′
3,k

Λ′′
3,kΛ3,k

p4p4 p2p2

p3

Fig. 2. The polygonal curve Λ3,k and paths Λ′
3,k and Λ′′

3,k.

We are finally ready to embed the remaining edges of G. Divide G into two
outerplanar graphs G′ and G′′ which have only the edges of Hamiltonian cycle
C in common. Let E′ and E′′ be the edges of G′ and G′′, respectively, which are
not in C.

Draw a circle Φ of radius δ/2 in the Euclidean norm around p1 and intersect
it with each of the Λ′

i,k and Λ′′
i,k. Since the paths from p1 to p2 and pn start
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with vertical line segments above and below p1, the curve Γ divides Φ into two
semi-circles, Φ′ and Φ′′ in the bounded and unbounded regions defined by Γ . Let
q′i,k and q′′i,k be the intersection points of Λ′

i,k and Λ′′
i,k with Φ, respectively.

For integers i, j, let f(i, j) be the unique non-negative integer less than n
which is congruent to (i − j) mod n. We represent an edge (vi, vj) ∈ E′ by
a path from pi along Λ′

i,f(i,j) to q′i,f(i,j), then a line segment from q′i,f(i,j) to
q′j,f(j,i) , and finally a path along Λ′

j,f(j,i) from q′j,f(j,i) to pj . This path contains
at most 4(n + 1) + 4(n + 1) + 1 = 8n + 9 bends. (See Figure 3 for an example of
a complete embedding of a graph.)

We claim that this embedding of G′ is planar. By construction, the paths Λ′
i,k

intersect or touch Γ only at their endpoints. Thus the only possible violations
of planarity occur in the line segments that we drew in Φ′.

Since G′ is outerplanar, mapping its vertices to vertices of a convex n-gon
and its edges to a line segments between vertices gives a planar embedding of
G′. The points on Φ′ form vertices of a convex polygon and lie in the clockwise
order

p1, q
′
2,1, . . . , q

′
2,n−1, q

′
3,1, . . . , q

′
3,n−1, . . . , q

′
n,1, . . . , q

′
n,n−1.

For each edge (vi, vj) of E′, we drew the line segment (q′i,f(i,j), q
′
j,f(j,i))

in Φ′. If instead we drew the line segment (q′i,1, q
′
j,1) in the convex n-gon

(p1, q
′
1,1, q

′
2,1, . . . , q

′
n,1) for each (vi, vj) ∈ E′, we would have a planar embedding

of G′. If (vi, vj) and (vi′ , vj′ ) are two edges in E′ and vi, vj , vi′ and vj′ are dis-
tinct, then q′i,f(i,j), q′j,f(j,i), q′i′,f(i′,j′) and q′j′,f(j′,i′) lie in the same order around
Φ′ as q′i,1, q′j,1, q′i′,1, q′j′,1. Since line segments (q′i,1, q

′
j,1) and (q′i′,1, q

′
j′,1) are pair-

wise disjoint, so are line segments (q′i,f(i,j), q
′
j,f(j,i)) and (q′i′,f(i′,j′), q

′
j′,f(j′,i′)).

If (vi, vj) and (vi, vj′ ) are two edges in E′ sharing the vertex vi, then the rel-
ative positions on Φ′ of q′i,f(i,j) and q′i,f(i,j′) ensure that (q′i,f(i,j), q

′
j,f(j,i)) and

(q′i,f(i,j′), q
′
j′,f(j′,i)) are pairwise disjoint.

An edge (vi, vj) ∈ E′′ is represented by a path from pi along Λ′′
i,f(i,j) to

q′′i,f(i,j), followed by a line segment from q′′i,f(i,j) to q′′j,f(j,i), and finally a path
from q′′j,f(j,i) to pj . This path also contains at most 4(n+1)+4(n+1)+1 = 8n+9
line bends. A similar argument to the one for E′ shows that this embedding of
E′′ is planar. The only difference is that the points lie in counterclockwise order
around Φ′′.

Finding a point p∗ in general position and calculating the value of ε can be
done in O(n log n) time. Constructing the polygonal curves from pi−1 to pi and
from pn to p1 takes O(n) time per curve. Constructing the polygonal curves
representing edges in E′ and E′′ also take O(n) time per edge for a total of
O(n2) time. 2

We now show how to turn a planar graph G into a planar graph H containing
a Hamiltonian cycle.

Lemma 3. Let G be a planar graph of n vertices. By subdividing edges of G
by at most two new vertices and adding some edges between vertices, we can
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Fig. 3. Planar embedding of graph G where vertex vi maps to point pi.
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construct from G a planar graph H which has at most 5n−10 edges and contains
a Hamiltonian cycle. This construction can be accomplished in linear time.

Proof. If G has k > 1 connected components, add k − 1 new edges to form a
connected graph G′. Construct a planar embedding of G′, not necessarily with
straight-line edges. Let S be a spanning tree of G′. Clearly, all edges of G′ − G
belong to S. (See Figure 4.)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Fig. 4. Graph G and a spanning tree S.

Starting at any vertex, walk clockwise around S, visiting its vertices in order.
Note that the internal vertices of S will be visited more than once. Label the
vertices with w1, w2, . . . , wn, by the order, in which they are first visited. If wi

and wi+1 are connected by an edge, then let this edge belong to the Hamiltonian
cycle (1 ≤ i ≤ n, and we use the convention wn+1 := w1). If not, connect wi

to wi+1 by a simple curve clockwise around the boundary of S, passing very
close to it. Wherever this curve intersects an edge of G′, introduce a new vertex.
Thus, this curve becomes a path whose pieces are added as edges to the graph
and to its Hamiltonian cycle. Merge any multiple edges, and call the resulting
graph H . (See Figure 5.)
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Fig. 5. Constructing the Hamiltonian cycle and graph H .

Each edge of G′ was split at most twice. Since G′ has at most 3n−6 edges and
the n−1 edges of S were never split, H has at most n+2(2n−5) = 5n−10 vertices.
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Connecting G to form G′, constructing a planar embedding and a spanning tree
S of G′ take O(n) time. Walking around S to construct the Hamiltonian cycle
can also be done in linear time. 2

Proof of Theorem 1: Starting with a planar graph G of n vertices, form a planar
graph H on at most 5n− 10 vertices containing a Hamiltonian cycle as outlined
in Lemma 3. Only the n original vertices from G have prespecified locations, but
we can arbitrarily assign locations to the new vertices in H . Applying Lemma 2
gives a planar embedding of H , whose edges are polygonal curves with at most
8(5n−10)+9 < 40n bends. We construct an embedding of G from the embedding
of H by merging polygonal curves which correspond to portions of edges of G
and by deleting polygonal curves which are not part of any edge of G. Each edge
of G was split into at most 3 edges in H , so each edge in G can be represented
by a polygonal curve with at most 3 ∗ 40n = 120n bends.

Constructing H takes O(n) time. Embedding H in the plane takes O(n2)
time. Constructing the embedding of G from the embedding of H takes time
proportional to the size of the embedding of H which is O(n2). Thus, our algo-
rithm runs in O(n2) time. 2

A more generalized version of Lemma 2 is also true. Given a Hamiltonian,
planar graph H ′ of n vertices where only k ≥ 1 vertices of H ′ have preassigned
point locations, it is possible to represent every edge of H ′ by a polygonal curve
with at most 8k +9 bends. Applying this bound to H in the proof of Theorem 1
gives a planar embedding of H with at most 8n + 9 < 8(n + 2) bends per curve.
This results in each edge of the original graph G being represented by curves
with at most 3 ∗ 8(n + 2) = 24(n + 2) bends.

3 Lower Bound – Proof of Theorem 2

Let H be a graph with vertex set V (H) and edge set E(H). The bisection
width b(H) of H is the minimum number of edges running between V1 and
V2, over all partitions of the vertex set V (H) into two parts V1 ∪ V2 such that
|V1|, |V2| ≥ |V (H)|/3. Roughly speaking, the bisection width is the minimum
number of edges whose deletion splits the graph into two approximately equal
parts.

The crossing number c(H) of H is the minimum number of crossing pairs of
arcs in any planar representation of H , where the vertices are mapped to distinct
points and the edges are represented by simple continuous arcs connecting the
corresponding points and not passing through the image of any other vertex.

Leighton [3] discovered that the above parameters are closely related. A
somewhat more general form of his result was established in [5].

Lemma 4. Let H be a graph of n vertices, whose degrees are d1, . . . , dn. Then

b2(G) ≤ (1.58)2
(

16c(G) +
n∑

i=1

d2
i

)
.
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The following lemma bounds the bisection width of a random graph which
is constructed from the union of a cycle and a random perfect matching.

Lemma 5. Let Hn be a randomly defined graph with vertex set V (Hn) =
{u1, . . . , un}, whose edge set is the union of {u1u2, u2u3, . . . , unu1} and a ran-
dom perfect matching of the vertices (n is even).

Then, as n tends to infinity, the bisection width of Hn is almost surely at
least n/20.

Proof. The number of different graphs that can be obtained as Hn is equal to
the number of perfect matchings on n vertices, n!

(n/2)!2n/2 . All of these graphs are
equally likely.

Next we estimate that at most how many of these graphs have bisection
width at most k, for some fixed k ≤ n/3. Consider the cycle C = u1...un ⊆ Hn.
The number of partitions V (Hn) = V1 ∪ V2, for which at most k edges of C run
between V1 and V2, is at most

k∑
i=0

(
n

i

)
< (k + 1)

(
n

k

)
.

These edges cut C into at most k intervals, belonging alternately to V1 and to
V2.

For a fixed partition with 2n/3 ≥ |V1| = n1 ≥ |V2| = n2 ≥ n/3, the number
of perfect matchings of V (H) with at most k edges running between V1 and V2

is at most
k∑

i=0

(
n1

i

)(
n2

i

)
i!

(n1 − i)!

(n1−i
2 )!2

n1−i

2

(n2 − i)!

(n2−i
2 )!2

n2−i

2

> (k + 1)
(

2n/3
k

)(
n/3
k

)
k!

(2n/3 − k)!

(2n/3−k
2 )!2

2n/3−k
2

(n/3 − k)!

(n/3−k
2 )!2

n/3−k
2

.

Indeed, one can choose i points from V1 and i points from V2 in
(
n1
i

)(
n2
i

)
different

ways, and match them in i! ways. The number of matchings on the remaining
nj − i points of Vj is at most (nj−i)!

(
nj−i

2 )!2
nj−i

2

; j = 1, 2. Thus, the probability that

b(Hn) ≤ k is at most

(k + 1)2
(

n

k

)(
2n/3

k

)(
n/3
k

)
k!

(2n/3 − k)!

(2n/3−k
2 )!2

2n/3−k
2

(n/3 − k)!

(n/3−k
2 )!2

n/3−k
2

/ n!
(n/2)!2n/2

,

which tends to zero when k = bn/20c and n → ∞. 2

Proof of Theorem 2 : Let P = {p1, . . . , pn} be the set of vertices of a convex n-
gon in the plane, listed in clockwise order. Let G be a planar graph on the vertex
set V (G) = {v1, . . . , vn}, and let f : V (G) → P be a randomly chosen bijection.
Suppose that G has m pairwise independent edges, v1v2, . . . , v2m−1v2m.
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Let H2m be a graph on the vertex set V (H2m) = {f(v1), . . . , f(v2m)}, con-
structed as follows. If f(vi1), . . . , f(vi2m) is the list the elements of V (H2m) in
clockwise order around P , then let

E(H2m) = {f(vij )f(vij+1 ) | 1 ≤ j ≤ 2m} ∪ {f(v2i−1)f(v2i) | 1 ≤ i ≤ m},

where i2m+1 := i1. Clearly, H2m is isomorphic to the graph described in
Lemma 5. In particular, almost surely we have b(H2m) ≥ m/10.

Suppose now, in order to obtain a contradiction, that G has a planar em-
bedding which maps vi to f(vi), 1 ≤ i ≤ n, and every edge is represented by a
polygonal curve such that at most m/20 edges are represented by curves with
at least m/403 bends. If, for some 1 ≤ i ≤ m, v2i−1v2i is represented by a curve
with at least m/403 bends, then remove f(v2i−1)f(v2i) from the graph H2m.
The bisection width of the resulting graph H ′

2m almost surely satisfies

b(H ′
2m) ≥ b(H2m) − m/20 ≥ m/10 − m/20 = m/20.

Hence, applying Lemma 4 with di ≤ 3 (1 ≤ i ≤ m), we obtain that almost surely

c(H ′
m) ≥ 1

16

(
b2(H ′

m)
(1.58)2

− 9m

)
≥ (m/20)2

40
− m =

m2

40 × 202
− m.

On the other hand, in the above planar embedding of G, all paths representing
the edges of H ′

m have fewer than m/403 bends. Adding the edges of the convex
hull of f(vi1), . . . , f(vi2m) to the collection of these paths, we obtain a planar
representation of H ′

2m with at most m × (m/403 + 1) × 2 ≤ 2m2/403 + 2m
crossings, because each line segment in a polygonal path can cross at most two
edges of the convex hull of P . Thus,

m2

40 × 202
− m ≤ c(H ′

m) ≤ m2

402 × 20
+ 2m,

a contradiction for suitably large m. 2

4 Remarks

This paper discusses the worst case complexity of constructing a polygonal pla-
nar embedding of a graph G of n vertices, v1, . . . , vn, where each vertex vi is
mapped to a prespecified point pi. The corresponding optimization problem is
the following: given a planar graph G with vertex set {v1, . . . , vn} and a point
set {p1, . . . , pn}, construct an embedding of G which maps vi to pi, 1 ≤ i ≤ n,
using as few bends (in total) as possible. Bastert and Fekete [1] proved that this
problem is NP-hard. Is there an approximation algorithm for this problem which
gives a solution within a factor of the optimal one?

Bastert and Fekete actually proved that minimizing the total number of
bends is NP-hard in the case when G is a perfect matching. However, the com-
plexity of the problem is unknown if G is a simple path, or, more generally,
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any connected graph. The complexity is also unknown if the points p1, . . . , pn

are required to be in convex position (vertices of a convex polygon.) Are these
restrictions of the problem also NP-hard?

The Ω(n2) worst case lower bound in Theorem 2 assumes that the points
p1, . . . , pn are in convex position. What if the points are not in convex position,
say, they form a

√
n×√

n grid? Are there examples of assignments of vertices of
a planar graph G to the vertices of such a grid such that any polygonal planar
embedding of G requires a total of Ω(n2) bends?
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