
Graph Multidrawing:

Finding Nice Drawings Without Defining Nice?

Therese Biedl1, Joe Marks2, Kathy Ryall3, and Sue Whitesides1

1 School of Computer Science, McGill University
Montreal, Quebec H3A 2A7, Canada

{therese,sue}@cs.mcgill.ca
2 MERL—A Mitsubishi Electric Research Laboratory

Cambridge, MA 02139, U.S.A.
marks@merl.com

3 Department of Computer Science, University of Virginia
Charlottesville, VA 22903-2442, U.S.A.

ryall@cs.virginia.edu

Abstract. This paper proposes a multidrawing approach to graph draw-
ing. Current graph-drawing systems typically produce only one drawing
of a graph. By contrast, the multidrawing approach calls for systemati-
cally producing many drawings of the same graph, where the drawings
presented to the user represent a balance between aesthetics and diver-
sity. This addresses a fundamental problem in graph drawing, namely,
how to avoid requiring the user to specify formally and precisely all the
characteristics of a single “nice” drawing. We present a proof-of-concept
implementation with which we produce diverse selections of symmetric-
looking drawings for small graphs.

1 Introduction

Imagine you have a graph and you want a nice drawing of it. You don’t know
what a nice drawing for this graph looks like, but you think you can recognize one
when you see it. What do you do? First, you try a known graph-drawing method.
The drawing it returns is not ideal, so you modify the system’s constraints or
parameters or random-number seed in the hope of producing a drawing you like
better. This typically results in a haphazard and tedious exploration of drawings
which may or may not result in one that you like.

You might prefer instead to look at an organized selection of drawings that
were chosen to show the diversity of drawings possible, subject perhaps to very
general aesthetic guidelines that you supply. Then you could pick the ones that
you like best, and maybe even ask the computer for more drawings similar to
those. In this way, you and the computer would be collaborating in a system-
atic way to learn what you mean by “nice” for this graph, and to produce one
or several suitable drawings. The main result of this paper is to introduce (in

? This research was supported in part by funding from NSERC and FCAR.

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 347–355, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

348 Therese Biedl et al.

Section 2) the multidrawing approach as a realization of this idealized graph-
drawing system, and to present a simple proof-of-concept implementation (Sec-
tion 3). Our implemented system is called smile (for Symmetric MultIdrawing
Layout Experiment), and it generates a diverse selection of symmetric-looking
drawings for a given small input graph. Section 4 gives several directions that
future experimentation and research might take, and Section 5 concludes.

2 Graph Multidrawing

Graph multidrawing is best explained operationally. The canonical multidrawing
system has four principal subsystems:1

Layout: The layout subsystem must be capable of producing a wide variety of
drawings of the same graph, either by exploiting randomization or by varying
the input parameters. Fortunately, many drawing algorithms have this capability
inherently (e.g., those based on spring simulation), and many other algorithms
can be modified to have it.

Since many layouts of the same graph are to be generated, either the graph
should be small or the layout subsystem should be fast.

Dispersion: The dispersion subsystem seeks to produce a selection of aesthet-
ically pleasing drawings that cover the space of possible drawings of a given
graph. These twin considerations of aesthetics and diversity typically require
compromise: optimizing with respect to aesthetic criteria (e.g., number of edge
crossings, degree of symmetry, distribution of edge lengths, etc.) usually implies
a small number of optimal drawings, yet diversity implies a large number of
different drawings. Thus, a good dispersion heuristic should consider aesthetics,
but not optimize with regard to them.

Since an effective dispersion heuristic must also achieve diversity, a way to
quantify diversity is needed. This in turn requires a way to measure the (dis)simi-
larity of two drawings. The emergence of measuring drawing similarity as an
important concept is thus one of the interesting consequences of the multidrawing
approach.

Presentation: How to present as many as several hundred drawings computed by
the dispersion subsystem is an important practical issue. An organized display,
in which similar drawings are grouped together so that they can be browsed
in a systematic fashion, is obviously preferable to an arbitrary arrangement of
drawings.

Feedback: In any diverse selection of graph drawings, some will be preferred over
others. The ideal feedback subsystem would give the user an easy way to request
a further selection of “good” drawings, with fewer “bad” drawings included.
1 The progenitor of the multidrawing approach is the Design GalleryTM project of

Marks et al. [7], in which a similar approach is taken to a variety of computer-
graphics and animation production tasks.

Graph Multidrawing: Finding Nice Drawings Without Defining Nice 349

The next section describes our smile multidrawing system, which has complete
layout, dispersion and presentation subsystems, but (currently) no feedback ca-
pabilities.

3 Smile: A Proof-of-Concept Implementation

As a proof-of-concept, we have implemented the smile multidrawing system,
which generates a diverse selection of symmetric-looking drawings for a given
input graph.

We chose to experiment with the symmetry aesthetic for two reasons. First,
it has been hypothesized to lead to attractive drawings [6], and yet it has been
found relatively unhelpful for certain common graph-comprehension tasks [10].
Our hope was that multidrawing might contribute to the debate regarding sym-
metry in graph drawing. Secondly, we had available the glide system [11] to
use as a layout subsystem. Glide uses a spring-based layout algorithm that can
be readily tailored to foster symmetric-looking layouts.

3.1 What smile Does

Smile takes a graph as input and produces as output a large number (128
for the examples shown below) of different drawings of it. How smile works is
detailed in the next subsection. Here we describe the interface to the presentation
subsystem, and show a sampling of the 128 different drawings that the system
produced for each of a few well-known graphs.

Figure 1 shows smile’s browser interface, with which the user can inspect
the computed set of drawings for a given input graph. This interface is similar to
those described in detail in [2] and [7]: using a multidimensional-scaling layout
method, similar drawings are located near each other in the main window; this
window can be panned and zoomed interactively and interesting drawings can
be viewed in their own individual pop-up windows.

Figure 2 shows several drawings of graph K6 computed by smile. Although
K6 is a relatively simple graph, the drawings illustrate well the complicated
interplay between aesthetics and diversity that makes graph multidrawing an
interesting idea. For example, this selection shows that there is more to making
pleasing drawings than just symmetry. It is clear from inspection that edge
crossings, edge lengths, and vertex and edge gestalts (perceptual grouping) all
play important if ill-defined and subjective roles in the way humans perceive
drawings.

We have also experimented with the K3,5 and Petersen graphs. Although only
slightly larger and less uniform in structure than K6, the variety of drawings for
these graphs produced by smile is considerably greater, as shown in Figures 3
and 4.

350 Therese Biedl et al.

Fig. 1. The browser interface.

Fig. 2. Several different drawings of K6 computed by smile.

Graph Multidrawing: Finding Nice Drawings Without Defining Nice 351

Fig. 3. Several different drawings of K3,5 computed by smile.

Fig. 4. Several different drawings of the Petersen graph computed by smile.

3.2 How smile Does It

Now we describe how smile’s layout and dispersion subsystems work.2

Layout: The layout subsystem was derived from the glide system [11]. Given
an arbitrary initial configuration of a graph’s vertices, it attempts to produce
a straight-line drawing in which the vertices and edges are symmetric about a
vertical axis, or about both vertical and horizontal axes. Given different initial
configurations of vertices, it will produce different drawings. Of course it cannot
achieve a perfectly symmetric-looking drawing if the initial input graph has no
symmetry, and it also sometimes fails to produce a symmetric-looking drawing
even when one is possible. In both such cases, the typical result is a drawing that
looks fairly symmetric, with perhaps one or two asymmetric vertices or edges.

2 The elements of the presentation subsystem are described in [2] and [7].

352 Therese Biedl et al.

The underlying layout algorithm uses a generalized notion of spring force to
move vertices from their initial to final positions. The spring forces are of two
kinds: one kind discourages vertex-vertex and vertex-edge overlaps in an obvi-
ous fashion. The other kind encourages symmetry explicitly, unlike the implicit
propensity towards symmetry that arises in more conventional spring-based sys-
tems [5]. The layout algorithm differs from the original glide algorithm in two
small, but significant ways. First, the computation of symmetry-inducing forces
in the original algorithm requires that each vertex be matched with another ver-
tex or with itself; in the current algorithm, vertex matchings that promote edge
symmetry are favored over those that do not. Second, the spring-force simula-
tion is run to quiescence once without vertex-edge forces in effect, and then once
again with them in effect. This aids greatly in avoiding unfortunate local energy
minima of the simulated physical system.

Dispersion: One way to achieve dispersion is to distill a large number of ran-
domly generated drawings down to a small, diverse set; an alternative method
is to refine repeatedly a current set of drawings so as to diversify the set. Both
methods were tried by Marks et al. [7], with the latter current-set method ex-
hibiting markedly superior performance. However, this earlier work sought only
to achieve pure diversity, and did not balance diversity with aesthetics, as called
for by our multidrawing application.

The dispersion heuristic used by smile extends the previous current-set
method by considering both diversity and aesthetics (i.e., symmetry) in the
set of drawings. Each member of the current set consists of both an initial ver-
tex configuration that gets passed to the layout subsystem, and the resulting
drawing that gets returned. A new candidate member can then be generated by
randomly selecting an existing member of the current-set, perturbing its initial
vertex configuration, and computing a new resulting drawing. The dispersion
subsystem works by repeatedly generating candidate members, and substituting
them for existing members whenever the substitution will improve the current
set. In our case, improvement is quantified by a combination of higher symmetry
scores and greater nearest-neighbor distances between drawings in the current
set.3

Symmetry scores are straightforward: they are a weighted sum of the number
of vertices and edges that are drawn symmetrically with respect to the chosen
symmetry axis or axes. Given the capabilities of our layout subsystem, many
drawings will have the same symmetry scores.

Devising a useful distance or similarity measure between drawings is much
harder. We experimented with several measures before arriving at the following
one: We greedily match compatible vertices that are at similar places in the
two drawings, and sum up a measure of their distance. More precisely, for each

3 For each graph it processed, smile used a current set of 128 members, and considered
5,000 candidate members. This takes from 19 minutes (for K6) up to 95 minutes (for
the Petersen graph) on a MIPS R10000 processor. See [7] for more details about the
dispersion process.

Graph Multidrawing: Finding Nice Drawings Without Defining Nice 353

vertex u in drawing D1 we find the unmatched vertex v in D2 such that u and
v have the same set of neighbors, and such that u and v are closest according
to a composite distance measure. This distance measure is a combination of the
Euclidean distance between the vertices’ locations in their respective drawings
(normalized about the centers of their bounding boxes), and the differences in
their horizontal and vertical rankings in their respective drawings. Once this
matching of vertices is complete, the distance between two drawings D1 and D2

is just the sum of the pairwise composite distances between matched vertices.
Figure 1 illustrates anecdotally how the inverse of our distance measure cor-

responds to perceived similarity. The drawings in the two pop-up windows on
the lower left are rated as very similar to each other, and the drawings in the
pop-up windows on the lower right are also rated similar to each other. However,
each drawing in the left pair is rated as having little similarity with each drawing
in the right pair. Although smile’s current similarity measure correlates posi-
tively with perceived similarity, we anticipate that deriving better measures of
drawing (dis)similarity will be one of the main technical challenges of effective
graph multidrawing.

4 Future Directions

In this section we speculate on possible further developments of the four com-
ponents in the multidrawing architecture: layout, dispersion, presentation, and
feedback.

4.1 Layout

We would like to incorporate other layout techniques into our current system
architecture. Developing such techniques will typically require modification of
existing algorithms to make them produce multiple different drawings of a given
graph. Promising candidates include specialized algorithms, such as those for
drawing trees, hierarchical graphs, and those for drawing planar graphs or sub-
graphs.

4.2 Dispersion

With respect to the dispersion component, the main challenge is to fine a better
measure of similarity of two drawings. This is crucial not only for dispersion,
but also for organizing drawings logically in the presentation subsystem, and
perhaps also for exploiting user feedback (e.g., by providing useful responses to
the command: “Generate more drawings like this one.”).

354 Therese Biedl et al.

Similarity measures may be categorized as follows:4

– Topological similarity is the similarity of the planar graphs obtained by pla-
narizing two drawings. Two drawings are topologically identical if they induce
the same planar graph in the same planar embedding with the same outerface
([8], p. 32).

– Metric similarity measures the similarity of two point sets, which for us are
the drawn vertices [1]. To extend the usefulness of this technique to graphs
may require matching labeled point sets, i.e., matching each point in one set
with a specific point in the other set [4].

– Positional similarity measures the positions of nodes relative to one another,
for example by computing for each pair of nodes whether they are in the
same relative horizontal position in both drawings, and in the same relative
vertical positions in both drawings.

– Feature similarity exploits the notion of prominent features, such as a few
faces of big area, the shape of the convex hull, or a piece that “looks like a
tail.”

– Operational similarity can be measured by computing the number and/or
magnitude of operations needed to transform one drawing to another. An
operation is applied to some piece of the drawing, e.g., reflection of the piece
about an edge, or a change in its proportions.5

4.3 Presentation and Feedback

If the only goal is to achieve diversity of a set of drawings, user feedback is of lim-
ited relevance: at most, the user might indicate a new degree or type of diversity
for a future run. However, graph multidrawing combines diversity and aesthetics.
The incorporation of aesthetic criteria makes it more desirable, even necessary,
for the user to provide feedback. For example, once the user has selected some
“nice” drawings, the system could generate a new batch with similar charac-
teristics. To accomplish this, the system must identify which qualities the user
“likes” in a drawing, and then map them onto the relevant system parameters
in order to generate more drawings of the desired quality.

5 Conclusion

Instead of producing a single “optimal” drawing, a graph-drawing system should
generate a diverse selection of acceptable drawings for the user’s perusal. This
restatement of the computer’s role in the graph-drawing enterprise introduces
many new challenges: modifying existing algorithms to generate multiple layouts;
formalizing the notion of diversity for a set of drawings and devising heuristics
to achieve it; and designing interfaces to support the user’s browsing task.
4 For another taxonomy of similarity measures, see [3].
5 According to this categorization, the smile system currently uses a combination of

metric, positional, and operational similarities.

Graph Multidrawing: Finding Nice Drawings Without Defining Nice 355

Acknowledgments

Thanks to Wheeler Ruml for coding help and to François Labelle for interesting
discussions about similarity measures.

References

[1] H. Alt and L. Guibas. Resemblance of geometric objects. In Handbook for Com-
putational Geometry. North Holland, Amsterdam, to appear.

[2] B. Andalman, K. Ryall, W. Ruml, J. Marks, and S. Shieber. Design Gallery
Browsers Based on 2D and 3D Graph Drawing (Demo). Symp. on Graph Drawing
97, Lecture Notes in Computer Science #1353. Springer-Verlag, pp. 322–329, 1998.

[3] S. Bridgeman and R. Tamassia. Difference Metrics for Interactive Orthogonal
Graph Drawing Algorithms. In this volume.

[4] K. Imai, S. Sumino and H. Imai, Minimax geometric fitting of two corresponding
sets of points. Proc. 5th Annu. ACM Sympos. Comput. Geom., pp. 266–275, 1989.

[5] X. Lin. Analysis of Algorithms for Drawing Graphs. Ph.D. thesis, Dept. of
Computer Science, Univ. of Queensland, Australia, 1992.

[6] R. J. Lipton, S. C. North and J. S. Sandberg. A method for drawing graphs. Proc.
1st Annu. ACM Symp. Comp. Geom., pp. 153–160, 1985.

[7] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hodgins,
T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. De-
sign Galleries: A General Approach to Setting Parameters for Computer Graphics
and Animation. Proc. SIGGRAPH 97, Los Angeles, CA, pp. 389–400, Aug. 1997.

[8] J. Manning, Geometric Symmetry in Graphs. Ph.D. thesis, Dept. of Computer
Science, Purdue Univ., 1990.

[9] J. Manning, Computational complexity of geometric symmetry detection in
graphs. Computing in the 90’s (Kalamazoo, MI, 1989), Lecture Notes in Computer
Science, #507. Springer-Verlag, pp. 1–7, 1991.

[10] H. Purchase. Which aesthetic has the greatest effect on human understanding? In
G. Di Battista, editor. Symposium on Graph Drawing 97, volume 1353 of Lecture
Notes in Computer Science. Springer-Verlag, pp. 248–261, 1998.

[11] K. Ryall, J. Marks, and S. Shieber. An Interactive Constraint-Based System for
Drawing Graphs. Proc. of the 10th Annu. Symp. on User Interface Software and
Technology (UIST 97), Banff, Alberta, pp. 97–104.

	Introduction
	 Graph Multidrawing
	{sc Smile}: A Proof-of-Concept Implementation
	 What {sc smile }Does
	 How {sc smile }Does It

	Future Directions
	Layout
	Dispersion
	Presentation and Feedback

	Conclusion
	References

