Three Approaches to 3D-Orthogonal
Box-Drawings*
(Extended Abstract)

Therese C. Biedl

McGill University, 3480 University St. #318, Montréal, Qc. H3A 2A7, Canada,
therese@cs.mcgill.ca.

Abstract. In this paper, we study orthogonal graph drawings in three
dimensions with nodes drawn as boxes. The algorithms that we present
can be differentiated as resulting from three different approaches to creat-
ing 3D-drawings; we call these approaches edge-lifting, half-edge-lifting,
and three-phase-method.

Let G be a graph with n vertices, m edges, and maximum degree A. We
obtain a drawing of G in an n x n x A-grid where the surface area of
the box of a node v is O(deg(v)); this improves significantly on previous
results. We also consider drawings with at most one node per grid-plane,
and exhibit constructions in an n X n X m-grid and a lower bound of
22(m?); hence upper and lower bounds match for graphs with 6(n?) edges.

1 Introduction

In this paper, we study orthogonal drawings, i.e., embeddings in the rectangular
grid. We will mainly be concerned with drawings in dimension k = 3, but need
the terminology for dimension k = 2 as well. A grid-point is a point in R¥ whose
coordinates are all integer. A grid-boz is the set of all grid-points (z1,...,xx) €
RF satistying x! < x; < % for some integers x!, 2%, i = 1,...,k. A port of a
grid-box is a point of the box that is extremal in at least one direction.

Throughout this paper, a kD orthogonal grid drawing of a graph G is a
drawing that satisfies the following. Distinct nodes are represented by disjoint
k-dimensional grid-boxes. An edge e = (v1,v2) is drawn as a simple path that
follows grid-lines, possibly bending at grid-points; the endpoints of the path for
e are ports on the boxes representing v; and vy. The intermediate points along
the path for an edge do not belong to any node box. For k = 3, the intermediate
points along the path for an edge also do not belong to any other edge path; for
k = 2, edge-paths may cross, but not touch or overlap.

The volume of a 3D-drawing is the volume of the smallest grid-box containing
the drawing. Often we refer to this bounding box as an X x Y x Z-grid. In what
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follows, graph theoretic terms such as node are typically used to refer both to
the graph theoretic object and to its representation in a drawing.

The orthogonal drawing style has received much attention in the graph draw-
ing community, for example 11 out of 43 papers at the last graph drawing con-
ference [7] pertained to them. The orthogonal drawing algorithms split into two
major classes. If the maximum degree of the input graph is bounded by twice
the dimension, then every node can be drawn as a point (we speak of a point-
drawings). If the maximum degree exceeds this bounds, then one assigns a box to
every node (we speak of a box-drawing). For aesthetical reasons, this box should
be small relative to the degree of the node.

1.1 Existing Results

The problem of 2D-orthogonal drawings has been studied extensively, both for
point-drawings and for box-drawings. See [Ll [3} [6, (9] [10, 11l 12| [15] and the
references therein.

3D-orthogonal drawings have been studied almost exclusively for point-draw-
ings, so for graphs with maximum degree 6 (6-graphs). Rosenberg gave an algo-
rithm to embed any 6-graph in a grid of volume O(n?/?), and showed that this is
asymptotically optimal [14]. No bounds on the number of bends are given. Eades,
Symvonis and Whitesides proposed drawings in an O(y/n) x O(y/n) x O(y/n)-
grid with at most 7 bends per edge [§]. They also gave a construction in a
3n x 3n x 3n-grid with 3 bends per edge. This was later improved by Papakostas
and Tollis to a grid of volume at most 4.66n with 3 bends per edge [13].

For 3D-orthogonal box-drawings, only two results are known to the author.
Papakostas and Tollis presented an algorithm to embed any graph in a grid of
volume O(m?) with at most 2 bends per edge [13]. The author, together with
Shermer, Whitesides and Wismath, studied how to embed the complete graph
K,,, and established lower bounds [4].

1.2 Our Results

In this paper, we review old and present new algorithms for 3D-orthogonal box-
drawings. These algorithms fit into three very different approaches to creating
an orthogonal drawing. Two of these approaches have been used [4, [8] without
being defined abstractly.

The first approach, which we call edge-lifting, yields drawings with excellent
volume-bounds, but nodes may be disproportionally large. The second approach,
which we call half-edge-lifting, yields drawings in which nodes are proportional to
the degree of the node, i.e., they are in what we call the degree-restricted model.
This approach makes it possible to convert many two-dimensional orthogonal
graph drawings into three-dimensional ones. The third approach is called three-
phase method, because it mirrors the three-phase method introduced for 2D-
orthogonal drawings in [3].

The second and third approach result in new drawing algorithms with im-
proved volume bounds. In particular, we improve the volume bound of O(m?)
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[13] to O(n?), while maintaining the property that the surface area of each node
is proportional to the degree of the node. We also construct drawings in which
the nodes are represented by cubes, at a slight increase of the volume to O(n?m).
To our knowledge, this is the first algorithm that draws nodes as cubes.

The drawings created with the first two approaches can be considered two-
dimensional in spirit, because they are created by starting with a 2D-orthogonal
drawing and lifting it into 3D. The third approach works differently, by placing
nodes directly in three-dimensional space. This enables us to study drawings with
at most one node per grid-plane. We exhibit constructions that achieve a volume
of O(n?m), and a volume of O(y/nm’), respectively; the latter construction again
represents nodes as cubes. We also study lower bounds, and prove that no such
drawing could have less than O(max{n3,m?}) volume, thus the smaller of our
constructions is optimal for graphs with 6(n?) edges.

2 Preliminaries

In the following, we clarify some terminology used for 3D-drawings. Recall that
a grid-boz in dimension k is the set of all grid-points (1, ..., x;) € RF satisfying
xl < x; < 2% for some integers xt, z¥, i = 1,...,klJA grid-box is said to have
width w = o — 2% +1 and height h = 2% — 2} + 1; thus we measure the number
of grid-points across, not the distance between the first and the last grid-point.
In 3D, we also use the terms depth d = x§ — xé + 1, size w X d X h, and volume
whd. The volume is thus the number of grid-points contained in the grid-box,
and can never be 0.

A port of a grid-box is a grid-point in the box that is extremal in at least one
direction. Ports are classified by their direction of extremity as +z-ports, —z-
ports, +y-ports, etc. An x-port is a port that is either a +z-port or a —z-port;
y-ports and z-ports are defined similarly. Points that are extremal in more than
one direction are counted repeatedly as ports. The total number of ports of a
box is called the surface area of the box; for a box with width w, height h and
depth d the surface area is thus 2(wh + hd + wd).

A z-line is a grid-line that is parallel to the z-axis. A z-plane is a grid-
plane that is orthogonal to the z-axis. The coordinate of a z-plane is the fixed
z-coordinate. A z-segment is a segment along a z-line. The terms are defined
similarly for z and y. A grid-plane is an z-plane, y-plane or z-plane with integer
fixed coordinate.

Let G = (V, E) be a graph, |V| = n, |E| = m. Denote by A the maximum
degree of G. Throughout this paper, we assume that G is connected (any two
nodes are connected by a path) and simple (no loops and multiple edges), and
has no nodes of degree 1; we call such a graph normalized.

! This paper allows degenerate boxes, i.e., boxes that have dimension 1 with respect
to one or more coordinate directions. Such degenerateness can be removed by adding
additional grid-lines, which increases the volume of the drawing by a multiplicative
constant.
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2.1 Models for Three-Dimensional Drawings

In the definition of an orthogonal drawing there are no restrictions on the size
of node-boxes. However, typically one wants nodes resembling points, therefore
their boxes should be approximately squares respectively cubes.

To achieve such drawings, a number of models have been introduced for 2D
box-drawings. The Unlimited-growth model imposes no restrictions on the dimen-
sions of the nodes. The Proportional-growth model demands that the dimensions
of a node may be only as big as needed for the number of incident edges. The
Kandinsky-model imposes special conditions on nodes that are placed in the
same horizontal or vertical range. See [8] 0] for details.

The Unlimited-growth model transfers directly to 3D. The Kandinsky-model
can likewise be transferred, but this will not be explored in this paper. There is
no direct equivalent of the Proportional-growth-model in 3D. We could demand
that the surface area on each side of the node is only as large as needed for the
number of incident edges, but this may lead to problems because the number
of incident edges on the sides may not admit a suitable factorization. Instead,
we use the Degree-restricted model or dr-model: Informally, a drawing is in the
degree-restricted model if the surface area of node v is O(deg(v)) for all nodes
v. More precisely, a drawing is in the (c1,ca)-dr model if for the surface area
of a node v is at most ¢1deg(v) + co. A drawing is said to be in the degree-
restricted model if it is in the (c1, ¢2)-dr model for some constants ¢y, ¢ that are
independent of the input graph.

The previous heuristics for 3D-orthogonal drawings worked in the degree-
restricted model: The algorithm by Papakostas and Tollis yields drawings in the
(6,0)-dr model [13], and the drawing of K, in an § x & x $-grid in [4] is in the
(2,4)-dr model. Also, every 2D-drawing in the proportional-growth model is in
the (2, 2)-dr model.

Drawings in the degree-restricted model may still be unsatisfactory, for ex-
ample, a drawing where node v has a 1 x 1 x deg(v)-box is in the degree-restricted
model, but the elongated boxes would be considered unpleasant by many users.
Therefore, we propose another, more stringent model, which we call cube-model:
The box of v must be a cube whose surface area is proportional to the degree
of v. Similarly one could define the square-model for 2D-orthogonal drawings,
but to our knowledge this has not been used. For an algorithm where the aspect
ratio of node boxes is at most 2, see [2].

3 Three Approaches to 3D-Orthogonal Box-Drawings

3.1 Approach I: Lifting Edges

In this section, we present the first approach to 3D-orthogonal drawings, lifting
edges, which has been used in [4].

The idea is to start with a 2D-orthogonal drawing I" which is semi-valid; by
that we mean that no nodes overlap and no edge crosses a node, but edges may
overlap each other. Nodes may be boxes or points.
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Split this drawing I" into a number of drawings I7,..., Iy, such that each
drawing I; is a valid orthogonal drawing. Here, splitting a drawing means to find
a partition E; U...U Ey of the edges; I is then the restriction of I" to all nodes
and the edges in F;. See also Figure [, where we split a semi-valid drawing of
Kg into four valid drawings. This is similar to the construction used in [4].

ZZ T Lz e &

Fig. 1. We split a semi-valid drawing of Ky into four crossing-free drawings.

Now place these crossing-free drawings I, ..., Iy into 6 z-planes P, ..., Pp.
Extend every node to intersect all z-planes P, ..., Py to obtain an orthogonal
box-drawing I/, which has the same height and width as I", and depth 6.

Fig. 2. Finishing the drawing started in Figure [Tl

Using this method, drawings with excellent volume-bounds can be obtained.
The first theorem results from the construction explained in Figure [T and 2l For
improvements, and the proof of the second theorem, we refer to [4].

Theorem 1. [{] Every simple graph with n nodes, n even, has a boz-drawing

in an n X n x g-grid with 1 bend per edge.

Theorem 2. [}/ Every simple graph with n nodes, n = N? a perfect square, has
a bozx-drawing in a 2N x 2N x %N?’-grid with 3 bends per edge.

The main disadvantage of this approach is the size of the nodes. In the
first construction, node v has a 1 x 1 X 5-box, which is in the degree-restricted
model for the complete graph, but not for an arbitrary graph. In the second
construction, node v has a 1 x 1 x 3n'->-box, which is not in the degree-restricted
model.

Thus, even though this approach yields very small volume (in fact, the second
construction matches asymptotically the lower bound [4]), its use is of rather
theoretical nature to explore smallest-possible upper bounds.
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3.2 Approach II: Lifting Half-Edges

In this section, we introduce a second approach to 3D-orthogonal box-drawings
which we call lifting half-edges. Similar as in the previous approach, it starts
with a 2D-orthogonal drawing and converts it into a 3D-orthogonal drawing.
As opposed to the previous approach, it does so in a way that ensures that the
drawings are in the degree-restricted model.

Again assume that we are given a semi-valid 2D-orthogonal drawing I". Split
I' into two drawings [}, and I, where [}, contains all horizontal edge-segments,
while I, contains all vertical edge-segments. Notice that I}, and I, may have
overlap, but they have no crossing. See Figure [3

_

Fig. 3. We split a semi-valid drawing I" of Kg into I} and I,.

Then split I, into 6, drawings that have no overlap, and split I}, into 6
drawings that have no overlap. As in the first approach, place each obtained
drawing in z-plane of its own, and extend the nodes through all z-planes that
contain an incident edge. At every bend of an edge in I', add a z-segment that
connects the two endpoints of the horizontal and the vertical segment incident
to this bend. Thus, if an edge had k bends in I', then it has 2k bends in the
resulting three-dimensional drawing I".

Fig.4. Split I}, and I, into four drawings each, extend nodes, and add z-
segments. We show only a selected subset of the added z-segments.

The advantage of this approach lies in the fact that I, and I, have no
crossings, and hence conflicts can be resolved much easier. However, care has to
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be taken which edge segment is assigned to which drawing, because the added
z-segments must not cross. This is possible for a large class of input-drawings I

We say that a semi-valid 2D-orthogonal drawing is in general position if
no grid-line intersects more than one node. In particular, in a 2D-orthogonal
drawing in general position, every edge has at least one bend, and no more than
one bend per edge is needed [3]. For any such drawing, we can apply the half-edge
lifting technique. Details are omitted.

Theorem 3. Let I' be a semi-valid 2D-orthogonal drawing in general position
with exactly one bend per edge. Assume that I' uses a w X h-grid and at most 0
edges overlap in any given place. Then there exists a 3D-orthogonal drawing in
aw X h x d-grid, where d < 26. The drawing is in the degree-restricted model.

This theorem has far-reaching implications. For example, we can use it to
generalize the interactive drawing results in [3], the results on orthogonal draw-
ings with small area [2], and the results on incremental drawings with small area
[2], because these drawings are in general position with one bend per edge.

In particular, using the semi-valid drawing used to create the 2D-drawing in
an % x MAR_grid in [2], we obtain the following results.

Corollary 1. Every normalized graph has a 3D-orthogonal box-drawing in an
nxnx A-grid with 2 bends per edge. Node v is contained in a 1x1x (deg(v)/2+1)-
grid-bozx, so the drawing is in the (2,6)-dr model.

This drawing improves on the result in [T3] with respect to the volume (O(n?)
vs. O(m?)), and with respect to the surface area of nodes ((2,6)-dr model vs.
(6,0)-dr model). (The drawings in [I3] forbid degenerate node-boxes, but our
results improve the volume even if we double all grid-dimensions to achieve non-
degenerate node-boxes.)

One might criticize in the above construction that the nodes are highly de-
generate in that they extend only in one direction. With a slightly different
construction, the nodes become cubes, at the cost of an increase in volume.

Corollary 2. FEvery normalized graph has a 3D-orthogonal box-drawing in a
(n42y/nm) x (n+2v/nm) x [\/A] -grid with 2 bends per edge. Node v is contained
in a cube of side-length 2[\/deg(v)/2], so the drawing is in the cube-model.

The main criticism of drawings created with the approach of lifting half-
edges is that they are essentially two-dimensional. When looking at the drawing
from the top, we see the input-drawing I'. Moreover, a z-plane that is between
the z-plane with the largest coordinate used for I} and the z-plane with the
smallest coordinate used for I, intersects all edges and all nodes that have
incident horizontal and vertical segments. Borrowing a term from computational
geometry, one could call these drawings 2%—dimensional. Whether such a drawing
is advantageous or disadvantageous is debatable, but it is a puzzling question
whether smaller drawings could be achieved by truly making use of the third
dimension.
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3.3 The Three-Phase Method

In this section, we explain a third approach to 3D-orthogonal drawings, which
imitates the three-phase method for 2D [3].

In the first phase, node placement, nodes are drawn as points, not as boxes.
In the second phase, edge routing, we assign bends to every edge. We continue
to draw nodes as points, hence edges may overlap. In the third phase, port
assignment, we replace each grid-plane by many grid-planes, and re-assign edges
to ports of node-boxes such that all overlaps and crossings are removed.

The crux of the three-phase method is to find node placement and edge
routing schemes that permit port assignment. For the three-phase method in
2D, a number of sufficient conditions have been found [3]. Unfortunately, they
do not transfer easily to 3D, because we have to ensure additionally in 3D that
there are no crossings between edges. We have found a set of sufficient conditions
that ensure a crossing-free drawing. We state these conditions here, and explain
the terms, and how to find the port assignment in the next few sections.

Condition 1 We are given a node placement in line-free position and an edge
routing using cube-routes. No two nodes coincide. No edge overlaps a node. Two
edges may cross only it the two crossing segments attach to endpoints of the edges.
Two edges may overlap only if the overlapping segments attach to a common
endpoint of the two edges.

Node Placement A node placement in a 3D-grid is said to be in line-free
position if every grid-line intersects at most one node; it is said to be in zy-
general position if every z-plane and every y-plane intersects at most one node,
and to be in general position if every grid-plane intersects at most one node. The
terms are defined similarly for an orthogonal drawing.

Any node placement in general position is also in xy-general position, and any
node placement in zy-general position is also in line-free position. We can show
the feasibility of port assignment (given that the other conditions are satisfied)
for any node placement in line-free position. However, we managed to find an
edge routing such that the other conditions are satisfied only in the case of a
node placement in zy-general position or in general position.

Edge Routing In the three-phase method in 2D, each edge is routed with
at most one bend; therefore there are at most two possible edge routings. In
3D, we allow two bends per edge. It is possible to draw each edge with one
bend in the unlimited growth model [4], but we know of no such results in the
degree-restricted model.

Allowing two bends per edge implies six possibilities of routing an edge,
using the edges of the cube spanned by the two endpoints; we call these routes
cube-routes. The three segments of an edge are called z-segment, y-segment and
z-segment. If the two endpoints of an edge have one coordinate in common, then
the cube degenerates to a rectangle. In this case, we place two bends at the
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same place (these will be expanded during port assignment). Note that the two
endpoints cannot have two coordinates in common if the nodes are in line-free
position.

We use three subclasses of these cube routes to ensure Condition [T}

— directed z-routes: Directed z-routes are those cube-routes for which the mid-
dle segment is the z-segment. We associate the two z-routes of an edge
e = (v,w) with a direction of e; thus e = v — w corresponds to the route
that uses the z-line of v and the y-line of w.

— color-routes: Eades, Symvonis and Whitesides [8] gave an algorithm for 3D
point-drawings which uses cube-routes. They restricted their attention to
three out of the six routes, and associated them with colors. We call these
routes the color-routes.

— shortest-middle route: The length of the z-segment, y-segment and z-segment
is determined by the position of the endpoints. An edge is said to be routed
using the shortest-middle route if the middle segment is the shortest segment,
breaking ties arbitrarily.

blue

Lo

= green

red -

Fig. 5. The directed z-routes, the color-routes, and the shortest-middle routes.

The following lemmas are proved by straightforward case-analysis considering
the grid-plane that contains an overlap or a crossing.

Lemma 1. Let the node placement be in xy-general position, and let the edge
routing be done with directed z-routes. Then Condition [ is satisfied.

Lemma 2. Let the node placement be in general position, and let the edge rout-
ing be done with color-routes. Then Condition [ is satisfied.

Lemma 3. Let the node placement be in general position, and let the edge rout-
ing be done with shortest-middle-routes. Then Condition [l is satisfied.

To analyze the edge routing, we introduce the following notation: For node v,
define A, (v) = max{# edges attaching on the —z-side of v, # edges attaching
on the +z-side v}; thus A, (v) is the number of z-ports needed at v. Similarly
we define A, (v) and A, (v).

One can show that for any node placement there exists an edge routing using
z-routes such that A, (v), 4, (v), A, (v) < [deg(v)/2] (see Lemma 3 in [3]). We
leave as an open problem to find an edge routing that satisfies Condition 1 such
that the bounds are roughly A, (v), Ay(v), A.(v) < [deg(v)/3].
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Port Assignment In this section, we prove that port assignment is feasible if
Condition [l is satisfied.

Lemma 4. Assume that we are given a node placement and edge routing that
satisfies Condition [l Then we can assign ports such that there is neither a
crossing nor overlap.

Proof. For every node v, choose arbitrary numbers z,(v), 2, (v), y=(v), y-(v),
2z (), 2y (v) such that z, (v)y,(v) > A, (v), zy(V)2:(v) > Ay (v) and Yy (v)zy(v) >
A, (v); and furthermore z, (v)+x,(v) > 1, yz(v)+y.(v) > 1 and 25 (V) + 2y (v ) >1
Good choices will be discussed later.

For every x-plane P, after node placement, we add max,ep, {z,(v)} z-planes
after P, and max,ep,{z.(v) — 1} z-planes before P,. For every y-plane P, af-
ter node placement, we add max,cp,{¥.(v)} y-planes after P, and max,cp,
{y-(v) — 1} y-planes before P,. For every z-plane P, after node placement, we
add max,ep, {#(v)} z-planes after P, and max,ep, {z,(v) — 1} z-planes before
P,. Here, “after” and “before” are taken with respect to the coordinate system.

Assume that node v was placed in the grid-planes P,, Py, P,. Then we assign
to v the grid-box that is the intersection of x,(v) 4z, (v) z-planes, y.(v) + yz(v)
y-planes, and z, (v)+ 2, (v) z-planes; using the grid-planes before Py, P, P,, then
P, Py, P,, and then the grid-planes after P, Py, P,. If two nodes were placed
at different grid-points during node-placement, then their boxes are disjoint,
because we added sufficiently many grid-planes around the point of each node.

L

xT

Fig. 6. We replace the point of v by the box that spans z, +z. x-planes, y, +v.
y-planes and z, + z, z-planes. In this example, v, =2, ., =2, y, = 2, y, = 3,
» = 3 and zy = 2; we show the added planes dashed.

Of the z,(v) + 2z,(v) z-planes for node v, the z;(v) z-planes above P, will
be used to route edges that attach to v with an x-segment, while P, and the
zy(v) — 1 z-planes below it will be used to route edges that attach to v with a
y-segment. With this technique and by Condition 1, all crossings that occurred
after edge routing are removed. See Figure [1 for an illustration of which ports
are actually used at a node. By z.(v)y.(v) > A.(v), xy(v)zz(v) > Ay(v) and
yw(v)zy(v) > A, (v) there are sufficiently many z-ports, y-ports and z-ports,
respectively.
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Now we explain how to assign ports to edges attaching to the —y-side of v
such that all overlaps are removed and no new crossings are introduced; port
assignment for the other sides of v is done similarly. We group the edges attaching
at the —y-side of v into four groups, depending on their direction of continuation.
We assign sufficiently many —y-ports to each group such that no edges of two
different groups could possibly cross. Then we sort the edges in each group by
decreasing y-coordinate of the next bend, and assign them to a port of their
group such that no two edges within one group cross. Details are omitted, see
Figure[7 for some explanatory illustrations.

il 1]

OGO 4z=cont; . &
3.% ®lzz e o .L.L. N
éoooooo:?.vg' Ce el

o e o o @
000000950 CE R BT
oie ooooz%fz—cont. e o o o o
o:e 0694 e 88500 & o
ole 050, “Fx-cont. &R 5 3
ole 0ij 0 g e & o ¢ /0//02/000
cieeeee0 0" 374

0.~ L)
Cesee el ® ® @ //./././.
o oo o @ /
z Y —z-cont
: D

Fig. 7. On the left, we show the overall appearance of the node v, and indicate
the used ports in black. On the middle and the right, we sketch the port assign-
ment procedure: split the ports into four groups, and assign edges to ports in an
appropriate order.

Lemma 5. With a suitable choice of xy(v), z.(v), y(v), y-(v), 22 (v), and zy(v),
the surface area of node v is at most 12deg(v) + 24 2

Proof. Fix a node v and set a, = max{A4,(v),1}, ay = max{4,(v),1}, a, =
max{A.(v),1}. After possible renaming of coordinates, we may assume a, <
ay < a,. We will find integers z,y, z with zy > a,, z > ay, and 2y > a,, and
set zy(v) =2, (v) =2 > 1,4, (v) =y.(v) =y > 1, and 2z, (v) = z,(v) = 2z > 1.

If a, < agay choose = [\Jaya,/az],y = [\/aza:/ay],z = [\/azay/a,].
One can show that then the surface area of v is 4(zy+yz+zx) < 12(a,+ay,+a;).

If on the other hand a, > azay, define z =1,y = a, and = = [a./az]| > ay.
By zy+yz+z2x < az+ (az/az +1)+az(az/a, +1) < 2(ap+a,)+ 1, the surface
area of v is at most 8(a, + a.).

By deg(v) > 2, we have az+ay+a, < Ay (v)+A,(v)+ A, (v)+2 < deg(v)+2,
which finishes the proof.

2 Our focus was on that the drawing is in the degree-restricted model, not on giving
the smallest constants possible; therefore we chose the parameters for convenience
of giving a simpler proof.
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Results The main criticism of Approach II was that the resulting drawings are
2%—dimensional, in that there exists a z-plane crossing all edges and nodes. Cre-
ating truly 3D-drawings is straightforward using the three-phase method. Place
the nodes arbitrarily in general position, route the edges such that Condition 1
is satisfied (for example using color-routes), and then apply port assignment.

Using the node placement of [2], but assigning each node arbitrarily to a
different z-plane, and routing the edges using directed z-routes, one obtains the
following theorems.

Theorem 4. Fvery normalized graph has a 3D-orthogonal box-drawing in gen-
eral position in an n X n X m-grid with 2 bends per edge. Node v is contained in
alx1x(deg(v)/2+ 1)-grid-box, so the drawing is in the (2,6)-dr model.

Theorem 5. FEvery normalized graph has a 3D-orthogonal box-drawing in gen-
eral position in a grid of side-length n + 2y/nm with 2 bends per edge. Node
v is contained in a cube of side-length 2[+/deg(v)/2], so the drawing is in the

cube-model.

However, these theorems are somewhat unsatisfactory, in that even for the
smaller drawing we have a significant increase in the volume, from O(n?) of
Section B to O(n?m). So the question arises whether there exists a truly 3D-
drawing with volume O(n?). Note that the term truly 8D-drawing is not precisely
defined. One could define it as a drawing with o(n) nodes per grid-plane, or as a
drawing with O(f(n)) nodes per grid-plane, where one could argue the case for
any of the functions f(n) = /n, f(n) =n'/3, and f(n) = 1.

Our results are in this last and most stringent definition of a truly-3D draw-
ing, which means drawings in general position. We can show that under these
conditions, no drawing of volume better than O(m?) is possible, thus we are
optimal for graphs with m = 0(n?).

Theorem 6. Any 3D-drawing in general position has volume 2(max{n3, m?}).

Proof. Assume that we have a drawing with at most one node per grid-plane.
Number the nodes as 1, ...,n, and denote by x;, y;, z; and d; the dimensions and
the degree of node i. Because no grid-plane intersects two nodes, the drawing
must have width > 3" x;, depth > " y; and height > 3 z; (all summations are
from 1 to n). Furthermore, we have 2(z;y; + y:2; + ziz;) > d; and > d; = 2m.

By zi,¥i,2z > 1, the lower bound of £2(n3) follows immediately. For the
lower bound of 2(m?), let d¥ = min{d;/6,y;z;}, d! = min{d;/6,x;z;}, and
d? = min{d;/6, z;y;}. In at least one of the three directions, the minimum must
be attained at d;/6, therefore Y (d7 + d? + d?) > > (d;/6) = zm and (after
possible renaming of the coordinate directions) > d? > gm.

By d? < d; < n we have d?/\/n < \/d;. Therefore Y \/d? > $m/+/n, and

Oz w)O =) = O Vi) n = (O di)n > (%m/m?n

by the Cauchy-Schwartz inequality, which yields the result.

We conjecture that this lower bound can be improved to £2(n?m).
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4 Conclusion and Open Problems

In this paper, we studied three-dimensional orthogonal drawings of graphs of
arbitrarily high degrees. We presented three approaches, and obtained, among
others, the following results:

Every normalized graph has a drawing in an n X n X A-grid with 2 bends per
edge. Thus, the resulting volume is O(n?3), which for the complete graph is a
square-root factor better than the result of O(m?) of Papakostas and Tollis [13].
Also, this result matches the O(n?) construction for the complete graph [4], but
is in the degree-restricted model for all graphs, not only graphs with degrees in
O(n).

This result falls short of the lower bound of 2(n?%) and the construction
with volume O(n??®) presented in [4]. However, the latter construction is not in
the degree-restricted model, not even for the complete graph.

Open Problem: In the degree-restricted model, is there a drawing of
volume O(n??), or can the lower bound be raised to O(n?)?

Every normalized graph has an (n+2/nm) x (n+2/nm) x [V/A)]-drawing with
two bends per edge in the cube-model. This is, to our knowledge, the first result
in the cube model that also maintains a small surface area of the cube, and a
small overall volume. However, this result comes at an increase in the volume to

O(n*m).
Open Problem: Is there a drawing in the cube-model with volume O(n?)?

Every normalized graph G has an n X n X m-drawing in general position with two
bends per edge. This result does not match the lower bound of £2(max{n?,m?}),
but we conjecture that no drawing can achieve an asymptotically smaller volume.

Open Problem: For drawings in general position, is there a drawing of
volume O(max{n3,m?}), or can the lower bound be raised to O(n*m)?

Also, while having all nodes in one place is too two-dimensional, having each
node in a separate grid-plane seems a waste. What is good middle ground? Do
there exist small drawings with 6(n'/3) nodes in every grid-plane? What volume-
bounds can be achieved?
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