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Abstract. JIGGLE is a Java-based platform for experimenting with numerical
optimization approaches to general graph layout. It can draw graphs with
undirected edges, directed edges, or a mix of both. Its features include an
implementation of the Barnes-Hut tree code to quickly compute inter-node
repulsion forces for large graphs and an optimization procedure based on the
conjugate gradient method. JIGGLE can be accessed on the World Wide Web
at http://www.cs.cmu.edu/~quixote.

1. Introduction

Most general graph drawing algorithms fall into two categories: algorithms based
on physical models, and hierarchical algorithms that place nodes on discrete layers
[BETT94].

The physically based algorithms focus on undirected graphs [Ea84, KK&89, FRO1,
FLM94, SM94, Tu9%4, 1g95, CP96, DH96]. In most of the proposed models, straight-
line edges attract their endpoints according to a spring law, and nodes repel each
other as if they were like-charged particles. These algorithms use numerical
optimization to obtain a drawing whose “energy” is locally minimal.

In contrast, the hierarchical algorithms focus on directed graphs—generally graphs
that are acyclic or that can be made acyclic by the reversal of a few edges [STT81,
GKNV93]. These algorithms assign nodes to discrete layers so that most edges are
directed from lower layers to higher ones, and then permute the nodes on each layer
to minimize edge crossings. When edges traverse more than one layer, the algorithms
introduce “dummy nodes” on the intermediate layers that induce bends along the
edges.

JIGGLE provides a framework for experimenting with numerical optimization
approaches to drawing graphs with undirected edges, directed edges, or a mix of both.
In addition to incorporating the key aspects of the physically based algorithms,
JIGGLE implements three significant improvements. The first is to incorporate
directed edges into the physical model traditionally applied to undirected graphs. The
second is to use the Barnes-Hut tree-code to compute repulsion forces in (nlogn)
time. The third is to adapt the conjugate gradient method to perform the numerical
optimization.
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2. Graph Drawing as Numerical Optimization

The physically based algorithms for undirected graphs treat graph drawing as a
numerical optimization problem. A two-dimensional drawing of an n node graph
corresponds to a point in R®", and the goal is to produce a drawing that is locally
minimal with respect an objective function that quantifies the desired aesthetic
criteria. Given the difficulty of general optimization, these algorithms usually restrict
themselves to objective functions that are continuous and differentiable This
restriction allows them to use iterative first-order optimization techniques that depend
solely on the gradient of the objective function. Often these algorithms do not even
specify an objective function explicitly; rather, they specify its gradient (actually, the
negative gradient) in terms of “force laws.”

Usually, the laws include spring forces that attract the endpoints of edges towards
each other and repulsion forces that push all nodes away from each other. For
example, Fruchterman and Reingold use the following force laws: fgpring(d) = d?/k;
frepuision(d) = -k%/d. The constant K is a pre-specified optimal edge length; when an
edge is of length K, its endpoints exert no net force on each other.

The hierarchical algorithms for directed graphs take a markedly different
approach. First, they assign nodes to discrete layers and create dummy nodes so that
all edges connect nodes or dummy nodes on consecutive layers. They then permute
the nodes on each layer to avoid edge crossings. Minimizing the number of edge
crossings, however, is an NP-hard discrete optimization problem [GJ83]. Hence, the
algorithms avoid edge crossings by sorting nodes and dummy nodes according to the
mean or median positions of their neighbors on adjacent layers. The algorithms
perform the sorting iteratively. First, they traverse the layers from first to last, sorting
the nodes on each layer according to the positions of the nodes’ neighbors on the
previous layer. Then, they reverse this process, sorting nodes according to the
positions of the nodes’ neighbors on the following layer. They alternate between
forward and reverse traversals until meeting some convergence criterion. After they
have established the order of nodes on each layer, they optimize node positions
subject to that order.

We could view the hierarchical drawing approach in terms of constrained
numerical optimization. Our objective function might be the sum of the squares of
horizontal components of edges, so that a particular node’s contribution to the
objective function would be minimal when its X coordinate is the average of the X
coordinates of its neighbors. We would need two sets of constraints: the y
coordinates would be fixed according to the layer assignments, and the nodes on each
layer would have to be separated from each other by some minimum distance.

I Most of the objective functions have singularities when two nodes occupy the same
coordinates, but they handle these singularities by randomly separating the coincident nodes.
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Unfortunately, every possible ordering of nodes on the layers would lead to a
drawing that is a constrained local minimum. The constraints separate all of the local
minima from each other, necessitating an optimization procedure that can jump over
the constraint barriers.

Instead of attempting such an approach, we use an unconstrained approach,
replacing the minimum separation constraints with repulsion forces.

3. Our Physically Based Model for Mixed Graphs

Since the spring and charge model works well for undirected graphs, we looked for
a simple modification that would take into account directed edges. The spring force
for an undirected edge tries to minimize the distance between the endpoints. Inspired
by the use of layers in the hierarchical approach, we made the following change in the
spring law: when a spring is associated with a directed edge, it tries to place the “to”
endpoint a distance proportional to k below the “from” endpoint.

This way of including directed edges in the model works surprisingly well. It does
not, however, behave reasonably if the graph has a directed cycle. To handle this
situation, we borrow from the hierarchical algorithms: we preprocess the graph using
depth-first traversal to detect directed cycles and break the cycles by reversing the
back edges of the traversal. Having solved this problem, we discovered that it was
necessary to introduce a short-range repulsion force between nodes and edges to
prevent nodes from being placed on top of edges. We use an inverse-square law for
node-edge repulsion.

The JIGGLE interface allows the user to choose among a variety of force laws.
The spring force can be logarithmic, linear. or quadratic. The user can set the short-
range (d  2K) and long-range (d > 2K) repulsion forces independently as inverse-
linear or inverse square laws. The user can also turn off long-range repulsion forces,
as Fruchterman and Reingold do in their “grid variant” approach. The node-edge
repulsion force is also an option that the user can toggle.

4. Computing the Forces Efficiently

Our straightforward computation of the spring forces requires (m) time. Beating
this time would require some way of filtering or summarizing edges—a strategy we
do not consider here.

We focus instead on computing the repulsion forces efficiently. Since there are
1n(n-1) node pairs, a straightforward computation of node-node repulsion forces
would require (n®) time. If the graph is sufficiently dense (i.e. mis (n?)), there is
little point in speeding up this computation, since the spring computation will take
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(n2) time. Often, however, we are interested in large, sparse graphs. For these
graphs, we can benefit significantly by reducing the computational cost of repulsion
forces from quadratic to linear or near-linear time.

We have implemented Fruchterman and Reingold’s “grid variant” approach. This
heuristic ignores repulsion forces between nodes that are more than 2K apart in the
drawing. If the drawing distributes the nodes sufficiently uniformly, then the
computation of repulsion forces requires only (n) time. Unfortunately, the abrupt
cut-off of repulsion forces can significantly distort the drawing and cause the
optimization procedure to oscillate around the cut-off boundaries. Also, if the node
distribution is highly non-uniform, then the computational cost may be as high as

(n®).

In order to reduce the computational cost for repulsion forces without significant
loss of accuracy, we have implemented the Barnes-Hut tree-code [BH86]. Every time
we compute the repulsion forces, we insert the nodes into a quad-tree. The root cell
of the quad-tree represents the bounding rectangle of the drawing space. When we
insert the first node, we split this root into four children cells which represent the four
quadrants of the rectangle. Subsequent insertions lead us to split these cells and their
descendants so that each leaf cell contains at most one node. We then traverse the
nodes to compute the repulsion force acting on each node. First, we look at the
node’s siblings in the tree, then at its parent’s siblings, then the grandparent’s
siblings, and so forth. We compute the repulsion force between a node and a cell as
follows: if the cell is itself a leaf, then we use the regular repulsion law for two nodes.
If the cell is not a leaf, then we determine if the node’s rectangle and the cell’s
rectangle intersect. If the rectangles share even a single point, we recursively
compute the repulsion between the node and the cell’s children. Otherwise, we
compute the repulsion force as if all of the cell’s nodes were concentrated at their
centroid.

The running time for Barnes-Hut depends on the height of the tree and the number
of cells than a leaf cell can intersect. Assuming that nodes are never assigned to
identical coordinates, we can bound the height of the tree by the number of bits used
to represent a point in the drawing space, which we assume to be O (logn). In order
to bound the number of cells that a leaf cell can intersect by a constant, we can
rebalance the quad-tree by splitting cells after each insertion [M095]. If we perform
this rebalancing, then the overall running time for Barnes-Hut is (nlogn). In
practice, the overhead of rebalancing the tree does not seem to justify the theoretical
performance guarantee. We therefore use Barnes-Hut unbalanced quad-trees, relying
on its observed (nlogn) behavior.

Computing node-edge repulsion naively would take (nm) time—an even more
expensive operation than that of computing node-node repulsion! Here, however, we
can take advantage of node-edge repulsion’s being a short-term force, and use a grid-
variant technique to address it. If the average edge length is (k) and the node
distribution is sufficiently uniform, then we can compute node-edge repulsion forces
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in (m) time. In order to avoid the cut-off problem, we subtract a constant from the
magnitude of the force, thereby making it continuous. We could instead use a
variation of Barnes-Hut, but we have not implemented such an approach.

In summary, we compute the gradient in (m + nlogn) time. For very large sparse
graphs, we might consider using the Fast Multipole Method, which computes
repulsion forces in (n) time [GR87]. Its overhead, however, is too large to make it
practical for graphs of less than 10* nodes.

5. The Optimization Procedure

Quantifying the aesthetics as force laws and computing the forces efficiently is
only half of the problem. We also need a procedure that computes a drawing that is
locally optimal with respect to those force laws.

As we noted in the introduction, the force laws actually determine the negative
gradient of an implicit objective function. Knowing the gradient allows us to use
iterative first-order optimization strategies. Most of the published algorithms use the
method of steepest descent or some variation thereof. Steepest descent always
chooses the negative gradient as a search direction, and then uses some sort of line
search procedure to determine how far to move along that direction. If the objective
function has a lower bound and the line search satisfies a few reasonable assumptions,
then the method of steepest descent will always converge to a local minimum. Its
convergence rate, however, is linear, and can be very poor in practice. In order to
obtain better performance, we have adapted the conjugate gradient method, which has
superlinear convergence in theory and outperforms steepest descent in practice. We
refer the reader to a discussion and analysis of these and other first-order optimization
techniques in any standard optimization text, such as Gill, Murray, and Wright
[GMWS81].

The conjugate gradient method is an iterative method that finds the unique global
minimum of a quadratic function when its Hessian matrix (which is constant) is
positive definite. Each iteration of the conjugate gradient method performs a line
search; if this line search is exact, then the method will solve the minimization
problem exactly in n iterations, where n is the number of variables in the
minimization problem. The first iteration searches along the negative gradient;
subsequent iterations use a linear combination of the previous search direction and the
current gradient.

Our problem, unfortunately, is somewhat messy. The objective function is
certainly not quadratic, nor is its Hessian matrix positive definite. Not only does it
not have a unique global minimum, but it will often have many local minima.
Moreover, finite-precision arithmetic rules out an exact line search in principle, and
computational expense limits the accuracy of the search in practice. Nonetheless, we
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can use the conjugate gradient method on a non-quadratic objective function with an
inexact line search, as long as we restart it from scratch whenever the current search
direction is no longer a descent direction.

If a function is quadratic and its Hessian is positive definite, then we can make a
theoretical comparison of the convergence behaviors of the steepest descent and
conjugate gradient methods. In both cases, the rate of convergence depends on the
spectral condition number of the Hessian—that is, the ratio between the largest and
smallest eigenvalues. If we use steepest descent, then, as we approach the solution,
each iteration only reduces the distance to it by a factor of (( -1) / ( +1))’. For the
conjugate gradient method, this factor becomes (( -1) / ( +1))>. An elegant
analysis of the convergence behavior of each method appears in Shewchuk’s
introduction to the conjugate gradient method [Sh94].

Since the function is not quadratic and our line search is inexact, we cannot make
any guarantees about the rate of convergence. Nonetheless, our empirical results lead
us to conjecture that our variation of the conjugate gradient method still provides an
asymptotic improvement on the number of iterations necessary for convergence.

Having a method to compute the search direction, we still need to determine the
size of the step we take in that direction. The cheapest method—a constant step
size—has the problem that too large a step size can lead to non-convergent
oscillation, while too small a step size results in a very large number of iterations
before convergence. The other extreme is to use a very accurate line search, e.g. one
based on polynomial interpolation. Such an approach, however, has the drawback
that each line search may require many gradient evaluations. Our approach uses an
adaptive step size. We us an empirically determined initial step size, and we increase
or decrease this step size on each iteration based on the previous one. We perform a
gradient evaluation to ensure that we do not overshoot; if our step size is acceptable,
we use this computed gradient for the following iteration.

6. Empirical Results

In order to measure the effects of introducing Barnes-Hut and the conjugate
gradient method, we have compiled empirical results for some undirected graphs.
Our test suite of square meshes, complete binary trees, and hypercubes consists of
graphs that we could easily parameterize by size and for which we could confirm the
quality of the drawings by eye. While we cannot claim that our observations
generalize to all graphs or even to all undirected graphs, we are at least able to
venture a few conjectures.

The table below shows the empirical results we obtained using a PC with a 133
MHz Pentium processor running Microsoft’s JVM under Windows 95. We drew
each graph under four conditions: with and without Barnes-Hut, and with either
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conjugate gradients or steepest descent. We held all other parameters constant: k =
100, quadratic spring force, inverse-linear short and long range node-node repulsion,
and no node-edge repulsion. We produce the initial drawing by scattering the nodes
randomly on an 800 by 600 rectangle. For each graph and setting, we ran seven tests
and used the median for each measured quantity: the number of iterations, the number
of gradient evaluations, and the total time necessary to converge to an optimal
drawing.

We used a conservative convergence criterion: the average of the square of the
distances moved by the nodes on an iteration must be less than 0.01. Often we could
have stopped the algorithm much sooner, but we did not want to introduce a
subjective element by using an “eyeball” convergence norm.

Several entries in the table are marked with asterisks (x); for these, the time
necessary to converge was over half an hour.

Conj. Gradient.  Conj. Gradient  Steepest Descent Steepest Descent
with Barnes-Hut w/o Barnes-Hut  with Barnes-Hut  w/o Barnes-Hut

Graph n m | #ofiters | grad | time | #of | grad time #of | grad | time #of | grad | time
evals | (secs) | iters | evals (secs) iters | evals | (secs) | iters | evals | (secs)
mesh 64 112 82 121 0.91 73 111 0.50 165 241 1.74 197 273 1.36
mesh 144 264 129 208| 4.50| 111 183 3.39 365 534] 10.89 390 570 13.12
mesh 256 480 190 327] 14.65] 173 266 15.67 683| 1028 46.04 554 800)| 58.17
mesh 400 760 236 405] 30.33] 211 352 52.32| 1148 1725| 122.47 694| 1020| 173.74
mesh 576 1104 487 864]104.04] 335 5911 170.04] 1403] 2108 236.45] 1223 1835] 647.83
mesh 784 1512 598 1059] 177.93| 453 825] 468.08] 2603]| 3908| 639.49 * * *
mesh 1024 1984 535 906] 233.43| 506 918 829.43| 2147| 3224|775.18 * * *
tree 63 62 145 272 1.67] 166 274 1.04 485 706) 5.32 702 996| 4.71
tree 127 126 414 714] 11.81]| 481 813 11.89| 1985 2970| 44.80| 1627| 2418 44.73
tree 255 254 1332 2454[104.91] 1146] 2102 126.14| 4741 7115]266.96| 4764| 7144 529.50
tree 511 510 2575| 4777)557.37] 1961| 3852 900.99 * * * * * *
cube 64 192 86 142 1.26 64 98 0.45 73 115] 0.99 75 110 0.66
cube 128 448 97 171 346 101 168 2.75 110 171 343 100 151 3.30
cube 256 1024 115 216] 9.84 99 160 9.56 133 206| 9.76 101 159 12.80
cube 512 2304 128 238 28.64| 121 205 50.32 116 180 21.09 15 233] 67.80
cube 1024 5120 141 277] 77.48| 128 216] 22648 163 252 71.29 154 235] 289.53

The data in the table allow us to make several observations:

1) Denser graphs require fewer iterations than sparser ones. Intuitively, we can see
that for denser graphs, where the gradient is dominated by the spring terms, the
objective function behaves much more linearly than it does for sparser ones,
where the repulsion terms play a more significant role.

2) The average number of gradient evaluations per iteration is less than 2,
suggesting that the adaptive step-sizing works well for both the conjugate
gradient and steepest descent procedures.
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3) Barnes-Hut is a major improvement over the naive computation of repulsion
forces for large graphs. It is slightly more expensive for small ones; the break-
even point seems to be between 100 and 200 nodes, depending on the topology
of the graph. The inaccuracies of Barnes-Hut seem to require slightly more
iterations for convergence, but the decreased cost of an iteration more than makes
up for the increased number of them.

4) For the meshes and trees, the conjugate gradient method requires far fewer
iterations than steepest descent. We conjecture that, for most graphs, the number
of iterations for the conjugate gradient method is sublinear in the number of
nodes, while the number for steepest descent is linear.

5) For the hypercubes, there seems to be no clear winner among the two methods.
In fact, the number of iterations does not seems to grow with the number of
nodes. It is not clear whether this rapid convergence is the result of their
logarithmic density or their high degree of symmetry.

7. Examples

The following are examples of drawings produced by JIGGLE using the default
settings. For each drawing, we indicate the number of iterations and the amount of
time used to produced it.
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32 x 32 Square Mesh
300 iterations, 135 secs

16-Node Binary Tree/Star
100 iterations, < 1 sec

-

Complete Graph of 12 Nodes
50 iterations, < 1 sec

6-Dimensional Hypercube
80 iterations, < 1 sec

16-Node Binary Tree with Level Cycles

100 iterations, < 1 sec
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8 by 8 Torus
100 iterations, < 1 sec
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8. Future Work

There are several directions in which we hope to extend the present work. The
first is to generalize the force laws, taking into account nodes with width and height.
The second is to make the objective function time-dependent. As we have seen, some
objective functions are ideal for the early iterations, while other are more suitable for
fine-tuning. We hope to develop a formal approach to “scheduling” the gradient as a
function of the number of iterations. The third is to improve over-all efficiency. We
believe that our optimization procedures can be better tuned, and we are also
developing an implementation of the JIGGLE algorithms in C++.
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