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Abstract. We are concerned with the problem of visualizing intercon-
nections in railroad systems. The real-world systems we have to deal with
contain connections of thousands of trains. To visualize such a system
from a given set of time tables a so-called train graph is used. It contains
a vertex for each station met by any train, and one edge between every
pair of vertices connected by some train running from one station to the
other without halting in between.

In visualizations of train graphs, positions of vertices are predetermined,
since each station has a given geographical location. If all edges are rep-
resented by straight-lines, the result is visual clutter with many overlaps
and small angles between pairs of lines. We here present a non-uniform
approach using different representations for edges of distinct meaning
in the exploration of the data. Only edges of certain type are repre-
sented by straight-lines, whereas so-called transitive edges are rendered
using Bézier curves. The layout problem then consists of placing control
points for these curves. We transform it into a graph layout problem and
exploit the generality of random field layout models for its solution.

1 Introduction

The layout problem we are concerned with arises from a cooperation with a
subsidiary of the Deutsche Bahn AG (the central German train and railroad
company), TLC/EVA. The aim of this cooperation is to develop data reduction
and visualization techniques for the explorative analysis of large amounts of time
table data from European public transport systems. For the most part, these are
comprised of train schedules. However, the data may also contain bus, ferry and
footwalk connections. The analysis of the data with respect to completeness,
consistency, changes between consecutive periods of schedule validity, and so on
is relevant, e.g., for quality control, (international) coordination, and pricing.

To condense the data, a train graph is built in the following way: For each
regular stop of any train, a vertex is added to the network. One arc is added,
if there is service from one station to another without intermediate stops. For
convenience, we assume that for each train operating between two stations, there
is a corresponding train serving the opposite direction. Hence, the train graphs
considered here are simple and undirected.
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An important aspect is the classification of edges in two categories: min-
imal edges and transitive edges. Minimal edges are those corresponding to a
set of continuous connections between two stations not passing through a third
one. Typically, these are induced by regional trains stopping at every station.
On the other hand, transitive edges correspond to connections passing through
other stations without halting. These are induced by through-trains. Figure
shows part of a train graph with edges colored according to this classification.
Stations are positioned according to their geographical location, and all edges are
represented straight-line. An obvious problem are edge overlaps and small angles
between edges. In order to maintain geographic familiarity, we are not allowed to
move vertices. Since minimal edges usually represent actual railways, they also
remain the same, but we refrain from drawing all transitive edges straight-line.
Instead, we use Bézier curves as shown in Fig. .

Radolfzell Radolfzell

Allensbach Allensbach

Konstanz Konstanz

(a) straight lines (b) Bézier curves

Fig.1. Two different representations of transitive edges in a small train graph

To render Bézier curves, control points need to be positioned. Using the
framework of random field layout models introduced in [5], the problem is cast
into a graph layout problem. More precisely, we consider control points to be
vertices of a graph, and rules for appropriate positioning are modeled by defining
edges accordingly. This way, common algorithmic approaches can be employed.
Practical applicability of our approach is gained from experimental validation.
In a completely different field of application, the same strategy is used to iden-
tify suitable layout models for social and policy networks [3]. These real-world
applications are good examples of how the uniform approach of random field
layout models may be used to obtain initial models for visualization problems
which are not clearly defined beforehand.

The paper is organized as follows. In Sect. 2] we review briefly the concept of
random field layout models. A specific random field model for train graph layout
is defined in Sect. Bl Section M contains experiments with real-world examples
and a short discussion on aspects of parametrization.



46 Ulrik Brandes and Dorothea Wagner

2 Random Field Models

In this section we review briefly the uniform graph layout formalism introduced
in [5]. As can be seen from Section B, model definition within this framework is
straightforward.

Virtually every graph layout problem can be viewed as a constrained opti-
mization problem. A layout of a graph G = (V, E) is computed by assigning
values to certain layout variables, subject to constraints and an objective func-
tion. Straight-line embeddings, for example, are completely determined by an
assignment of coordinates to each vertex. But straight-line representations are
only a very special case of a layout problem. In its most general form, each el-
ement of a set L = {ly,...,l5} of arbitrary layout elements is assigned a value
from a set of allowable values A&}, I € L. Layout elements may represent posi-
tional variables for vertices, edges, labels, and any other kind of graphical object.
Therefore, L and X = X* = X, x --- x Aj, are clearly dependent on the chosen
type of graphical representation. In this application, we do not constrain con-
figurations of layout elements. Hence, all vectors € X are considered feasible
layouts.

Objective Function. In order to measure the quality of a layout, an objective
function U : X — IR is defined. It is based on configurations of subsets of layout
elements which mutually influence their positioning. This interaction of layout
elements is modeled by an interaction graph G" = (L, E") that is obtained from a
neighborhood system 1 = U, m, where ny C L\ {l} is the set of layout elements
for which the position assigned to [ is relevant in terms of layout quality. These
interactions are symmetric, i.e. Iy € n, < 1 € n, for all 1,lo € L, so G"
is undirected. The set of cliques in G is denoted by C = C(n). We define the
interaction potential of a clique C' € C to be any function Ug : X — IR for which

re=yc = Uc(x)=Uc(y)

holds for all z,y € &, where ¢ = (21),c- A graph layout objective function
U : X — IR is the sum of all interaction potentials, i.e. U(x) = > o Uc(x). By
convention, the objective function is to be minimized. U(z) is often called the
energy of x.

Fundamental Potentials. One advantage of separating the energy function into
clique potentials is that recurrent design principles can be isolated to form a tool-
box of fundamental potentials. Not surprisingly, the two most basic potentials

are those corresponding to the forces used in the spring embedder [7]{}

— Repelling Potential: The rule that two layout elements k£ and [ should not
lie close to each other can be expressed by a potential

4

p(rep)
d(xk, Il)2

{k,1} (x) = Rep(xk’xl) =

! The original spring embedder does not specify an objective function, but its gradi-
ents. The above potentials appear in [6].
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where p is a fixed constant and d(xg, ;) is the Euclidean distance between
the positions of k and [. Rep(zk,x; | o) is used to indicate a specific choice
of o.

— Attracting Potential: If, in contrast, & and [ should lie close to each other, a
potential

U{(Ztlt}r) (x) = Attr(zg, ;) = « - d(xk,xl)Q,

with « a fixed constant, is appropriate. Like above we use Attr(zy,x;|«) to
denote a specific choice of a.

Since Rep(wy, x| A)+ Attr(zy, z; | 1) is minimized when d(z, z;) = ), it is easy
to specify a desired distance between two layout elements (e.g. edge length). Note
that many other design rules (sufficiently large angles, vertex-edge distance, edge
crossings, etc.) are easily formulated in terms of clique potentials [5].

If layouts x € A" are assigned probabilities

P(X=x)= %6_[](””),

where Z = Zye e e~V is a normalizing constant, random variable X is a
(Gibbs) random field. Both X and its distribution are called a (random field)
layout model for G. Clearly, the above probabilities depend on the energy only,
with a layout of low energy being more likely than a layout of high energy. By
using a random variable, the entire layout model is described in a single object.
Due to the familiar form of its distribution, a wealth of theory becomes applicable
(a primer in the context of dynamic graph layout is [4]). See [II] for an overview
on the theory of random fields, and some of its applications in image processing.
Since random fields are used so widely, there also is a great deal of literature on
algorithms for energy minimization (see e.g. [10]).

3 Layout Model

We now define a random field model for the layout of a train graph G = (V, E).
Vertex positions are given by geographical locations of corresponding stations,
and minimal edges as well as very long transitive edges are represented straight-
line. For the other edges we use Bézier cubic curves (cf. Fig. IZI)H Let £ C E
be the set of transitive edges of length less than a threshold parameter 71, such
that the set of layout elements consists of two control points for each edge in E,
L = {by(e),by(e)| e = {u,v} € E}. If two Bézier points belong to the same edge,
they are called partners. The anchor, ay, (e, of by(e) is u, while the anchor of
by (e) is v. The default position of all Bézier points is on the straight line through
the endpoints of their edges at equal distance from their anchor and from their
partner (and hence uniquely defined).

2 Tt will be obvious from the examples presented in Section Fl why it is not useful to
represent all transitive edges by Bézier curves.
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Fig.2. Bézier cubic curve [2]. Two endpoints and two control points define a
smooth curve that is entirely enclosed by the convex hull of these four points

The position assigned to a Bézier point is influenced by its partner, its anchor,
all Bézier points with the same anchor, and a number of close stations and Bézier
points. Let {u,v} € F be a transitive edge, and let b € L be a Bézier point of
{u,v}. Given two parameters €; and eg, consider an ellipse with major axis
going through v and v. Let its radii be ¢; - M and ey - M, respectively.
We denote the set of all stations and Bézier points (at their default position)
within this ellipse, except for b itself, by &. Recall that the neighborhood of some
layout element consists of all those layout elements that have an influence on
its positioning. Therefore, 1, equals the union of & N L, the set of Bézier points
with the same anchor as b, and (since interactions need to be symmetric) the set
of Bézier points b’ for which b € &,. For the examples presented in Section [ we
used ;1 = 1.1 and €5 = 0.5.

An interaction potential is defined for each design goal that a good layout of
Bézier points should achieve:

— Distance to stations. For each Bézier point b € L of some edge {u,v} € E,
there are repelling potentials

Y Rep(w,s|(e-2)"),

se&,NV

with A\, = @ and p; a constant. These ensure reasonable distance from
stations in the vicinity of b and can be controlled via g;. A combined repelling
and attracting potential

Rep (xb, ap | (A1 - )\b)4) + Attr(zp, ap),

where A is another constant, keeps b sufficiently close to its anchor ay.

— Distance to near Bézier points. As is the case with near stations, a Bézier
point b; € L should not lie too close to another Bézier point by € my,,. If by
is neither the partner of nor bound to be (binding is defined below), we add

RGP (xbl s Lbhy ‘ Q% : mln{)\;; ’ Aéz }) :
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The desired distance between partners b; and by is equal to the desired
distance from their respective anchors,

Rep (b, , T, | (M- Moy )?) + Attr(zy,, b, ).

— Binding. In general, it is not desirable to have Bézier points by, b € L with
a common anchor lie on different sides of a minimal edge path through the
anchor. Therefore, we bind them together, if Ay, does not differ much from

Aby, 1€ if %2 < % < 7o for a threshold 7 > 1, we add potentials

ﬁ . (Rep<xb1>xb2 | >‘A21 . ()‘21 + )‘gg)/2) + Attr(xbl’xbz)) )

where )\; is a stretch factor for the length of binding edges, and (3 controls
the importance of binding relative to the other potentials.

In summary, the objective function is made of nothing but attracting and re-
pelling potentials that define a graph layout problem in the following way:
Stations correspond to vertices with fixed positions, while Bézier points cor-
respond to vertices to be positioned. Edges of different length exist between
Bézier points and their anchors, between partners, and between Bézier points
bound together. Just like edge lengths, repulsion differs across the elements. See
Fig. Bland recall that repelling forces act only locally (inside of neighborhoods).
Let 6 = (01, 02, M1, A2, 8,71, 2) denote the vector of parameters. The effects of
its components are summarized and demonstrated in Section [l

Fig. 3. Graph model of Bézier point layout dependencies for the train graph
of Fig. [1(b)} Note that there is no binding between the two layout elements
indicated by black rectangles, because their distances from the anchor differ too
much (threshold parameter 73)
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4 Experiments

In order to obtain an objective function, we experimented with different poten-
tials and parameters. We started with a simple combination of repelling forces
from stations and attracting and repelling forces from partners and anchors.
In fact, we first used splines to represent transitive edges. It seemed that they
offered better control, since they actually pass through their control points. How-
ever, segments between partners tended to extend far into the layout area. After
replacing splines by Bézier curves, the promising results encouraged us to try
more elaborate objective functions. They showed that it is useful to represent
long transitive edges straight-line, which led to the introduction of threshold 7.
A new requirement we found after looking at earlier examples was that incident
(consecutive or nested) transitive edges should lie on one side of a path of mini-
mal edges. Binding proved to achieve this goal, but needed to be constrained to
control segments of similar desired length using a threshold 75. Otherwise, short
transitive edges are deformed when bound to a long one.

For convenience, we use the final combination of potentials and different
choices of § = (g1, 02, 1, A2, 8,71, 72) to demonstrate the effect of single pa-
rameters in Fig. [ In particular, Fig. 4(d)| shows why binding is a valuable
refinement. The following table summarizes these effects:

controls

01 | distance of Bézier points from stations

02 | mutual distance of Bézier points

A1 | length of control segments

A2 | length of bands

[ | importance of binding

71 | threshold for straight transitive edges

Ty | threshold for binding segments of different length
€1 | major axis radius of neighborhood defining ellipse
€2 | minor axis radius of neighborhood defining ellipse

Next to a choice that proved appropriate (Fig. [d(a)), it is clearly seen how
increased repelling forces spread Bézier points (Figs. 4(b)| and [4(c)). Without
binding, curves tend to lie on different sides of minimal edges (Fig. H@j This
can even be enforced (Fig. [4(e)).

The identification of a suitable set of parameters is a serious problem. Men-
donga and Eades use two nested simulated annealing computations to identify
parameters of a spring embedder variant [9]. In [8], a genetic algorithm is used
to breed a suitable objective function. However, both methods are heuristic in
defining their objective as well as in optimizing it. Given one or more examples
which are considered to be well done (e.g. by manual rearrangement), a theoret-
ically sound approach would be to carry out parameter estimation for random
variable X () describing the layout model as a function of parameter vector 6.
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(a) Regular
0 = (0.3,0.7,0.7,0.5, 0.4, 100, 2.2)

(b) Station repulsion (c) Segment stretching
0 =(50.7,0.7,0.5,0.4,100,3) 0 = (0.3,4,1,0.5,0.4, 100, 3)

L

(d) No binding (e) Inverse binding
9 = (0.3,0.7,0.7,0,0,100,0) 6= (0.3,0.7,0.7,2,1, 100, 3)

Fig. 4. Effects of single parameters. For a better comparison, control segments
are shown instead of the corresponding Bézier curves. All examples have e; = 1.1
and €5 = 0.5
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Given a layout z, the likelihood of 6 is

1
P(X =z|0) = %exp{—U(:vI@)}
where Z(0) = 3, cyexp{—U(y|0)} is the normalizing constant. A maximum
likelihood estimate 8* is obtained by maximizing the above expression with re-
spect to 6. Unfortunately, computation of Z(6) is practically intractable, since
it sums over all possible layouts. One might hope to reduce computational de-
mand by exploiting the locality of random fields (see e.g. [11]). Even though
neighboring layout elements are clearly not independent, reasonable estimates
are obtained from the pseudo-likelihood function [I]

H%exp{ > Uc(l’|9)}

leL ceC:leC

with Z1(0) = 3_,, cx, exP{— > ceccuecc Uc(2 | 0)}, where & equals z with 2y re-
placed by y;. However, Z;(6) is a sum over all possible positions of layout element
I, such that maximization is still intractable in this setting. So we exploited lo-
cality in a very different way, namely by experimenting with small examples as in
Fig. dl The parameters 6 thus identified proved appropriate, because the model
scales so well.

To carry out the above experiments, and to generate large examples, we used
an implementation of a fairly general random field layout module. It contains a
set of fundamental neighborhood types and interaction potentials, to which oth-
ers can be added. Since current concern is on flexibility and model design, a sim-
ple simulated annealing approach is used for energy minimization. Clearly, faster
and more stable methods can be employed just as well. The original datasets
provided by TLC/EVA are quite large. A train graph of roughly 2,000 vertices
and 4,000 edges, for instance, is built from about 11 MByte of time table data.
Connections are then classified into minimal and transitive edges. Existing code
was used for these purposes.

The first example is shown in Fig. bl The graph contains regional trains in
south-west Germany. Edge classification, transformation into a layout graph,
neighborhood generation, and layout computation took less than two minutes.
Figs. and show magnified parts of the drawing from Fig. Verify
that connections can be told apart quite well, and that binding causes incident
(consecutive or nested) transitive edges to lie on the same side of minimal edges.

Larger examples are given in Figs. B and [l Computation times were about
35 minutes and 90 minutes, respectively, most of which was spent on generating
the graph layout model and determining neighborhoods. One readily observes
that the algorithm scales very well, i.e. increased size of the graph does not reduce
layout quality on more detailed levels. This is largely due to the fact that neigh-
borhoods remain fairly local. Together with the ability to zoom into different
regions, data exploration is well supported. The benefits of a length threshold
for curved transitive edges is another straightforward observation, notably in

Fig.
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(¢) Rhine from Konstanz to Basel to Freiburg

Fig. 5. Regional trains in south-west Germany: ca. 650 vertices, 900 edges (200
transitive), § = (0.7,0.3,0.7,0.5,0.4, 100, 3)
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Fig. 6. Italian train and ferry connections: ca. 2,400 vertices, 4,400 edges (1,800
transitive), § = (0.7,0.3,0.7,0.5,0.4, 100, 3). Zoom is into the surroundings of
Venice
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(b) Paris (note the long-distance sta- (c) Strasbourg
tions!)

Fig. 7. French connections: ca. 4,500 vertices, 7,800 edges (2,500 transitive),
6 = (0.7, 0.3,0.7,0.5,0.4, 100, 3)
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