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Abstract. In this paper we look at upward planarity from a new per-
spective. Namely, we study the problem of checking whether a given
drawing is upward planar. Our checker exploits the relationships between
topology and geometry of upward planar drawings to verify the upward
planarity of a significant family of drawings. The checker is simple and
optimal both in terms of efficiency and in terms of degree.

1 Introduction

The intrinsic structural complexity of the implementation of geometric algo-
rithms makes the problem of formally proving the correctness of the code unfea-
sible in most of the cases. This has been motivating the research on checkers. A
checker is an algorithm that receives as input a geometric structure and a predi-
cate stating a property that should hold for the structure. The task of the checker
is to verify whether the structure satisfies or not the given property. Here, the
expectation is that it is often easier to evaluate the quality of the output than
the correctness of the software that produces it. Several authors [17, 16, 5] agree
on the basic features that a “good” checker should have:

Correctness: The checker should be correct beyond any reasonable doubt. Oth-
erwise, one would fall into the problem of checking the checker.

Simplicity: The implementation should be straightforward.
Efficiency: The expectation is to have a checker that is not less efficient than

the algorithm that produces the geometric structure.
Robustness: The checker should be able to handle degenerate configurations

of the input and should not be affected by errors in the flow of control due
to round-off approximations.
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Checking is especially relevant in the graph drawing context. In fact, graph
drawing algorithms are among the most sophisticated of the entire computational
geometry field, and their goal is to construct complex geometric structures with
specific properties. Also, because of their immediate impact on application areas,
graph drawing algorithms are usually implemented right after they have been
devised. Further, such implementations are often available on the Web without
any certification of their correctness. Of course, the checking problem becomes
crucial when the drawing algorithm deals with very large data sets, when a
simple complete visual inspection of the drawing is difficult or unfeasible.

Devising graph drawing checkers involves answering only apparently innocent
questions like: “is this drawing planar?” or “is this drawing upward?” or “are the
faces convex polygons?”. The problem of checking the planarity of a subdivision
has been pioneered in [18, 5]. In those papers linear time algorithms are given to
check the planarity of a subdivision composed by convex faces. The inputs are
the subdivision plus its topological embedding in terms of the ordered adjacency
lists of the edges. Unfortunately, extending the above techniques to checking
the planarity of a subdivision whose faces are not constrained to be convex,
relies on the usage of algorithms for testing the simplicity of a polygon. The
only general linear time algorithm known for this problem is the fairly complex
algorithm in [3]. Hence, devising a checker based on such algorithm would not
satisfy the simplicity requirement. The algorithm in [3] tests the simplicity of a
polygon by means of an intermediate triangulation step. Alternative algorithms
that can triangulate in linear time special classes of polygons have been devised.
See e.g. [10, 8]. Other almost optimal algorithms can be found in [12, 4, 20].

In this paper we study the problem of checking the upward planarity of a
drawing. Upward planarity is a classical topic in graph drawing and several
papers deal with the problem of testing whether a given graph has an upward
planar drawing and eventually constructing it. For an overview, see [6]. We look
at the problem from a different perspective. The main results of this paper are:

(i) We introduce and study regular upward planar embeddings. We show that
such embeddings coincide with those that have a “unique” including planar st-
digraph. There are several families of digraphs whose upward planar embeddings
are always regular. E.g. rooted trees, planar st-digraphs, and planar sT -digraphs
(i.e. single-source digraphs). The great majority of algorithms for constructing
upward planar drawings receive as input such digraphs. (ii) We exploit the con-
cept of regularity to investigate the relationships between topology and geometry
of upward planar drawings. In particular, we show that an upward drawing of a
regular planar upward embedding satisfies strong constraints on the left-to-right
ordering of the edges. (ii) Based upon the above results and under the assump-
tion of regularity we present a linear time checker to test whether a given drawing
Γ is upward planar. Our checker receives as input the set of vertices and bends
of Γ (represented as pairs of integer coordinates), the set of oriented edges of Γ ,
and the embedding of Γ , i.e. the circular ordering of the edges incident on each
vertex of Γ . An example of a drawing whose upward planarity can be checked by
our algorithm is shown in Figure 1. (iii) We further analyze the effectiveness of
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our checker by adopting the notion of degree which takes into account the arith-
metic precision required by the checker to carry out error-free computations. We
show that our checker has (optimal) degree 2.

Fig. 1. Example of drawing whose upward planarity can be checked with the
algorithm presented in this paper.

Our techniques do not exploit the polygon simplicity perspective but rely on
the relationships between topology and geometry. Namely, in general triangulat-
ing the faces of a drawing does not appear to be strictly necessary when testing
its planarity; also, the faces of an upward drawing can be very different from
those polygons for which a simple triangulation algorithm is known.

2 Preliminaries

We first recall the notion of algorithmic degree, then we recall basic definitions
and properties of upward planar drawings and embeddings. We assume famil-
iarity with basic graph and geometric terminology. See also [11, 19].

The notion of degree as a measure of the precision that can be required by an
error-free implementation of an algorithm has been introduced in [14, 15]. We
briefly recall some terminology and results.

The numerical computations of a geometric algorithm are basically of two
types: tests (predicates) and constructions. Tests are associated with branching
decisions in the algorithm that determine the flow of control. Constructions are
needed to produce the output data of the algorithm. While approximations in
the execution of constructions are acceptable, provided that the error magnitude
does not exceed the resolution required by the application, approximations in
the execution of tests may produce an incorrect branching of the algorithm, thus
giving rise to structurally incorrect results. The exact-computation paradigm
therefore requires that tests be executed with total accuracy.

Geometric and graph drawing algorithms can be therefore analyzed on the
basis of the complexity of their test computations. Any such computation con-
sists of evaluating the sign of an algebraic expression over the input variables,
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constructed using an adequate set of operators, such has {+,−,×,÷, 2
√}. This

can be reduced to the evaluation of the signs of multivariate polynomials derived
from the expression.

A primitive variable is an input variable of the algorithm and has conven-
tional arithmetic degree 1. The arithmetic degree of a polynomial expression E
is the common arithmetic degree of its monomials. The arithmetic degree of a
monomial is the sum of the arithmetic degrees of its variables. An algorithm has
degree d if its test computations involve the evaluation of multivariate polyno-
mials of arithmetic degree at most d. A problem has degree d if any algorithm
that solves the problem has degree at least d.

A straightforward consequence of a result in [5] is the following.

Theorem 1. The upward planarity checking problem has degree at least 2.

We borrow some terminology and results from [7, 2]. Let G be a planar
digraph. An upward drawing of G is a drawing such that all edges are repre-
sented by curves monotonically increasing in a common direction, for example
the vertical one. A digraph that admits an upward planar drawing is upward
planar.

An st-digraph is an acyclic digraph with exactly one source s and exactly one
sink t and such that s and t are adjacent. An sT -digraph is an acyclic digraph
with exactly one source s.

Lemma 1. [13, 7] An upward planar digraph is a subgraph of a planar st-
digraph.

Let G be an embedded planar digraph. A vertex of G is bimodal if its incident
list can be partitioned into two possibly empty linear lists, one consisting of
incoming edges and the other consisting of outgoing edges. If all its vertices are
bimodal then G and its embedding are called bimodal. A digraph is bimodal if it
has a planar bimodal embedding.

Let f be a face of a bimodal digraph G. Visit the contour of f counterclock-
wise (i.e. such that the face remains always to the left during the visit). A vertex
v of f with incident edges e1 and e2 is a switch if the the direction of e1 is
opposite to the direction of e2 (note that e1 and e2 may coincide if the digraph
is not biconnected). If e1 and e2 are both incoming (outgoing) v is a sink switch
(source switch) of f . Let 2nf be the number of switches of f . The capacity cf of
f is defined to be nf − 1 if f is an internal face and nf + 1 if f is the external
face.

An assignment of the sources and sinks of G to its faces such that the following
properties hold is upward consistent: (i) A source (sink) is assigned to exactly
one of its incident faces. (ii) For each face f , the number of sources and sinks
that are assigned to f is equal to cf .

Theorem 2. [2] Let G be an embedded bimodal digraph; G is upward planar if
and only if it admits an upward-consistent assignment.
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Let G be an embedded bimodal digraph that has an upward-consistent as-
signment. According to Theorem 2, in [2] it is defined the concept of upward
planar embedding of G as its planar embedding for which, for each face f , the
switches of f are labeled S or L. A switch is labeled L if it is a source or a
sink assigned to f , S otherwise. If f is internal, then the number of its switches
labeled L is cf − 1, else the number of its switches labeled L is cf + 1. A face
of G with the above properties is upward consistent. The circular list of labels
of f will be usually called the labeling of f and denoted as σf . Also, Sσf

(Lσf
)

denotes the number of S-labels (L-labels) of σf .
Observe that an embedded bimodal digraph can have many upward planar

embeddings each corresponding to a certain upward-consistent assignment.

Property 1. [2] For an upward consistent internal (external) face f we have:
Sσf

= Lσf
+ 2 (Lσf

= Sσf
+ 2).

An immediate consequence is the following.

Property 2. The labeling σf of an upward consistent internal (external) face f
has at least two consecutive S-labels (L-labels).

Another consequence of the results in [2] is that, given a planar upward
embedding of a digraph G it is always possible to construct a planar st-digraph
including G by adding to G a new source s, a new sink t, edge (s, t), and a
suitable set of (dummy) edges. Such edges connect either pairs of switches or
external face switches with s or t. More formally, we can elaborate the concepts
in [2] as follows. Given an upward planar embedded digraph G a saturator of G
is a set of edges (each edge a saturating edge) plus two vertices s and t connected
by edge (s, t). A saturating edge is such that:

– A saturating edge can either connect two switches of the same face, or it can
connect a sink switch labeled L of the external face to t, or it can connect s
to a source switch labeled L of the external face.

– For a saturating edge (u, v), u, v 6= s, t, either u is a source switch labeled S
and v is a source switch labeled L or u is a sink switch labeled L and v is
a sink switch labeled S. In the former case we say that u saturates v and in
the latter case we say that v saturates u.

– The faces obtained with the insertion of a saturating edge are upward con-
sistent.

Examples of upward planar embeddings can be found in Figure 2. The dashed
edge of Figure 2(c) is a saturating edge.

The set of saturating edges added to a face is also called saturator of that
face. We mainly focus on properties of saturators of internal faces. Analogous
properties hold for the external face. The following property relates the labeling
of an internal face f to the labeling of the faces obtained when inserting a
saturating edge.
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Fig. 2. Examples of labelings, faces, and digraphs: (a) A planar upward embed-
ded rooted tree. (b) A planar upward embedded st-digraph. (c) A planar upward
embedded sT -digraph. The dashed edge is a saturating edge. (d) A more complex
planar upward embedded digraph.

Property 3. Let f be an internal face of an upward planar embedded digraph, let
e be a saturating edge of f , and let σf = σ1Sσ2L, where the S and L in evidence
are the labels of the endvertices of e. Then, Sσ1 = Lσ1 + 1 and Sσ2 = Lσ2 + 1.

Proof. By the definition of saturator, both the faces resulting by the insertion
of e are upward consistent. Observe that such faces have labeling σ1S and Sσ2.
Hence, by Property 1 we have that Sσ1 = Lσ1 + 1 and Sσ2 = Lσ2 + 1.

A saturator of G is said to be complete if for every face f and for every switch
u of f labeled L, u is an endvertex of an edge of the saturator.

Property 4. Each upward planar digraph G is a subgraph of a planar st-digraph
constructed by adding to G a complete saturator of an upward planar embedding
of G.

Observe that an upward planar embedding can have, in general, many com-
plete saturators.

Property 5. Each planar upward drawing of a digraph G is a subdrawing of a
planar upward drawing of a planar st-digraph enclosing G and constructed by
adding to G a complete saturator.

3 Regular Upward Embeddings

In this section we characterize the family of upward planar digraphs for which
there exists a unique complete saturator. Also, we study the relationships be-
tween topological properties and upward drawings of such digraphs.

3.1 Regularity

Our characterization is based on a certain type of labeling. Namely, let G be an
upward planar embedded digraph. An internal face f of G has a regular labeling
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if σf does not contain two distinct maximal subsequences σ1 and σ2 of S-labels
such that Sσ1 > 1 and Sσ2 > 1. An external face f of G has a regular labeling if
σf does not contain two consecutive S-labels. A face of G with a regular labeling
is a regular face. For example all labelings of Figure 2 are regular.

Property 6. In the labeling of a regular internal face f with more than two
switches, there is always a maximal subsequence of at least three consecutive
S-labels.

Proof. By contradiction. Suppose that the labeling of the face f is σf = σ1LSSL.
By Property 1, we have Sσ1 = Lσ1+2. Therefore, σ1 has two consecutive S-labels
which implies the non regularity of the face.

Based on the notion of regular face, a family of upward planar embedded
digraphs can be defined. An upward planar embedded digraph is regular if all
its faces have a regular labeling. The corresponding embedding is also called
regular. An upward planar digraph is regular if all its upward planar embeddings
are regular.

The following theorem lists important families of regular digraphs.

Theorem 3. Rooted trees, planar st-digraphs, and upward planar sT -digraphs
are regular.

Proof. We prove the regularity by describing with regular expressions the la-
beling of the faces of any upward planar embedding. Rooted trees have one
(external) face in any upward planar embedding. The face is regular since its la-
beling is LL(LS)∗. See, for example, Figure 2(a). Concerning planar st-digraphs:
the external face is labeled LL and the internal faces are labeled SS. See, for
example, Figure 2(b). Upward planar sT -digraphs are such that the external
face is labeled LL(LS)∗ and the internal faces are labeled SS(SL)∗.

An example of a more complex regular upward embedded digraph, that does
not fall in any of the classes mentioned in Theorem 3, is shown in Figure 2(d).

In Section 2 it has been observed that an upward planar embedding can have,
in general, many complete saturators. The notion of regular embedding allows
us to characterize those planar upward embeddings that have only one complete
saturator. We start by studying how a switch labeled L can be saturated in a
regular face.

Two switches of a face f of an upward planar embedded digraph are neighbor
switches if their labels are in the same subsequence σ1 of σf such that all labels
in σ1 are S (L) labels.

Lemma 2. In a regular face f with more than two switches, if a switch u sat-
urates a switch v, then u has at least one neighbor switch.

Proof. Suppose the face is internal. By contradiction. Let the labeling of f be:
σf = σ1LSLσ2L, where the last L-label is the label of v and the S-label is the
label of u. After the insertion of edge (u, v) the two new faces f1 and f2 have
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labeling σ1LS and SLσ2, respectively. Also, by Property 2 σf has at least two
consecutive S-labels. Suppose wlog that such consecutive S-labels are in σ1. It
follows, by the regularity of σf , that σ2 does not have two consecutive S-labels.
However, by Property 2 applied to face f2 this is not possible.

Lemma 2 restricts the set of possible switches labeled S that can be used to
saturate the switches labeled L in a regular face. The next lemma allows us to
further restrict our attention to only one switch of such a set. The lemma holds
for any (even non-regular) face of an upward planar digraph and will be used in
its general form to prove a next theorem.

Lemma 3. Let f be an internal face of an upward planar embedded digraph,
such that f has more than two switches, and let u and v be two switches of f . If
v can saturate u, then none of the neighbor switches of v can saturate u.

Proof. Let σf = σ1σ2Sσ3σ4L be the labeling of f where: S is the label of v, L
is the label of u, σ2 and σ3 are the subsequences of the S-labels of the neighbor
switches of v (by Lemma 2 at most one of such subsequences may be empty), and
σ1 and σ4 contain the remaining labels of σf . Clearly, Lσ2 = Lσ3 = 0. Therefore,
since v can saturate u, by Property 3 we have that Sσ1 +Sσ2 = Lσ1 +1. It follows
that Sσ2 = Lσ1 − Sσ1 + 1. Observe that the position of the label of the switch
saturating u in the sequence σ2Sσ3 is univocally determined by the values of
Lσ1 and Sσ1 . Hence, there is only one switch of f that can saturate u among v
and its neighbor switches.

We are now ready to prove one of the main results of this section.

Theorem 4. An upward planar embedding has only one complete saturator if
and only if it is regular.

Proof. We concentrate on internal faces. Similar arguments hold for the external
face. Let G be a digraph with a given regular upward planar embedding and let
f be an internal face of G. Lemmas 2 and 3 imply that for every switch v
labeled L of f there exists a unique switch u such that (u, v) is a saturating
edge. Hence, if an upward planar embedding is regular, then there is only one
complete saturator. To prove the necessity, we now show that if an internal face
f of an upward planar embedded digraph G has a switch u labeled L and two
distinct switches v and w such that both v and w can saturate u, then f (and
hence G) is not regular. We have that σf = σ1Sσ2Sσ3L, where the first S is
the label of v, the second S is the label of w, and L is the label of u. Since v
(w) can saturate u, the saturating edge (u, v) ((u, w)) splits f into two upward
consistent faces. Thus, by Property 1 there are two consecutive S labels in σ1S
(Sσ3). By Lemma 3 v and w are not neighbor switches. Hence, Lσ2 ≥ 1. This
implies the non-regularity of f .

The topology of an upward planar embedded digraph G induces ordering
relationships on its edges, which correspond to a set of geometric constraints
that have to be satisfied by an upward planar drawing of G. Together with
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regularity properties, the study of such ordering relationships has revealed to
be a basic ingredient for the design of our efficient low-degree upward planarity
checker.

3.2 Precedence and Dominance

Let G be a planar embedded st-digraph. Let e1 and e2 be two distinct edges of

G. We say that e1 is to the left of e2, and denote it as e1

l≺G e2, when:

1. there exists a drawing Γ of G and two distinct points p1 ∈ Γ (e1) and p2 ∈
Γ (e2) such that y(p1) = y(p2) and x(p1) < x(p2);

2. for any upward planar drawing Γ of G and for any two distinct points p1 ∈
Γ (e1) and p2 ∈ Γ (e2) such that y(p1) = y(p2), we have that x(p1) < x(p2).

The following properties can be easily proved.

Property 7. For each pair (u1, v1), (u2, v2) of edges of G, the relationship

(u1, v1)
l≺G (u2, v2) holds if and only if: (1) it does not exist a directed path

from s to t containing both edges, and (2) there exists a vertex w and two inter-
nally disjoint directed paths π1 and π2 such that π1 contains (u1, v1), π2 contains
(u2, v2), π1 and π2 share w, and the edge of π1 incident on w is to the left of the
edge of π2 incident on w in the ordering of the incoming edges incident on w.

Property 8. Let G be a planar embedded st-digraph. Relation
l≺G is transitive.

We now define a precedence relationship between two edges of an upward
planar embedded digraph. Let e1 and e2 be two distinct edges of an upward
planar embedded digraph G. We say that e1 is to the left of e2, and denote it as

e1

l≺G e2, when for each including st-digraph G′ obtained by adding a complete

saturator to G we have that e1

l≺G′ e2.
From Property 8 it follows that:

Property 9. Let G be an upward planar embedded digraph. Relationship
l≺G is

transitive.

Let e1 and e2 be two distinct edges of an embedded planar st-digraph G. We
say that e1 is dominates e2, and denote it as e1

u≺G e2, when for any upward
planar drawing Γ of G and for any two distinct points p1 ∈ Γ (e1) and p2 ∈ Γ (e2)
we have that y(p1) > y(p2).

Property 10. For each pair e1, e2 of distinct edges of G e1

u≺G e2 if and only if
there exists a directed path from s to t containing both e1 and e2 and such that
when going from s to t along the path e1 is encountered before e2.
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Property 11. Let G be a planar embedded st-digraph. Relation
u≺G is transitive.

We now define a dominance relationship between two edges of an upward
planar embedded digraph. Let e1 and e2 be two distinct edges of an upward
planar embedded digraph G. We say that e2 dominates e1, and denote it as
e1

u≺G e2, when for each including st-digraph G′ obtained by adding a complete
saturator to G we have that e1

u≺G′ e2.
From Property 11 it follows that:

Property 12. Let G be an upward planar embedded digraph. Relationship
u≺G

is transitive.

Observe that since relationships
l≺G and

u≺G are mutually exclusive for an
embedded planar st-digraph, the following property holds.

Property 13. Let G be an upward planar embedded digraph. Relationships
l≺G

and
u≺G are mutually exclusive.

Also notice that, because of Property 5, the relationships
l≺G and

u≺G de-
fined for an upward planar embedded digraph give left-to-right and up-down
constraint that hold for any drawing of G.

We are now ready to characterize the upward planar embedded digraphs such

that for any pair of edges, they are in the
u≺G or in the

l≺G relationship. From
the above discussion it follows a sufficient condition:

Property 14. Upward planar embedded st-digraphs are such that for each pair

e1, e2 of edges either e1

l≺G e2 or e2

l≺G e1 or e1

u≺G e2 or e2

u≺G e1.

A complete characterization is given in the following theorem.

Theorem 5. Let G be an upward planar embedded digraph. For each pair e1, e2

of edges of G it holds that either e1

l≺G e2, or e2

l≺G e1, or e1

u≺G e2, or
e2

u≺G e1, if and only if G is regular.

Proof. First, we prove the sufficiency. Namely, we prove that if G is regular then

for each pair e1, e2 of edges of G it holds that either e1

l≺G e2, or e2

l≺G e1, or
e1

u≺G e2, or e2

u≺G e1.
If G is regular then, by Property 4, and Theorem 4 it follows that there

exists a unique planar embedded st-digraph G′ enclosing G and constructed by
adding a complete saturator to G. The sufficiency is immediately implied by
Property 14.

Suppose now, for a contradiction, that there exists a non-regular upward
planar embedded digraph G such that between any pair of edges of G either the
l≺G or the

u≺G relationship is defined. Let f be a non-regular face of G, let u be
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a sink switch of f labeled L, and let v and w be sink switches labeled S that
can saturate u (the proof is symmetric for the case that u, v, and w are source

switches). Let e1 and e2 be the two edges of f incident on v such that e1

l≺G e2;

let e3 and e4 be the two edges of f incident on w such that e3

l≺G e4. Finally, let
e5 and e6 be the two edges of f incident on u. Since both v and w can saturate
u, consider two different planar embedded st-digraphs that include G: G′ has
the saturating edge (u, v), while G′′ has the saturating edge (u, w).

In G′, we have that e1

l≺G′ e5

l≺G′ e2 by Property 7. Since for all pairs of

edges of G either the
l≺G or the

u≺G relationship is defined and since there exists
an st-digraph (constructed with a complete saturator) including G for which

e5

l≺G′ e2, we can conclude that e5 is to the left of e2 also for G, i.e. e5

l≺G e2.

In G′′ we have that e3

l≺G′′ e5

l≺G′′ e4. With analogous reasoning as above,

we conclude that e3

l≺G e5.

Now, four cases are possible: Either e2

l≺G e3 or e3

u≺G e2, or e3

l≺G e2, or
e2

u≺G e3. We show a contradiction for the first two cases. The proof for the
other cases is symmetric.

Namely, if e2

l≺G e3, since we have shown that e5

l≺G e2, by the transitivity

property (Property9) it follows e5

l≺G e3. But we should also have e3

l≺G e5,
a contradiction. If, in turn, e3

u≺G e2, in G′′ we have that e5

u≺G′′ (u, w)
u≺G′′

e3

u≺G′′ e2 (Property10). By the transitivity property (Property11) it follows
that in G′′ e5

u≺G′′ e2 which implies that also in G it should be e5

u≺G e2. But,

we should also have e5

l≺G e2, a contradiction because of Property 13.

4 Upward Planarity Checking

Let Γ be a connected polygonal-line drawing of a digraph G with n vertices and
bends. An upward planarity checker of Γ receives as input the set of vertices and
bends of Γ represented as pairs of integer coordinates, the set of oriented edges
of Γ , and the embedding of Γ , i.e. the circular ordering of the edges incident on
each vertex of Γ .

Our upward planarity checker executes three tests in sequence. If a test fails,
then the checker rejects Γ , otherwise it executes the test that follows in the
sequence. At the end of the procedure, either a certificate for Γ is provided or a
message that rejects Γ providing evidence of the property that is not respected
by Γ . The tests performed by the checker are listed below.

Embedding-Test: Verify whether the given embedding is planar. This is equiv-
alent to verifying whether there exists a drawing Γ ′ of G that preserves the
given embedding and such that no two edges of Γ ′ cross. The bimodality of
the given embedding is also verified.
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Upwardness-Test: Verify whether Γ is an upward drawing.
Non-Crossing-Test: Verify whether any two edges of Γ cross.

The Embedding-Test can be executed in O(n) time with the techniques
described in [5]. Since no geometric test is performed, then the Embedding Test
does not affect the overall degree of the checker.

The Upwardness-Test can be executed in O(n) time by visiting Γ with a
standard visiting procedure. The geometric test involves an immediate compar-
ison of the y-coordinates of the endvertices of the edges. This requires degree 1.

In [5] it is shown that a straight-line undirected drawing whose induced em-
bedding is planar does not have any edge crossings if and only if all faces in the
drawing are simple polygons. In the same paper, an efficient algorithms is pre-
sented for checking convex planar drawings of undirected graphs. Unfortunately,
neither the faces of an upward drawing are in general convex, nor they belong to
classes of polygons for which the simplicity test can be easily realized (see also
Section 1). Hence, an efficient (linear-time) realization of the Non-Crossing-Test
based on the polygon simplicity check for all faces of Γ would imply either us-
ing the fairly complex triangulation algorithm by Chazelle [3] or developing an
ad-hoc strategy.

We show an optimal degree strategy for the Non-Crossing-Test. The strat-
egy can be applied to all upward drawings of digraphs with a regular embedding.
As already pointed out in the previous sections, several existing drawing algo-
rithms for upward planar digraphs compute drawings that our checker is able
to verify (see Theorem 3). The strategy exploits the relationship between the
geometry of Γ and the topological properties of the represented digraph G. Our
Non-Crossing-Test consists of three steps.

1. We check if Γ is a drawing of a regular upward planar embedded digraph.
This can be done by traversing the faces of Γ . During the traversal of a
face f : (i) the labeling of f is computed; (ii) the upward-consistency of f is
verified; (iii) the regularity of f is verified.

2. We construct the including planar st-digraph of G with its unique (see The-
orem 4) complete saturator. Let G′ be such including st-digraph. Based on
Theorem 5, we use G′ to define a total left-to-right ordering in the set of
maximal non-intersecting paths of Γ .

3. We explore Γ by visiting one-path-at-time from left to right. To do this, we
follow the ordering induced by G′. Namely, we start by visiting the edges of
Γ that belong to the leftmost path π1 of G′ from s to t. A new path π of G′

is visited (and the edges of Γ that it contains) only after all paths composed
by edges that are “to the left” of the edges of π have been already visited.
Basically, we follow an “ear-decomposition” of G′. By the theory developed
in the previous section, this guarantees that for each edge e′ that has been

already visited in Γ and for each non-saturating edge e of π, either e′
l≺G e

or e′
u≺G e or e

u≺G e′.
We maintain a rightmost boundary Π of the drawing. At the first step, Π
is the portion of Γ that represents the non-saturating edges of π1. At the
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generic step, the portion of Γ that represents the non-saturating edges of a
new path π is compared with Π . If an intersection occurs, then we stop and
report the intersection. Else, we compute the new rightmost boundary by
merging Π and π as follows: for each pair of points p in π and P in Π such
that y(p) = y(P ), P is deleted from Π and is replaced by p.

We are now ready to analyze the efficiency of our Non-Crossing-Test. Re-
garding Step 1, traversing the faces of Γ can be done in O(n) time. Also, in
order to compute the labeling of a face f , for each switch of f it must be checked
whether the angle inside f is reflex or not. This can be done with degree 1 by a
simple comparison of input coordinates. Regarding Step 2, the construction of
G′ can be done in O(n) time by exploiting the technique shown in the proof of
Lemma 3. Also, computing G′ does not require the execution of any geometric
tests and thus it does not affect the overall degree of the Non-Crossing-Test.
Regarding Step 3, the following lemma provides the geometric foundation to
analyze its efficiency.

Lemma 4. Checking whether the non-saturating edges of π intersect the right-
most boundary Π can be done in O(k) time and degree 2. The parameter k is
equal to the number of vertices and bends in π plus the number of vertices and
bends in Π whose y-coordinates are in the y-interval spanned by π.

Proof. We follow Π and π from top to bottom with a dove-tail strategy driven
by the y-coordinates. At each step a which-side test is executed to determine
whether a vertex or bend of π is to the right of the corresponding segment of Π .
The rightmost boundary Π is represented as follows. A segment r of Π is always
a subsegment of an edge e of Γ . Thus, instead of explicitly storing the endpoints
of r, we represent r by means of the endpoints of e plus the y-interval spanned
by r. This is done to avoid the explicit computation of the x-coordinates of the
endpoints of r that would affect the overall degree.

By exploiting such implicit representation of Π , each which-side test cor-
responds to evaluating the sign of a determinant that defines a multivariate
polynomial of degree 2 and such tha all elements of the determinant are either
constant values or the coordinates of the vertices and bends of Γ (primitive vari-
ables). Since the primitive variables have degree 1 each which-side tests can be
executed with degree 2.

The above discussion, Lemma 4, and Theorem 1 imply the following.

Theorem 6. Let Γ be a polygonal line drawing with n vertices and bends. There
exists a checker that verifies whether Γ is an upward planar drawing of a digraph
with a regular embedding that runs in O(n) time and has optimal degree 2.

5 Extensions and Open Problems

Our optimal degree checker can be easily extended to verify quasi-upward planar
drawings [1]. Namely, the following theorem can be proved.
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Theorem 7. Let Γ be a polygonal line drawing with n vertices and bends. There
exists a checker that verifies whether Γ is a quasi-upward planar drawing of
a digraph with a regular embedding that runs in O(n) time and has optimal
degree 2.

Several checking problems remain open in graph drawing. Consider that all
graph drawing algorithms guarantee certain geometric properties for the draw-
ings they produce. Such properties are usually called “graphic standards” or
“drawing conventions”. Some of them appear to be easy to check, while others
like checking proximity drawings seem to be much harder. For example, no al-
gorithm is known to efficiently check whether a drawing is a Gabriel drawing [9]
or a Relative Neighborhood Drawing [21].
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