Skip to main content

Collaborative Exploration of Unknown Environments with Teams of Mobile Robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2466))

Abstract

In this paper we consider the problem of exploring an unknown environment by a team of robots. As in single-robot exploration the goal is to minimize the overall exploration time. The key problem to be solved in the context of multiple robots is to choose appropriate target points for the individual robots so that they simultaneously explore different regions of the environment. We present an approach for the coordination of multiple robots which, in contrast to previous approaches, simultaneously takes into account the cost of reaching a target point and its utility. The utility of a target point is given by the size of the unexplored area that a robot can cover with its sensors upon reaching that location. Whenever a target point is assigned to a specific robot, the utility of the unexplored area visible from this target position is reduced for the other robots. This way, a team of multiple robots assigns different target points to the individual robots. The technique has been implemented and tested extensively in real-world experiments and simulation runs. The results given in this paper demonstrate that our coordination technique significantly reduces the exploration time compared to previous approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Albers and M.R. Henzinger. Exploring unknown environments. SIAM Journal on Computing, 29:1164–1188, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Albers, K. Kursawe, and S. Schuierer. Exloring unknown environments with obstacles. In Proc. of the 10th Symposium on Discrete Algorithms, 1999.

    Google Scholar 

  3. D. Apostolopoulos, L. Pedersen, B. Shamah, K. Shillcutt, M.D. Wagner, and W.R.L. Whittaker. Robotic antarctic meteorite search: Outcomes. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages 4174–4179, 2001.

    Google Scholar 

  4. T. Balch and R.C. Arkin. Communication in reactive multiagent robotic systems. Journal of Autonomous Robots, 1(1):27–52, 1994.

    Article  Google Scholar 

  5. R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

    Google Scholar 

  6. M. Bender and D. Slonim. The power of team exploration: Two robots can learn unlabeled directed graphs. In Proc. of the 35rd Annual Symposium on Foundations of Computer Science, pages 75–85, 1994.

    Google Scholar 

  7. A. Billard, A.J. Ijspeert, and A. Martinoli. A multi-robot system for adaptive exploration of a fast changing environment: Probabilistic modelling and experimental study. Connection Science, 11(3/4):357–377, 2000.

    Google Scholar 

  8. W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-robot exploration. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2000.

    Google Scholar 

  9. Y.U. Cao, A.S. Fukunaga, and A.B. Khang. Cooperative mobile robotics: Antecedents and directions. Autonomous Robots, 4, 1997.

    Google Scholar 

  10. J.A. Castellanos, J.M.M. Montiel, J. Neira, and J.D. Tardós. The SPmap: A probabilistic framework for simultaneous localization and map building. IEEE Transactions on Robotics and Automation, 15(5):948–953, 1999.

    Article  Google Scholar 

  11. H. Choset. Topological simultaneous localization and mapping (slam): Toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation, 17(2), April 2001.

    Google Scholar 

  12. W. Cohen. Adaptive mapping and navigation by teams of simple robots. Journal of Robotics and Autonomous Systems, 18:411–434, 1996.

    Article  Google Scholar 

  13. X. Deng, T. Kameda, and C. Papadimitriou. How to learn in an unknown environment. In Proc. of the 32nd Symposium on the Foundations of Comp. Sci., pages 298–303. IEEE Computer Society Press, Los Alamitos, CA, 1991.

    Chapter  Google Scholar 

  14. X. Deng and C. Papadimitriou. How to learn in an unknown environment: The rectilinear case. Journal of the ACM, 45(2):215–245, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem. Working notes of ICRA 2000 Workshop W4: Mobile Robot Navigation and Mapping, April 2000.

    Google Scholar 

  16. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph construction. IEEE Transactions on Robotics and Automation, 7(6):859–865, 1991.

    Article  Google Scholar 

  17. G. Dudek, M.. Jenkin, E. Milios, and D. Wilkes. A taxonomy for multi-agent robotics. Autonomous Robots, 3(4), 1996.

    Google Scholar 

  18. T. Edlinger and E. von Puttkamer. Exploration of an indoor-environment by an autonomous mobile robot. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1994.

    Google Scholar 

  19. H. Endres, W. Feiten, and G. Lawitzky. Field test of a navigation system: Autonomous cleaning in supermarkets. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 1998.

    Google Scholar 

  20. M. Fontan and M. Mataric. Territorial multi-robot task division. IEEE Transactions on Robotics and Automation, 14(5), 1998.

    Google Scholar 

  21. D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Collaborative multi-robot localization. In Proc. of the 23rd German Conference on Artificial Intelligence. Springer Verlag, 1999.

    Google Scholar 

  22. D. Goldberg and M. Mataric. Interference as a tool for designing and evaluating multi-robot controllers. Journal of Robotics and Autonomous Systems, 8:637–642, 1997.

    Google Scholar 

  23. H.H. González-Baños, E. Mao, J.C. Latombe, T.M. Murali, and A. Efrat. Planning robot motion strategies for efficient model construction. In Proc. Intl. Symp. on Robotics Research (ISRR), 1999.

    Google Scholar 

  24. R. Grabowski, L.E. Navarro-Serment, C.J.J. Paredis, and P.K. Khosla. Heterogeneous teams of modular robots for mapping and exploration. Journal of Autonomous Robots, 8(3):293–308, 2000.

    Article  Google Scholar 

  25. D. Guzzoni, A. Cheyer, L. Julia, and K. Konolige. Many robots make short work. AI Magazine, 18(1):55–64, 1997.

    Google Scholar 

  26. D.F. Hougen, S. Benjaafar, J.C. Bonney, J.R. Budenske, M. Dvorak, M. Gini, H. French, D.G. Krantz, P.Y. Li, F. Malver, B. Nelson, N. Papanikolopoulos, P.E. Rybski, S.A. Stoeter, R. Voyles, and K.B. Yesin. A miniature robotic system for reconnaissance and surveillance. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2000.

    Google Scholar 

  27. R.A. Howard. Dynamic Programming and Markov Processes. MIT Press and Wiley, 1960.

    Google Scholar 

  28. Y. Huang, Z. Cao, S. Oh, E. Kattan, and E. Hall. Automatic operation for a robot lawn mower. In SPIE Conference on Mobile Robots, volume 727, pages 344–354, 1986.

    Google Scholar 

  29. D. Jung and A. Zelinksy. An architecture for distributed cooperative planning in a behaviour-based multi-robot system. Journal of Robotics and Autonomous Systems, 26(2-3):149–174, 1999.

    Article  Google Scholar 

  30. S. Koenig, B. Szymanski, and Y. Liu. Efficient and inefficient ant coverage methods. Annals of Mathematics and Artificial Intelligence, In Print.

    Google Scholar 

  31. S. Koenig, C. Tovey, and W. Halliburton. Greedy mapping of terrain. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2001.

    Google Scholar 

  32. B. Kuipers and Y.-T. Byun. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems, 8:47–63, 1991.

    Article  Google Scholar 

  33. D. Kurabayashi, J. Ota, T. Arai, and E. Yoshida. Cooperative sweeping by multiple mobile robots. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages 1744–1749, 1996.

    Google Scholar 

  34. R. Kurazume and N. Shigemi. Cooperative positioning with multiple robots. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1994.

    Google Scholar 

  35. D. Lee and M. Recce. Quantitative evaluation of the exploration strategies of a mobile robot. International Journal of Robotics Research, 16(4):413–447, 1997.

    Article  Google Scholar 

  36. J.J. Leonard and H.J.S. Feder. A computationally efficient method for large-scale concurrent mapping and localization. In J. Hollerbach and D. Koditschek, editors, Proceedings of the Ninth International Symposium on Robotics Research, 1999.

    Google Scholar 

  37. S. Lumelsky, S. Mukhopadhyay, and K. Sun. Dynamic path planning in sensor-based terrain acquisition. IEEE Transactions on Robotics and Automation, 6(4):462–472, 1990.

    Article  Google Scholar 

  38. M.J. Matarić and G. Sukhatme. Task-allocation and coordination of multiple robots for planetary exploration. In Proc. of the International Conference on Advanced Robotics, 2001.

    Google Scholar 

  39. S.J. Moorehead, R. Simmons, and W.L. Whittaker. Autonomous exploration using multiple sources of information. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), 2001.

    Google Scholar 

  40. M. Moors. Koordinierte Multi-Robot Exploration. Master’s thesis, Department of Computer Science, University of Bonn, 2000. In German.

    Google Scholar 

  41. H.P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, pages 61–74, Summer 1988.

    Google Scholar 

  42. N. Rao, S. Hareti, W. Shi, and S. Iyengar. Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410, Oak Ridge National Laboratory, 1993.

    Google Scholar 

  43. I. Rekleitis, G. Dudek, and E. Milios. Multi-robot exploration of an unknown environment, efficiently reducing the odometry error. In Proc. of International Joint Conference in Artificial Intelligence (IJCAI), 1997.

    Google Scholar 

  44. I. Rekleitis, G. Dudek, and E. Milios. Accurate mapping of an unknown world and online landmark positioning. In Proc. of Vision Interface (VI), 1998.

    Google Scholar 

  45. I. Rekleitis, R. Sim, G. Dudek, and E. Milios. Collaborative exploration for the construction of visual maps. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2001.

    Google Scholar 

  46. N. Roy and G. Dudek. Collaborative robot exploration and rendezvous: Algorithms, performance bounds and observations. Journal of Autonomous Robots, 11(2):117–136, 2001.

    Article  MATH  Google Scholar 

  47. R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and H. Younes. Coordination for multi-robot exploration and mapping. In Proc. of the National Conference on Artificial Intelligence (AAAI), 2000.

    Google Scholar 

  48. M. Simoncelli, G. Zunino, H.I. Christensen, and K. Lange. Autonomous pool cleaning: Self localization and autonomous navigation for cleaning. Journal of Autonomous Robots, 9(3):261–270, 2000.

    Article  Google Scholar 

  49. K. Singh and K. Fujimura. Map making by cooperating mobile robots. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages 254–259, 1993.

    Google Scholar 

  50. A. Stentz. Optimal and efficient path planning for partially-known environments. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages 3310–3317, 1994.

    Google Scholar 

  51. C.J. Taylor and D.J. Kriegman. Exloration strategies for mobile robots. In Proc. of the IEEE International Conference on Robotics and Automation (ICRA), pages 248–253, 1993.

    Google Scholar 

  52. S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots. International Journal of Robotics Research, 20(5):335–363, 2001.

    Article  Google Scholar 

  53. B. Yamauchi. Frontier-based exploration using multiple robots. In Proceedings of the Second International Conference on Autonomous Agents, pages 47–53, 1998.

    Google Scholar 

  54. B. Yamauchi, A. Schultz, and W. Adams. Integrating exploration and localization for mobile robots. Adaptive Systems, 7(2), 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burgard, W., Moors, M., Schneider, F. (2002). Collaborative Exploration of Unknown Environments with Teams of Mobile Robots. In: Beetz, M., Hertzberg, J., Ghallab, M., Pollack, M.E. (eds) Advances in Plan-Based Control of Robotic Agents. Lecture Notes in Computer Science(), vol 2466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-37724-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-37724-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00168-3

  • Online ISBN: 978-3-540-37724-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics