
A STATISTICAL ATTACK OF THE FEAL-8 CRYPTOSYSTEM

Henri Gilbert and Guy Chasse
Centre National d'Etudes des Telecommunications (CNET)

PAA-TIM
38-40, rue du General Leclerc

92131 Issy les Moulineaux
FRANCE

ABSTRACT.

This paper presents a chosen plaintext cryptanalysis of the FEAL-8 cryptosystem. The attack

requires the ciphertext corresponding to approximately 10000 pairs of 64 bit plaintext blocks. The

difference (bitwise xor) between the two blocks of each pair is equal to an appropriately selected constant.

We first state that some differential statistics for intermediate values of the data randomizer are non

uniform and independent of the encryption key. We then show that these statistics can be used to

compute gradually the expanded key of the data randomizer.

In 1989 some announcements were made that the so-called FEAL-8, 8 round version
of the FEAL cryptosystem, was vulnerable to a chosen plaintext attack [1]. So far,
however, only the cryptanalysis of the 4 round version FEAL-4 by Bert Den Boer [2] was
published. In this paper we present a chosen plaintext attack of FEAL-8 based on some
differential statistics of its data randomization scheme.

1 Description of the FEAL-8 randomizer and first remarks.

We are using the following notations.
- If A represents a 32 bit word (ao,ai,...,a3i), AQ is the byte {aoa\...a^, A\ is the

byte (a8a9...a15),... etc. We also write A = (Ao, Ai, A2, A3).
- If A and A' are two binary strings (e.g. bits or bytes or 32 bit words, e tc .) , A® A'

is the bitwise "exclusive or" ("xor" or addition modulo 2) between A and A'.
- If B is the byte (67,66,65,64,63,62. 1̂ > ô)5 the right side bit 60 is also referred to

as B[0], the bit bx as B[l},... etc. The byte (6564636261606766) is denoted by ROT2(B).

A.J. Menezes and S.A. Vanstone (Eds.): Advances in Cryptology - CRYPTO '90, LNCS 537, pp. 22-33, 1991.
© Sponger-Verlag Berlin Heidelberg 1991

23

- If B and B' are two bytes, they will be sometimes considered as two integers in the
usual way (the right side bit is equal to the integer modulo 2) and the byte B + B' will
be the sum modulo 256 of these 2 integers. We also define the ternary operator SBOX :
SBOX{B, B',e) = ROT2(B + B' + e) where t is equal to 0 or 1.

The FEAL-8 algorithm, which is specified in the reference [3], can be divided in
two components : the key schedule and the data randomizer. We do not need here to
consider the details of the key schedule : let us only tell that the key schedule transforms
the 64 bit secret key K in an expanded key of 32 bytes KQ,KI, ...,K$\.

The data randomizer operates on a 64 bit plaintext block / divided into a left 32
bit word 1° and a right one 71. It produces the 64 bit ciphertext block 0 divided into
a left 32 bit word 0° and a right one O1. The data randomization can be split in the
three following steps.

The initial steps.

We start with a 64 bit word (7°, I1) as input. The we compute a new 64 bit word
(XVY1) defined by :

X°= 1° ®{Kl6,K17,Kls,K19)
X1= I1 © 1° © (Ku © K20,Ku © K71,K19 © K22,K19 8 K23)

The main step.

The 64 bit word (X°,Xl) is taken as the input to an 8 round Feistel scheme. The
rounds are numbered from 0 to 7. At round i, a new 32 bit word Xt+2 is produced, given
by the relation :

X1+2 = f,(X1+

The function fi is defined by :

{ 0 , l } 3 2 - + {0,l}32

X — (XO,X1,X2,X3) i—> Y — (Y0,Yi,Y2,Y3)

where the bytes of Y are computed in the following order :

Yx = SBOX(X0 ©Xx ©K 2 i ,X 2 ©X3 © K , i + U l) ,

Yo = SBOJf(X 0 ,Yi ,0) ,

Y2 = SB0X(Y, ,X2®X3G) K2i+l, 0),

Y3 = SBOX(Y2,X3,1).

It is easier to understand such a transformation with a diagram.

24

fi(X'+')O
1

f:(X1+')l

Figure 1 I diagram of the f funct ion

The function fI is one to one and only depending on the two expanded key bytes Kz:
and Kz,+I. In the (traditional) 64 bit representation of the r'eistel scneme, the round 2

output is the 64 bit word (XI+',

The final step.

bit word (X9, X s @ X9) is xored with the 64 bit word
bit output (Oo,O') .

The 64 bit word (X8,Xs) is taken as input to this final step. The intermediate 64
. . . K 3 1) , giving the 64

It is worth making two elementary remarks on the FEAL randomizer. We state
them in an intentionnaly informal manner.

If we consider bytes as elements of the GF(2) vector space GF(2)', the only
nonlinear elementary operation of the whole randomization is the modulo 256 addition
+ (the ROT, function and the xor operation gj are linear).

The diffusion introduced by an fI function is quite poor for some of the input bits.
The f I functions are built with the SBOX operator. ?Jotice that if two bytes B and
B' are taken as input to an S B O X , the ouput is equal, up to the ROT2 rotation, to
a byte B" which takes one of the values B + B' and B + B' + 1. Each bit of B or B'
mly influences the bits of equal or higher weight in B". The diffusion between bits of
different weight is entirely based on the carry propagation phenomenon and the diffusion
effect decreases fa t ly as the distance between the bit positions is increasing. In fact, the
modulo 256 sum B + B' of two bytes B and B' has in most cases many bits equal to

25

the corresponding ones of B
strongly differ.

B' : roughly speaking the two operations + and @ do not

These properties will be very useful in the Sections 3 and 4 where we show that an
attacker can take advantage from them by a suitable choice of the plaintext.

2 Outline of our attack method.

The FEAL-8 data ranciomizer oeiongs to the quite large family of the layered
blockciphers. We are calling "statistical meet in the middle attack'' the following chosen
plaintext attack method, which is appropriate for some layered blockciphers with a
limited number of rounds.

The attacker first chooses the plaintext blocks, later referred to as plaintext samples.
This selection is the crucial issue of the attack. The plaintext samples must be chosen in
such a way that the distribution of some "last round input bits" (i.e. bits which appear
in the enciphering scheme as input bits of the iast round) is not uniform and independent
of the actual secret key h'. The number n of plaintext blocks must be taken sufficiently
large to prevent the concealment of this phenomenon. The n selected plaintext samples
are encrypted with the secret key K , providing n ciphertext samples.

Observing these n ciphertext samples, the attacker tries to guess the last round
input bits, using the upward calculation scheme given by the deciphering algorithm. For
that purpose he makes an exhaustive trial of all the expanded key bits involved in the
upward calculation scheme. Denote by "last round key bits" these unknown expanded
key bits. For each assumption on the last round key bits, the attacker makes n upward
calculations of the last round input bits (one calculation for each ciphertext sample)
and finally obtains a distribution of their values. One may reasonably expect that O ~ Y

the right last round key bits lead to the expected non uniform distribution, and that
any wrong hypothesis leads to a much more uniform, or at least different distribution.
If this happens to be true. once having computed the distribution associated to each
assumption, the attacker is able to guess the last round key bits.

Once the last round key bits have been correctly guessed, the problem of obtaining
the remaining expanded key bits is more or less similar to finding a chosen plaintext
attack against the same blockcipher with a reduced number of rounds. Of course there
exist many variants of this attack method.

In the two following sections, we apply the statistical meet in the middle attack
method to the FEAL-8 algorithm. We first show how to choose the plaintext samples
in order to obtain a non uniform statistical distribution of some intermediate bits. We
then show how to use these properties to guess the expanded key.

26

3 Choice of the plaintext samples.

Our strategy for the choice of the plaintext samples is based on the prev~ous remark
concerning the diffusion in the FEAL randornizer. In the + operation between two bytes,
the diffusion of the highest weight bit of each input byte is limited to the highest weight
bit of the output byte since there is no carry propagation at the left of this bit. In other
words. if two samples are such that at any stage of the calculation the input bytes to
an SBOX operator of the f function differ only by their highest wetght bit, the output
bytes will only differ by their second lowest weight bit.

In order to take advantage from this weakness, it beems appropriate to select
the plaintext samples in pairs. We use the notations I o , I ' , S", X9, O0, 0'
introduced in Section 1 for the first component of a sample p a r a i d the notations
I" , I " , X'O, ..., X", O'O, 0" for the second one. If d represents any variable related
to the first element of a sample pair and A' the similar variable for the second element,
the notation AA will be used instead of A @ A'.

It is easy to generate random sample pairs (I , 1') with the constraints .

A I o = (2,0,0,2),
AI ' = (130,128,128,130).

There are 263 such pairs because the order is irrelevant . So we only need to randomly
generate the first 64 bit word I = (P,I1), then we deduce I' = (I ' o , I ") using the
constraints.

The following observations are the basis of our results.
Looking a t the corresponding values of X o and X1 we notice immediately from

the initial step of the algorithm that for every value of the secret key :

AXo = (2 ,0 ,0 ,2) ,
AX' = (128,128,128,128).

(what means, for instance, that only the highest weight bit of the bytes Xt and xi'
differ for the integers i, 0 5 i 5 3).

The 32 bit word :

is equal for every key to the quadruple of bytes (O,O, 0,O).

AX3 = (128,128,128,128)

AX4 = (2,0,0,2).

Similarly we obtain :

and then :

27

Some bits of AX5, AX6 and AX7 are not uniformly distributed in a way which
does not strongly depend on the actual key.

The last statement can be deduced from computations similar to those made for
AX2, AX3 and AX4. Nevertheless, experiments are necessary to describe with precision
the statistics for the bits of A X 5 . h X 6 and AX'. These statistics, which are the
framework of our cryptanalysis are gathered in the annex, at the end of the paper.
The four arrays contain the observed frequency of 0 for each bit of the 32 bit words
AXo, AX', AX2, AX3, AX4, AX5. A.Y6 and AX' for random input pairs (Io,I1)
and (I " , I ") with the above described constraints. It appears for instance that, even
after the seventh round, two bits are not uniformly distributed : AX:[7] and AX:[6].
Their 0 frequency is printed in boldface.

The occurence rates in the annex have been obtained by computing the empirical 0
frequency of the corresponding bits with R = 20000 sample pairs for a given fixed key
I<. Let R be the set of the P 3 inputs respecting the constraints. Considering the set 52
equipped with the uniform probability, we can consider the R trials :

w H a q k]

mapping one sample pair w to the corresponding bit A X j [k] (the integer 2 , j , k being
fixed to a chosen value) as R independant random variables of same law. So applying the
approximation suggested by the Central Limit Theorem we can get an order of magnitude
of the error on the experimentally obtained 0 frequency using n samples. Using the
Central Limit Theorem to the finite value n = 20000 leads to the conclusion that, for the
key used in an experiment, the absolute value of the error on each estimated occurence
rate is less than 0.01 with a probability larger than 0.99. In order to check that those
occurence rates do not strongly depend on the secret key used, we have simply made
experiments with different keys : the order of magnitude of the discrepancies between
the obtained results is less than 0.01.

Through the same method, we have estimated the occurence rate of the value 0 for
the bit b = AXi[7] @ AX:[5]. The rate of 0.54, was found for several different keys.

We have shown that if an attacker chooses n samples pairs according to the described
constraints, he is able to predict some irregularities in the statistics of some intermediate
outputs even after seven rounds of the Feistel scheme.

A similar phenomenon can be obtained with other choices of the constraints, for
instance :

- AIo = (2,0,0,0) and AI' = (130,128,0,0),
- A P = (0,0,0,2) and AI' = (O ,O, 128,130).

28

These two alternative choices for the constraints are not used in the attack described
in the next section.

4 Estimation of t h e expanded key.

We now show how to guess stepwise the secret expanded key from, say, 10000
plaintext sample pairs selected as explained in Section 3 and from the corresponding
ciphertext.

The key estimation process can be subdivided in several elementary steps. At each
step, one of the statistical properties stated in Section 3 is used for guessing some new
bits or new linear bit combinations of the unknown expanded key by an exhaustive search
on these new bits.

The splitting of the estimation process in steps is somewhat arbitrary. The division
presented here seemed convenient to us for showing the feasablility of the attack, although
it is far from being optimal from a performance point of view.

The first step, which provides the 10 first linear bit combinations of the expanded key,
is explained in some detail in Section 4.1. In Section 4.2 we summarize the subsequent
steps more briefly ; i t is mainly intended for readers interested in details. Since all the
steps are very similar to the first one, section 4.2 is not essential for the understanding
of our attack. Section 4.3 gives the outcome of our attack.

4 . 1 Description of the f i r s t step.

Step 1 uses the non uniform distribution of bit AX:[7]. This bit is related to the
ciphertext samples (Oo, 0') and (Of', 0") by the following relations :

x:=snox(x," ex; $K14,X; $X~$K1S,l)$X:,
x!= 0: @ 0; @ K24 @ I(;B,
x:= 0; @ 0: @ K25 @ K29r
X$' 0; @ 0; @ K26 @ K303

x ~ = o ~ @ o ~ @K27$K31,

X;= 0; @ Kzs.

Let us replace in the first relation the bytes X:, X ! , X ; , Xz and X ; using the subsequent
relations. Let us do the same for the second component of a sample pair and let
us "xor" the two obtained relations. We can see that the unknown byte AX: can
be expressed in terms of the observed ciphertext bytes and of the two unknown bytes
Bi = K I ~ @ K ~ ~ @ K ~ E C B K ~ ~ @ K Z ~ and B2 = K I ~ @ K x @ K ~ O @ K ~ ~ @ & ~ . Moreprecisely,
considering the details of the binary operations (addition and SBOX operation) we see
that bit AX:[7) depends only on the 5 lowest weight bits of El and B; , i.e. on 10
unknown bits.

29

For each of the 2" possible assumptions about these 10 bits, the attacker performs
10000 estimations of bit AX:[7] (one for each ciphertext sample pair). For the correct
assumption, his estimations will be distributed according to the rates indicated in Section
3 (i.e. the value 0 will occur with probability almost equal to .54), otherwise, for a wrong
assumption, his estimations will be more uniformly distributed. So the attacker is able
to recognise the right value of the 5 lowest weight bits of B1 and the 5 lowest weight bits
of Bz in less than 224 upward computations of bit AX:[7].

4 .2 Description of the further steps.

S t e p 2 uses the non uniform distribution of bit b = AX,"7] @ AX:[5] for which
the value 0 occurs with a probability .54 (see Section 3). In order to relate bit b to the
ciphertext, we need the six relations used in the step 1 and the two following additional
ones :

It follows from these eight relations that bit b is a function of the ciphertext and of the
three bytes : B1 = K14 @ Kzl 9 KZS t3 K25 f3 K29, B2 = Kls 63 K Z S €3 Km €3 Kz7 @
and B3 = K24 @ Kz8.

More precisely, one can check that b actually depends on the 5 lowest weight bits
of byte B3, on the 7 lowest weight bits of B1 and Bz and on the bit (B,(7] @ &[7]).
Since the 5 lowest weight bits of B1 and Ba have been already guessed at step 1, b only
depends on 10 new unknown bits. An exhaustive search on these 10 bits provides the
right solution.

S t e p 3 uses the non uniform distribution of bit AX:[2] (for which the value 0 occurs

- the 6 lowest weight bits of byte BJ,
- the 6 lowest weight bits of byte B4 = K 2 , @ K 3] ,
- and on all the bits of B1 and B 2 .

with a probability .62). One can check that this bit only depends on :

There are 8 new unknown bits : 6 for B4, and one for B3 and B , . An exhaustive search
provides the right solution .

S t e p 4 uses the non uniform distribution of bit AX:[5] (which takes the value 0
with a probability .17). This bit can be expressed in terms of the ciphertext, of the
already determined key bits, and of the following 8 new unknown key bits :

- bit B3[6] ,
- bit B4[6],
- the bits 0 and 2 of bytes B5 = K 1 2 8 K24 @ Kzs and B6 = K13 @ KZ6 @ Kz7,

30

- and the two bits (B3[7] @ Bs[l]) and (B4[7] @&[I]).
An exhaustive search provides the right value for those 8 bits.

Let us summarize the outcome of the four first steps. We have now determined all
the bits of bytes B1,B2, B3 and B4 (except the highest weight bit of B3 and B4, which
will be determined later on). This implies (B S may be checked in using the relations
between the 4 byte words X 7 , X 8 and X9) that X7 is now known up to four unknown
constant bytes, so we have gained one round with respect to the initial situation, where
only Xa and X9 were known up to four unknown constant bytes. So, roughly speaking,
the problem of guessing the remaining expanded key bits is now easier than breaking the
FEAL-7 cryptosystem.

Steps 5 , 6 and 7 use the non uniform distribution of bits AXf[l], AX:[2] and AX:[5]
(which take the value 0 with probability .55, 1 and .75 respectively). They enable us to
determine :

- the whole bytes B7 = Kl2 @ K25 and B8 = K13 @ K26,

- the not yet known bits of the partially known bytes B5 and Bg, except the 4 bits
B5[1], Be[l], B5[7] and B6[7] which will be determined later,

- the two bits (B5[7] @I Bg(l]) and (B6[7] @ Elo[l]), which are combinations of the
bytes Bs, Be and of the unknown bytes Bg = Klo @ K14 and Blo = K11 @ K15,

- the bits number 0 and 2 of the bytes Bg and Blo.
Consequently, the 4 byte word X6 is now known for each sample up to four unknown

constant bytes and we have now gained two rounds with respect to the situation at the
beginning of step 1.

Step 8 uses the unbalanced distribution of the 3 lowest weight bits of AX: and of
the 4 lowest weight bits of AX: (the probability that all of these 7 bits take the value
0 is about 3 3) for recovering all the still unknown bits of bytes Bg = Klo @ K I ~ and
Blo = K11 @ K15. Only 100 sample pairs do now suffice for making the correct guess.

The following steps enable us to guess successively :
- the unknown bytes Bll = K8 @KI2 and BI2 = K9@K13 and the two still unknown

bits &[7] and B4[7], using the statistics of the 4 bytes word AX4, which is constant and
equal to (2,0,0,2) ; less than 100 sample pairs are sufficient ;

- the unknown bytes B13 = K6 @ Klo and Bl4 = K, @ K11, due to the statistics on
the 4 bytes word AX3, which is constant and equal to (128,128,128,128); less than 100
sample pairs are sufficient.

At this point of the attack, the use of the ciphertext alone does no longer suffice. This
is because the statistics on the 4 byte words AX2, AX1 and AXo are trivial consequences
of the statistics on the 4 byte words AX3 and AX4. So the statistics on AX2, AX' and
AXo do not allow to guess any new unknown expanded key bit. There are two ways to
solve this slight difficulty :

31

- the first approach is to use. say, 100 additional sample pairs, selected according
to other constrants, e.g. according to the relations A P = (128,128,128,128) and
AI' = (130,128,128,130~ The statistics on AX2, AX' and AXo are no longer trivial
consequences of those on - X 3 and AX4 ; they enable us to guess new unknownexpanded
key bits based on the new ciphertext. Also the plaintext for at least one of the ciphertext
samples is required at the end of the attack ;

- the second approach is now to take the plaintext and the ciphertext of the initial
samples into account (instead uf & Li&LLext samples alone) ; the property that, for
each sample bit X:(2] differs from the plaintext bit (1:[2] @ 1:[2]) by one constant bit
can be first used for recovering new expanded key bits, etc ...

We summarize here the last steps of the attack with the first method. The following
bytes are successively guessed :

AXz) ;

AX') ;

- the unknown bytes D I 5 = K4 @ K9 (using the statistics on

- the unknown bytes B17 = Ar2 : JC,, and Bls = K3 @ K7 (using the statistics on

- the unknown bytes B19 = KO 8 K4 and BZ0 = K1 @ K s (using the statistics on

and BI6 = h;

AXO).

The eight unknown bytes = KIB @ Kzo,Bz2 = KO @ K1, @ Kz1,Bzs =

and Bz, = K 1 9 are now available with almost no calculation, using one single plaintext
sample and the corresponding ciphertext.

4.3 Outcome of the attack.

K1 @ KIS @ Kzz,B2r = K I ~ @ K23,Bzs = Kl6, B2cj = Kz @ K17,Bz7 = K3 @ KIS

The two previous sections have described a complete attack. Not surprisingly, this
estimation process has provided the 28 combinations B1, B2, ... BzS instead of the 32 bytes
KO, If1, ... K31 : this is because the encryption and decryption functions associated with
any 32-uple of expanded key bytes K O , K1 , ... KS1 is entirely determined by the bytes
&,&,.. .BzB.

According to our simulations on the thirteen steps of the above attack, it does not
require more than two hours computing time on a SUN4 workstation.

As already stated, we have not tried to optimize the performance of the attack. It
seems feasible to us to split the computation of the expanded key in much more steps,
each of them requiring an exhaustive search on substantially fewer bits. Indeed, instead of
performing at each step an exhaustive search on all the new unknown involved expanded
key bits, it is feasible to first perform an exhaustive search on the bits which have the
major impact due to their position in the addition processes and, after that, to determine
the remaining ones by another exhaustive search. This would save much computing time.

32

5 Conclusions.
In this paper we have presented a statistical attack method which we propose to call

”statistical meet in the middle”. We have shown how to apply this method to a complete
attack on the FEAL-8 enciphering algorithm. Our attack is based on the analysis of about
10000 sample pairs, and requires a rather limited computationai expense.

Remaining open questions include :
- how to extend our attack to FEAL-IV, when N > 8 ;
- whether our methods are applicable to a known piainies: actack oil FEAL-8.

6 Acknowledgements.
We are grateful to our colleagues Mireille Campana and David -4rdicti. from CNET.

The content of this paper is directly related to some previvis studicc on biockciphers
carried out in collaboration with them.

REFERENCES

[l] A. Shamir Lecture at Secuticom 89.
[2] Bert Den Boer Cryptanalysis ofF.E.A.L. , Proceedings of Eurocrypt’88, PP 293-299.
[3] S. Miyaguchi, S. Shiraishi, S. Shimizu Fast Data Enciphenent Algorithm PEAL-
8 Review of the Electrical Communication Laboratories, Vol. 36, N O 4 (1988).

A
N

N
E

X

w

w

F
ke

qu
en

cy
 o

f
0

on
 t

he
 b

it
s

A
X

i[
k]

 ob
se
rv
ed
 f

or
 2

00
00

 s
am

pl
e

p
ai

rs
 w

it
h

co
n

st
ra

in
ts

 d
es

cr
ib

ed
 in

 s
ec

ti
on

 3

	A STATISTICAL ATTACK OF THE FEAL-8 CRYPTOSYSTEM
	Description of the FEAL-8 randomizer and first remarks.
	Outline of our attack method.
	Choice of the plaintext samples.
	Estimation of the expanded key.
	Conclusions.
	Acknowledgements.
	REFERENCES

