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Abstract

The next bit test was shown by Yao to be a universal test for sources of unbiased
independent bits. The aim of this paper is to provide a rigorous methodology of
how to test other properties of sources whose output distribution is not necessarily
uniform. We prove the surprising result that the natural extension of the next bit
test, even in the simplest case of biased independent bits, is no longer universal:
We construct a source of biased bits, whose bits are obviously dependent and yet
none of these bits can be predicted with probability of success greater than the bias.
To overcome this difficulty, we develop new universal tests for arbitrary models of
(potentially imperfect) sources of randomness.

1 Introduction

Randomness is an essential resource in many scientific areas, and pseudo-randomness is
a good substitute in many applications. In his seminal paper Yao [11] formally defines
the notion of perfect pseudo-random bits, i.e. bits that are indistinguishable from truly
random bits by any probabilistic polynomial-time observer. He shows that the ability to
predict some bit of a given source (the next bit test) serves as a universal test for random-
ness: A natural or pseudo-random source is perfect iff no probabilistic polynomial-time
algorithm can, given any prefix of bits, predict the next bit of the source with probabil-
ity of success significantly greater than 1/2. The next bit test has proved to be a useful
tool for constructing perfect pseudo-random bit generators ([3],[2]) and for proving the
imperfectness of other generators ([2],[6]).

Several models of natural sources of randomness have been suggested and investigated
in [9], [1], [7] and [4]. In all the models the output distribution of natural sources is not
uniform: In [9] a natural source outputs biased independent bits, in [1] a source is
modeled by a Markov chain and in [7] and [4] the outcomes of the source are controlled
by a powerful adversary. Non-uniform distributions appear also in some applications
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which require sources of randomness with independent yet biased bits (see for example 
[ 10],[5]). Nevertheless no rigorous methodology of how to verify the correspondence 
between a source of randomness with a non-uniform output distribution and its assumed 
properties has been given. The aim of our paper is to provide such a formalization. 

Consider, for example, the roulette in your favorite Casino, where you are in the 
habit of placing a variety of bets on 17 with a 1/37 probability of winning each time. 
However after an unfortunate series of losses you begin to suspect that the roulette has 
been tampered with. You can easily check that the overall probability of 17 is close 
to 1/37, but that does not rule out the possibility that the outcomes of the roulette 
are artificially determined in a way that maintains the overall bias but inhibits 17 from 
appearing whenever the bets are high. How can you verify that indeed the outcomes of 
the roulette are independent, and that it is only your bad lack that brought you to the 
edge of bankruptcy? Clearly the next bit test cannot be employed here since you deal 
with a biased event. 

Using the known notion of polynomial indistiguishability we define the notions of 
perfect independence and in general perfect simulation of a source by a mathematical 
model. We then move to the question of specifying the universal tests for these notions, 
which will declare a source to  be perfect if and only if it passes the universal test. 
Surprisingly, the natural extension of Yao's work fails, even for the simplest case of 
independent biased bits. In other words the extended next bit test for biased bits which 
requires that no observer succeeds in predicting the bits of the source with probability 
greater than the bias, is no longer a universal test for independence. We introduce the 
correct test of independence, which we call the weighted success rate (WSR) test and 
prove its universality. We also discuss several alternative tests, and in particular the test 
we call the predict or pass (POP) test. 

For general sources of randomness we present the universal test that determines 
whether a certain mathematical model perfectly simulates a given source. This test is 
the comparative version of the next bit test. The standard next bit test as well as the 
WSR and POP tests emerge from the comparative next bit test as special cases. Our 
proof of the universality of the test is the generalization of Yao's original proof, even 
though the original techniques cannot be implemented directly. 

2 Definitions and Notations 

Our definitions follow the original definitions of Yao [11]. The notions of a probability 
distribution, independence etc. are the standard notions from probability theory. ,411 
our results are stated in terms of probabilistic polynomial-time algorithms but can be 
restated in terms of polynomial-size Boolean circuits. 

Let C" denote the set of all binary strings of length n. A binary string of length 
n will be denoted s;. The i-th bit of the string will be denoted by s;. The substring 
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starting with the j - t h  bit and ending with the I-th bit (1 5 j < I 5 n )  will be denoted 
by s:. We use the notation f < O(v(n ) )  for any function that vanishes faster than any 
polynomial, i.e. Vconstant k 3 V  such that Vn > N :  f < l/nk. 
Definition: A source ensemble S is a sequence {S,} where S, is a probability distribu- 
tion on En. 
Definition: A source S is biased towards f with a fixed bias 1/2 < b < 1 if for every i: 
Prs(s; = 1) = 6. 

Note that by our restriction on the bias the output bits of a biased source have a non- 
zero probability of being both 0 and 1. This ensures that the definitions of dependency, 
conditional probabilities etc. remain meaningful. 

Let B = { Bn) denote the independent biased ensemble where the source is biased 
towards 1 and all the bits are independent. R = {R,} denotes the truly random ensemble 
producing independent unbiased bits. Dealing with arbitrary models, we use M = {Mn} 
for the mathematical model ensemble. We denote by Prs( E )  the probability of an event 
E taking place when the probability distribution is defined by the source ensemble s. 
Whenever we refer to events that involve a probabilistic algorithm, we explicitly denote 
o d y  the source ensemble, 5, and implicitly assume the probability of the event to be 
induced by S and by the independent unbiased coin flips of the algorithm. 

Definition: A probabilistic polynomial-time algorithm is constant if for some value V ,  

Pr(a1gorithm = v >  > 1 - O ( v ( n ) ) .  

TO simplify the presentation of our results we require algorithms to be non-constant 
even when it suffices to require only that for every value 27: Pr(a1gorithm = v )  # 0. 

Definition: A dzstinguzsher is a probabilistic polynomial-time algorithm D : {0,1}" + 

(01 1). 

Definition: A biased source S outputs perfect independent bits if for every distinguisher 
D: IPrs(D = 1) - PrB(D = I ) /  < O(v(n)). 

Definition: A model M is a perfect simulation of a source S if for every distinguisher 
D: IPrs(D = 1) - Pr,w(D = 1)1 < O(u(n)). 

3 Universal Tests of Independence 

In this section we construct what seems to be the natural extension of Yao's next bit 
test. We then show that there exist imperfect sources of randomness that pass the ex- 
tended next bit test, thus disproving its universality. Our proof is based on the following 
intuition: Dependencies between the bits of an imperfect source will result in 1 having in 
some cases probability greater than the bias and in other cases probability smaller than 
the bias. It is possible, however, for the biased source to be imperfect with 1 remaining 
always more probable than 0. Hence deterministically predicting 1 is the optimal pre- 
diction strategy but has a poor probability of success. Following the same intuition we 
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suggest the weighted success rate test that is better suited to detect deviations from the 
bias. In the WSR test we separately compute the probabilities of success in predicting 
the 0 and 1 values of a next bit, and compose the two terms with appropriate weights 
into a single measure. 

In the following we assume without loss of generality that all our sources to be biased 
towards 1 with some fixed bias b. It is easy to extend our results to the case where each 
bit has a different bias. It is worthwhile to emphasize that since we are interested in 
detecting dependencies among bits that have a particular bias, our basic WSR test may 
fail to detect imperfectness that results simply from a different overall bias. Testing the 
condition that the bits of a source have a certain bias can be done easily in polynomial 
time and with high accuracy using the law of large numbers. We give an alternative 
universal test, the POP test, with the additional feature that any deviation from the 
a-priori known bias is automatically detected. 

3.1 The Extended Next Bit Test 

Trying to extend the definition of Yao's next bit test to biased sources we must take 
into consideration the fact that the bits of an independent biased source can be trivially 
predicted with probability of success b,  simply by always predicting 1. 

Definition: A biased source S pusses the eztended nex t  bit test if for every 1 I 2 I n 
and for every probabilistic polynomial-time algorithm A: 

Prs(A = s,) < b + O ( v ( n ) )  

Theorem I: 

The extended next bit test is not a universal test for independence. 

Proof: 

Fix a bias b: 1/2 < b 5 1 - I /n ' ,  for some constant t .  We construct a source which is 
biased towards 1 with bias b. We show that it is imperfect and yet it passes the extended 
next bit test. The source is the following: 

for 15 i 5 n - 1 
for i = n and s: = 01 
for i = n and s: = 10 1: for i = n and s: = 00 or 11 

b + 6 
b - 6 Prs(s; = 1) = 

Where $ 5 6 < min(b - $, 1 - b ) ,  for some constant q.  

Let the distinguisher D be defined by: D = l  iff s: = 01 and s, = 1. Clearly, Prs(D = 
1) = c .  ( b  + 6 ) ,  while PrB(D = 1) = c .  6 ,  where c = b .  (1 - b)  2 1/2n'. Therefore, 
Prs(D = 1) - PrB(D = 1) = c .  6 2 1/2n9+', and by definition the source is imperfect. 
Nevertheless the source passes the extended next bit test: The n-th bit is always biased 
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towards 1, SO the best prediction strategy is to deterministically predict 1 regardless of 
the known values of the first two bits. It is easy to check that the probability of success 

0 of this optimal strategy remains 6. 

3.2 The Weighted Success Rate Test 

Definition: Fix 1 5 i 5 n. The weighted success rate of any non-constant probabilistic 
polynomial-time algorithm A: {O,l}i-* --* {0,1} in predicting the i-th bit of a biased 
source S is: 

ws(A,S,i) = Prs(A = stIs, = 1)  Prs(A = s,/s; = 0 )  - - 
Prs(A = 1) i- Prs(A = 0)  

1 1 = - . Prs(A = s,IA = 1) + -. Prs(A = s,lA = 0) 
b 1 - 6  

Definition: A biased source S passes the weighted success rate test iffor every 1 5 i 5 n 
and every non-constant probabilistic polynomial-time algorithm A: {O, l} ' - '  --t (0, I } :  

ws(A, S,i) < 2 + O ( u ( n ) )  

Remark: The above definitions do not allow constant prediction algorithms. Remember 
that we assume that indeed all the tested sources of randomness have a bias b. Since 
constant algorithms can only detect that the overall bias is other than 6 ,  which is not 
the case, it is possible without loss of the generality to ignore them. 

Theorem 2: 

A biased source produces perfect independent bits iff it passes the weighted success rate 
test. 

Sketch of Proof 

If a given source fails the weighted success rate test, it is easy to construct a distin- 
guisher which tells the source apart from a truly independent biased source by using the 
predictions of the WSR test. 

To prove the other direction, we show how to construct a weighted success rate test 
using any distinguisher D for an imperfect source. Following our intuition that imperfect 
sources can be recognized using the events where the probability of an i-th bit being 1 
significantly differs from the bias, we use the distinguisher to single out these events. We 
prove that one of the following cases always exists: 

1. The probability that the distinguisher outputs 1 on the input sequence s~ - l l s~+ l  
E B is significantly changed when s; = 1 is taken out of s with si-' E S and 

or B. 
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2.  The probability that the distinguisher outputs 1 on the input sequence sf-'Os~+;, 
with sf-' E S and s:+~  E B is significantly changed when si = 0 is taken out of S 
or B. 

We construct a different test for each case, and use the corresponding condition on D to 
prove that in each case one of the terms in the weighted success rate of the corresponding 
test is significantly greater than 1. We conclude the proof with the following useful 
lemma: 

Prediction Lemma: For any biased source and any non-constant probabilistic polynomial- 
time algorithm A : (0, l}i-' -+ (0, l}: Prs(A = s,lA = 1) > b+ l /nkl iff Prs(A = s i (A  = 
0) 2 1 - b + l / n k z ,  for some constants Icl and k2. 
The full proofs of the theorem and the lemma are given in the appendix. 

3.3 Alternative Versions 

In the following we present three tests, that are all equivalent to the WSR test, but em- 
phasize different aspects of detecting dependencies. The first two definitions are closely 
related to the WSR test. The last test presents an entirely different approach, which 
stems from the fact that if a source is imperfect it is possible to detect the event in which 
1 is more probable than the given bias and ignore all other events. 

Definition: A biased source S passes the modified WSR test if for every 1 5 i 5 n and 
every non-constant probabilistic polynomial-time algorithm A: (0, l}i-l -+ {0,1}: 

Prs(A = sils; = 1) Prs(A = s,(si = 0) 
Prs(A = 1) ' Prs(A = 0) I =  rnax { 

1 
1 - b  

= rnax { i P r s ( A  = s;lA = l), -Prs(A = s,lA = 0)} < 1 + O(v(n ) )  

Definition: A biased source S passes the behavior test if for every 1 5 i 6 n and every 
non-constant probabilistic polynomial-time algorithm A: (0, -+ {0,1}: 

Definition: A biased source S passes the predict or pass (POP) test if for every 1 5 i 5 n 
and every probabilistic polynomial-time algorithm A: {O, l} i - '  -+ {0,1, * }  the following 
condition holds: 

If Prs(A # *) > l /n '  for some constant I ,  then IPrs(A = s;lA # *) - bl < O(v(n ) ) .  

above defined tests are universal. The proofs appear in the appendix. 
Using similar techniques to those introduced in Theorem 2 we can prove that the 
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Theorem 3: 

The following conditions are equivalent: 
1. A biased source outputs perfect independent bits. 
2. A biased source passes the modified WSR test. 
3. A biased source passes the behavior test. 
4. A biased source passes the POP test. 

Remark: The above equivalence holds only for biased sources that were a-priori tested 
to have a certain bias. Otherwise, the POP test behaves differently from the other 
tests. Its definition allows constant as well as non-constant prediction algorithms. More 
important is the fact that unlike the WSR test, the POP test succeeds in detecting 
imperfectness that results merely from a different overall bias. 

The POP test introduces what seems to be a new notion of allowing a predictor to be 
successful only on some non-negligible fraction of its inputs. Despite the fact that this 
formal definition is novel (as far as we know), known constructions of pseudo-random 
bit generators often prove their perfectness by showing that they pass what is essentially 
a POP test (i.e. it is impossible to predict the output bits of the generator even on a 
non-negligible fraction of the output strings). Indeed, the POP test is particularly useful 
for constructing perfect generators for biased independent bits. 

3.4 Comparison with t h e  N e x t  Bit Test 

For unbiased ( b  = 1/2) independent bits the WSR test and its variations all serve as 
alternative universal tests to the next bit test. We can, however, show an even stronger 
equivalence between the tests, namely that the same algorithm that succeeds in the 
prediction of a certain bit with probability significantly greater than 1/2 (thus proving 
the source of the bits to be imperfect by the next bit test) have a weighted success rate 
that is significantly greater than 2 (thus proving the source to be imperfect by the WSR 
test). 

Proposition 4: 

For any unbiased source ( b  = 1/2) and any non-constant probabilistic polynomial-time 
algorithm A : {O,l}%-I -, {O, 1): Prs(A = si) 2 1/2 + l /nkl  iff ws(A,  S, z )  2 2 + l / n k 2 ,  
for some constants kl and k2. 

In terms of the probability of successful prediction for unbiased sources our new 
definitions are superior: 

P ropos i t i on  5 :  

For any unbiased source and any next bit test T there exists a POP test A,  such that 
for every 1 5 i 5 n: 

Prs(A = s, 1 A # *) 2 PrsjT = 5,) 

The proofs of the two propositions are given in the appendix. 
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4 Perfectness with Respect to Arbitrary Models 

In this section we consider an arbitrary source S, which we believe to have a certain 
distribution described by a mathematical model M .  As for randomness and independence 
we search for a convenient universal test. based on the probability of correct predictions: 

Definition: A source S passes the comparative nezt bit test with respect to a model M 
if for every 1 5 z 5 n and every probabilistic polynomial-time algorithm A: (0, l}i-l -+ 

IPrs(A = s i )  - PrM(A = .,)I < O ( v ( n ) )  
{0,1>: 

Note that the comparative next bit test enables us to avoid performing any a-priori 
tests on either sources. The test is easiest to implement when the model is described in 
such a way that the probability of correct bit predictions for the model can be efficiently 
computed. Yet we can perform the test even when the model is completely unknown and 
given to us as a black box. In that case the test simply involves a comparison between 
two boxes: one containing the tested source and the other containing the model black 
box. 

It is instructive to examine simple examples of the comparative next bit test, where 
the model source is explicitly known: 

1. M = R, i.e. the model is a source of unbiased independent bits. In that case 
we know that no matter which algorithm is used PrR(A = s,) = 1 / 2  and we can 
immediately derive the next bit test. 

2. M = B ,  i.e. the model is a source of biased independent bits. Here we know that 
for any non-constant algorithm PrB(A = s,lA = 1) = b and that PrB(A = silA = 
0) = 1 - b so that the predictions must be evaluated according to the value that is 
being predicted. This gives rise to the WSR test. 

3. M=a source with a one-bit memory, in which the probability of the i-th bit is 
determined according to the outcome of the (i - 1)-th bit, Let b , (O)  = Pr(s, = 
11s;-1 = 0) and b;( l )  = Pr(s; = lls;-l = 1). Then it is easy to see that the 
performance of any algorithm must be evaluated not only according to the value 
of S; but also according to the value of s ; -~.  We therefore get that M is a perfect 
simulation of a source S if for every 1 5 i 5 n and every probabilistic polynomial- 
time algorithm A: {0, l}'-l + {0,1, * }  such that Prs(A # = 0)  2 1/71'] and 
Prs(A # cIsi-1 = 1) 2 1/n'2 for some constants 11, 12:  

max { IPrs(A = s;lA # = 0) - 6;(0)1, 
IPrs(A = silA # = 1) - 6i ( l ) l  } < O ( v ( n ) )  

It is easy to see that similar analysis holds for any M=Markov chain [I], where 
predictions must be evaluated according to the output value and to the state (which 
determines the bias), 
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Theorem 6: 

.A model M is a perfect simulation of a source S iff S passes the comparative next bit 
test with respect to M .  

Proof: 

It is easy to see that if a source S fails the comparative next bit test it is distinguishable 
from the model source M. Assume now that we are given that S and iM are distinguish- 
able and need to prove that S fails the comparative next bit test w.r.t. M .  We cannot 
implement previous proof techniques directly since they inherently assume independence 
in concatenating a random prefix of bits taken out of the  tested source with a random 
suffix of bits generated according to the desired distribution. We overcome the problem 
by using an additional truly random source for the concatenation. 

Let D : ( 0 , l ) "  -+ ( 0 , l )  be the distinguisher for which IPrs(D = 1) - P r d D  = 1)1 2 
l/nk for some constant k. Let p? ( p y )  denote the probability that D outputs 1 when 
the first i bits of its input are taken out of S ( M )  and the rest are independent unbiased 
coin flips. Note that p: = Prs(D = l ) ,  p:f = PrM(D = 1) and p t  = p f  = P r d D  = 1). 
Since lp: - p:fl 2 l/nk, by the pigeonhole principle there exists an i which is the first 
for which p s  and pi? significantly differ, i.e.: 

1. 

2 .  For all j 5 i - 1, Ips - pjMl < O ( v ( n ) ) .  

- p;vl 2 l/nk+', and 

We can assume w.1.o.g. p? -p;y > 0. The comparative next bit test A submits to D the 
string s = si-ls:, where si-' E S or A4 and sy E R. If D ( s )  = 1 then A outputs s i ,  else 
A outputs 1 - s;.  It is easy to see that: 

While: 

Hence: 
1 

Prs(A = s;) - PrM(A = s;) 2 - nk+l 

5 Discussion 

In this paper we develop a formal theory for the universal testing of non-uniform prob- 
ability distributions. Our definitions rely on Yao's pioneering work, but evolve from it 
in a non-obvious way. In addition to its theoretical significance our results have several 
practical applications: 
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1. An important property of one-way functions is the existence of hard bits in the 
argument that are as hard to compute from a given random value of the function 
as the entire argument. In a recent work [8] the individual security of every bit 
of the discrete logarithm modulo a composite was proven. The known definitions 
of unpredictability could not be applied to the most significant bits, since they 
are biased towards 0 by definition. For those bits it was necessary to use our new 
definitions in order to define and prove their security. 

2. It is possible to apply the universal test of independence to every biased predicate 
and use a hard biased predicate to construct a generator of independent biased bits. 
Consider for example the following construction that is based on the intractability 
of the discrete logarithm modulo a prime. Let f,,,(z) = g" (modp), where p is 
a randomly chosen n-bit prime and g is a random generator of 2;. Let b be the 
desired bias towards 1 and k the desired output length. 

Vi 2 1 : f;,,(z) = f,,, (fig'(*)) with f i , g ( z )  = z .  

if z < [(I - b )  . ( p  - I)] { , otherwise 
Let G(z) = 

For a randomly chosen seed 5 we shall produce k bits { s t }  by: s, = G (f~~l(~)), 
and use the universal tests of independence to prove that { s t }  are perfect inde- 
pendent bits with bias 6.  For constant output lengths the above is a more efficient 
construction of independent biased bits than the obvious construction of biased 
bits from pseudo-random (unbiased) bits. 

Acknowledgements 

We would like to thank Uriel Feige and R.afi Heiman for many stimulating discussions. 

References 

[I) Blum, M., "Independent Coin Flips From a Correlated Biased Source: a Finite State 
Markov Chain", Proc. 25th FOCS, 1984, p p .  425-433. 

"4 Blum, L., Blum, M., Shub, M., " A  Simple Secure Pseudo-Random Generator",SIAM 
J. of Computing, Vol. 15, No.  2, 1986, p p .  364-383. 

[3] Blum, M., Micali, S., "How to Generate Cryptographically Strong Sequences of 
Pseudo-Random Bits", Proc. 26th FOCS, 1982, p p .  112-117. 

[4] Chor, B., Goldreich, O., "Unbiased Bits from Sources of Weak Randomness and 
Probabilistic Communication Complexity", Proc. 26th FOCS, 1985, p p .  429-442. 



404 

(51 Feldman, D., Impagiiazzo, R., Naor,  M., Nisan, N., Rudich, S., Shamir, A., "On 
Dice and Coins", ICALP 1989. 

[6] Plumstead, J., "Inferring a Sequence Generated by a Linear Congruence", proc. 
23rd FOCS, 1982, p p .  153-159. 

[7] Santha, M., Vazirani, U.V., "Generating Quasi-Random Sequences from Slightly- 
Random Sources", Proc. 25th FOCS, 1984, p p .  434-440. 

(81 Schrift, A.W., Shamir, A., "The Discrete Log is Very Discreet", Proc. 22nd STOC, 
1990, p p .  405-415. 

[9] von Neumann, J., "Various Techniques Used in Connection with Random Digits", 
Notes by G.E. Forsythe, 1951, Reprinted in uon Neumann's Collected Works, Val. 
5, Pergamon Press, 1963, p p .  768-770. 

[lo] Vazirani, U.V., Vazirani, V.V., "Trapdoor Pseudo-Random Number Generator with 
Applications to Protocol Design", Proc. 24th FOCS, 1983, p p .  23-30. 

(111 Y-, A.C., "Theory and Applications of Trapdoor Functions", Proc. 23rd FOCS, 
1982, p p .  80-91. 

Appendix: Full Proofs 

Proof of Theorem 2 

Given that a source fails the weighted success rate test, it is easy to construct a distin- 
guisher between the source S and a truly independent biased source B by examining the 
predictions of the test. Formally assume that we are given a non-constant probabilistic 
polynomial-time algorithm A: {0,1}'-1 -+ {0,1} for the i-th bit of a source S such that 
ws(A,  S, 2 )  2 2 + l / n k  for some constant k. We shall use A to construct two possible dis- 
tinguishers and show that for one of them IPrs(D = 1) - PrB(D = 1)1 2 l/nk' for some 
constant k'. Given s;, both D's submits sf1 to A and examine A's output. D1 = 1 iff 
A = si = 1. D2 = 1 iff A = 1. If the overall behavior of A is the same for S and for B,  
i.e. 1Prs(A = 1) - PrB(A = 1)1 < O(v(n) ) ,  then D1 distinguishes the source. Otherwise 
DZ distinguishes. Hence S is imperfect. 

TO prove the other direction, we show how to construct a weighted success rate test 
using any distinguisher D for an imperfect source. Let p ;  denote the probability that 
D=l  when the first i input bits are taken out of S and the rest are independent biased 
coin flips. Note that p ,  = Prs(D = l), while po = PrB(D = 1). Since D distinguishes 
between the source and a biased coin, Ipo - pnl 2 l/nk for some k. By the pigeonhole 
principle there exists a bit i for which: ( p i  - 2 1/nk+'. We shall assume w.1.o.g. 
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that pi — pi-i > 0.
Explicitly:

Pi = £ P r ( / ? K ) = 1) • Prs(*j) • PrB(s?+1) =

* = 1) • PrB(a?+1) +

+ Pr (DK-'Os^J = l) • PrsK"1) • PrB(s.- = 0) • PrB(s?+1)]

Since pi — p;_i > ^FH, then one of the following two equations hold.

(1) Y, [Pr (

- P r

- P r (Z)(5'1-'0,?+1) - l) • Prs^ ' - 1 ) • Prfi(6, = 0)

(2) 2 [Pr

By examining D it is possible to decide which of the two holds and construct a WSR
test Ai accordingly. Otherwise by constructing the following two tests A\ and A2 you
are guaranteed that one of them will be successful.

Aj. submits as input to D the string •s'r1l.s"+1, where s'f1 G 5 and s"+1 G B. If D=l
then A\ — 1; else Aj. = 0. A2 submits as input to D the string s'1~

105"+1, where s\~ 6 S
and s?+1 E B. If D=l then A? - 0; else A2 = 1. We shall now analyze separately
the two terms of ws(A^, S, i) and ws(A2,S, i). To make the analysis simple we use the
second alternative in the definition of the weighted success rate, which compares the
probabilities of successful predictions to b or 1 — b.

E..-. ,^, Vtsjsi = 1 | s'f1) • Pr

E*i-.'?+1
 Pr ( i

(by equation 1)
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z*;-1 Prs(s,  = 1) . Pr ( ~ ( s ; - ~ l s ~ + ~ )  = 1) . Prs(s;-') . ~rB(h:+,) + & - - 2 
~ ~ : - i , ~ ; ~ ~  Pr ( ~ ( s ; - '  IS:+,) = 1) . Prs(s;-') . PrB(s:+l) 

(PrB(s, = 1) = 6) 
1 

2 = b +  rn 
~ # ; - i , ~ ; + ~  Pr (~(s;-'ls:+,) = 1) + Prs(s;-') * PrB(s:+l) 

(the denominator < 1) 
1 

> b + -  2nk+1 
Similarly for A2:  

Prs(A2 = s,lA2 = 0) = 

~ ~ ; - l , ~ ~ ~ ~  ~ r s ( s ,  = o I si-l) . Pr (~(s;-'os:+,) = 1) . Prs(5i-l) . prB(s:+1) 

~ ~ ; - 1 , ~ ~ + ~  Pr (~(s;-'os:+,) = 1) . Prs(s;-') . Prs(s:+,) 
2 - - 

1 
2nk+1 

> l - b + -  

To complete the proof we show that for each of ws(A1, S, 2 )  and ws(A2, S, 2 )  the remaining 
term (that does not appear above) is also significantly greater than 1 .  

Prediction Lemma: For any biased source and any non-constant probabilistic polynomial 
time algorithm A : {O,l}'-' ---* {0,1}: Prs(A = s,lA = 1) 2 6+l/nk1 iff Prs(A = s,lA = 
0) 2 1 - 6 + l/nk2, for some constants kl and k z .  
Proof: 

hssume that Prs(A = s,lA = 1) 2 b + E ' ,  where c1 = l / n k l .  Note that Prs(A = s,(A = 
1) = Prs(s, = 1IA = 1).  Since the overall bias of the source is known to be 6 ,  

Prs(s, = 1IA = 1) . Prs(A = 1) + Prs(s, = 1IA = 0 ) .  Prs(A = 0) = b. 

Therefore: 
b - ( b  + EI)PrS(A = 1)  

Prs(A = 0) 
Prs(si = 1IA = 0)  5 

Simple manipulations give: 

Prs(A = s,lA = 0) = Prs(s; = OIA = 0) = 1 - Prs(si = 1IA = 0) 2 
Prs(A = 1)  
Prs(A = 0) 

2 1 - b + € 1 .  

Similarly when Prs(A = s,lA = 0) 2 1 - b + E z ,  where c2 = l/nk2, we get using the same 
manipulations that: 

Prs(A = 0) 
Prs(A = 1)  

Prs(A = silA = 1 )  2 b + t2 . 
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Proof of Theorem 3 

The theorem contains three claims, all follow easiiy from the proof of Theorem 2. 

Claim 1: A biased source outputs perfect independent bits iff it passes the modified 
WSR test. 

Proof: If a biased source fails the modified WSR test it is easy to construct a distin- 
guisher between the source and a truly independent biased source in a similar way to 
the construction in Theorem 2 .  

If a biased source is imperfect, thefi by the proof of Theorem 2 there exists a non- 
constant probabilistic polynomial-time algorithm A: {a, l}i-l --+ {0,1} such that Pr(A = 
s;lA = 1) 2 b + l / n k l  and Pr(A = s ; ( A  = 0) >_ 1 - b + l /nk2 ,  for some constants Icl and 

C l  

Claim 2: A biased source outputs perfect independent bits iff it passes the behavior 
test. 

Proof: For notational simplicity let PI denote Pr(A = lls, = 1) and Po denote Pr(A = 
11s; = 0). We prove that a biased source passes the behavior test iff it  passes the WSR 
test. This follows from the close relation between the two measures: For any biased source 
and any non-constant probabilistic polynomial-time algorithm A: {O, l} i -*  + {0,1}: 

kz. By definition this source fails the modified WSR test. 

PI 1 - Po ws(A, S ,  z )  = 
b .  P, + (1 - b )  . Po + b .  (1 - PI) t (1 - b)  . (1 - Po) 

Clearly if S passes the behavior test then it also passes the WSR test. If S fails the 
behavior test, then for some non-negligible E :  lPl - Po( 2 E. Assume w.1.o.g. that 
PI > PO. Using the relation between the tests we then get: 

1 - b  
PI - E (1 - b )  1 - PI + E . (1 - b)  

w s ( A ,  S ,  i )  2 2 + E .  

Finally note that c . b <_ PI - c . (1 - b) 5 1 - E . (1 - b ) ,  so that the term that is added 
0 

Calim 3: A source outputs perfect independent bits iff it passes the POP test. 

Proof Given that a source fails the POP test, it is easy to construct a distinguisher 
between the source and a truly independent biased source by examining the predictions 
of the test, as is done in the proof of Theorem 2. 

TO prove the other direction, assume that S is imperfect and there exists a distin- 
guisher D between S and a truly independent biased source B. Then by the proof of The- 
orem 2 there exists a non-constant probabilistic polynomial-time prediction algorithm 
T :  (0, l}i-l -+ {0,1} for the i-th bit of S such that Prs(T = s;]T = 1) 2 b + l / n k ,  for 
some constant k. From T we construct the following POP test A: {0, l}i-l + {0,1, *}: 
A = 1 iff T = 1 and A = * iff T = 0. Since T is non-constant, then Prs(T = 1) = 
Prs(A # *) 2 l/n' for some constant 1. We then get that by definition, S fails the p o p  
test A. U 

to 2 is indeed non-negligible. 
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Proof of Proposition 4 

Let A be any non-constant probabilistic polynomial-time algorithm: {0,1}1-1 + {O, 1). 
Clearly: 
(1) 
The proposition results from the following easily proved two equivalences. We sketch 
their proofs in brackets: 

Prs(A = st) = Prs(A = 1) . Prs(A = s,[A = 1) + Prs(A = 0 ) .  Prs(A = s , ( A  =). 

1. Prs(A = S:) 2 1/2 t l/nk17 for some constant kl, iff Prs(A = s,(A = 1) 2 
1/2 + 1 / d 1  and Prs(A = s,lA = 0) 2 1/2 + l/n'2 for some constants 11 and 12. (If 
Prs(A = S , )  2 1/2 + l /nkl ,  then by (1) there exists a value a E (0, l} such that 
Prs(A = s , ( A  = a )  > 1/2 + l / n k l .  This in turn Implies the equivalence according 
to the Prediction Lemma. The other direction is an immediate consequence of (I).) 

2. ws(A,S,o) 2 2 + l / n k z  iff  Prs(A = s,14 = 1) 2 1/2 + t/n'1 and Prs(A = s,lA = 
0) 2 l/2 t l/ni2 for some constants l I  and 12. ( A  direct result from the proof of 
Theorem 2). n 

Proof of Proposition 5 

It is obvious that a POP test can always simulate a next bit test (without ever outputting 
*) and therefore for any unbiased source S and any next bit test T there exists a pop 
test A, such that for every 1 5 i 5 n: 

Prs(A = s; I A # *) = Prs(T = s,) 

It remains to prove that inequality is also possible. TO do so we shall construct an 
imperfect source S and demonstrate a POP test that does better than any next bit test. 
The source is the following: 

1. The first i - 1 bits are independent unbiased coin flips. 

2 .  Fix any 0 5 S 5 $. 
5 1 + 6 if s: = OO 

if s: = 01 Prs(s, = 1) = f - S i. if s1 = 1 

Since the next bit test is a global test, for any next bit test T: 
1 1  1 1  1 2  1 6 
4 2  4 2  2 2 2  Prs(T = s,) I - .  (- + 6 )  + - . (- + 6) + (-) = - + - 

The POP test A we shall use is: A=l  iff s: = 00; else A=*. Clearly 

1 
2 

Prs(A = s, I A # *) = - + 6 
0 
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