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Abstract 

The D.E.S. cipher is naturally viewed as a composition of sixteen invertible trans- 

formations on 64-bit strings (where the transformations depend of the value of a 56-bit 

key). Each of the transformations has a special form and satisfies the particular prop- 

erty that each of its output bits is determined by a “small” number of its input bits. 
We investigate the computational power of block ciphers on n-bit strings that can be 

expressed as polynomial-length (with respect to n) compositions of invertible trans- 

formations that have a form similar to those of D.E.S. In particular, we require that 

the basic transformations have the property that each of their output bits depends 

on the value of a small number of their input bits (where “small” is somewhere in the 

range between O(1) and O(logn)). W e p resent some sufficient conditions for ciphers 

of this type to be “pseudorandom function generators” and, thus, to yield private key 

cryptosystems that are secure against adaptive chosen plaintext attacks. 

1 Introduction 

The Data Encryption Standard (D.E.S.) was developed at IBM in the seventies to be 

used as a private key cryptosystem (i.e. a system that enables two parties, who share 
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quantity is one that is bounded below by a quantity that is larger than the inverse of a 

polynomially bounded quantity (i.e. (:)"('I). A cipher (or "permutation generator") 
is any function that maps an m(n)-bit string (called the key) and an n-bit string 
(called the plaintext) to an n-bit string (called the ciphertext). It is reasonable to 
require that a cipher be feasibly computable (i.e. computable in time polynomial 
with respect to n) .  A cipher that passes the black box test is called a "pseudorandom 
permutation generator" and, when used as a private key cryptosystem, is secure 
against adaptive chosen plaintext attacks [7]. 

It is not clear how to naturally scale up D.E.S. for arbitrarily large block sizes; 
however, certain of its structural features do scale up naturally. The D.E.S. function 
is a composition of functions of the following forms. Let F : (0, l}" -+ (0, 
Define the mapping T F  : -t { O , l } Z n  as T'(z,TJ) = (z,y @ F ( z ) )  and define 
the mapping S : { O , l } Z n  + (0, l}ln as S(z, y) = (y,z). Let o denote the composition 
operator. The D.E.S. cipher, for each value of its key, is of the form 

where n is set to 64, and where F,, ..., FIB also depend on the value of the key. More- 
over, the functions F, (z E (1, ..., 16)) all satisfy the following restrictive property: 
each output bit of F, depends on at  most six of its input bits. These structural 
features scale up naturally with larger values of n to compositions of the form 

TF, o S O T F ~ O S O * * * O S O T F ~ , )  , 

where some bound may be placed on ~ ( n ) ,  the length of the composition, and a bound 
may be placed on the number of input bits that each output bit of F, depends on. 

We investigate the class of permutations that can be expressed as 

where ~ ( n )  is polynomial in n, and, for each i E {I, ..., ~(n)}, each output bit of F; 
depends on a number of input bits that is bounded somewhere from O(1) to O(1ogn). 
(For technical reasons, we consider it a realistic reflection of the design of D.E.S. to 
disallow Fi's whose output bits depend on more than O(1ogn) input bits. This is 
because, in the finer structure of the D.E.S. cipher, there are functions, called "S- 
boxes," that are expressed in tabular form. In asymptotic versions of D.E.S., in order 
for these tables to be of polynomial size, the number of inputs to the S-boxes must 
be logarithmically bounded. We do not elaborate further on this aspect of D.E.S. in 
this report.) 
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Our first observation is that, by a construction of Coppersmith and Grossman 
[4], and Even and Goldreich [6], the above class of permutations is robust in that 
the class obtained is the same when the bound on the number of input bits that 
the output bits depend on is O(1) or U(1ogn). Also, applying a result of Luby and 
Rackoff [7], if using our basic permutations, we could feasibly simulate permutations 
of the form T', where F is an arbitrary polynomial-time computable function (that 
also depends on a key) then there would be a pseudorandom permutation generator 
in the above class (assuming a one-way function exists). Our main result shows 
how to simulate, in terms of our basic permutations, permutations of the form TF 
where F 6 NC', and we then extend this to permutations of the form TF where F 
is computed in nonuniform logarithmic space. As a consequence, if there exists a 
pseudorandom function generator in nonuniform logarithmic space then there exists 
a "secure" cipher that is in our class, and therefore one that has a form similar to 
D.E.S. 

2 Overview of Related Work 
Coppersmith and Grossman [4] investigate certain special permutations on sets of 
strings that are different from-but related t-those permutations described above. 
They show that, by composing sufficiently many of their special permutations, any 
permutation of even parity can be constructed. Even and Goldreich [6] make the con- 
nection between the work of Coppersmith and Grossman, and D.E.S. more explicit. 
The resulting theorem is that any of the $22"! permutations of even parity on {0,1}2n 
can be expressed as 

T F ~  o S Q T F ~  o S o . . . o S o T F ~ , ,  , 
where F,, ..., FT(") have the property that each of their output bits depends on at most 
a constant number (in this case two is sufficient) of their input bits, and r (n)  is ezpo- 
nentially (in n)  bounded. This implies that, allowing exponentially long compositions 
of the basic permutations, and allowing the functions Fl, ..., F,(,,) to also depend on 
a key (which in this case would also have to be exponentially long), ciphers that pass 
the black box test can be constructed. This result is of some support to the security 
of D.E.S. in that if all compositions of the above form were in a sufficiently restricted 
class then this would expose an insecurity of D.E.S. For example, if we consider com- 
positions of the above form where the functions Fl, ..., F?(,,) have the property that 
each of their output bits depends on at most one input bit then the resulting permu- 
tations are all affine linear [4,6], and such transformations are easily defeated by the 
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black box test. On the other hand, exponentially long compositions of permutations 
seem too long to  realistically reflect the design of D.E.S. We consider it more realistic 
to investigate the permutations that can be generated by compositions of the above 
form where r (n)  is polynomial in n. 

Luby and Rackoff [7] show that much shorter compositions of permutations yield 
ciphers that  are in some sense pseudorandom, provided that one allows the basic 
permutations to  be powerful enough. What they show is that permutations of the 
form 

T F ~  o S o T F ~  o S o T F ~  

are pseudorandom, provided that Fl,  Fz, F3 are independently generated pseudoran- 
dom functions. Using other results and assuming that a one-way function exists, there 
exist functions FI, F2, F3 (that also depend on keys) that  are of polynomial time com- 
plexity and are pseudorandom. This is an interesting result because, prior to this 
work, there were no known constructions of pseudorandom permutation generators 
in terms of pseudorandom function generators. This result does not, however, explain 
a mechanism that works in D.E.S. In D.E.S., the functions F,, ..., FI6 are definitely 
no t  pseudorandom. Any function that, like F,, ..., FI6, has the property that each of 
its output bits does not depend on all of its input bits can be very easily distinguished 
from a random function. In fact, in the case of D.E.S., the individual functions F; 
can each be broken in a much stronger sense: they can be completely de te rmined  in 
a simple manner by evaluating them at only 64 different inputs. Also, Biham and 
Shamir [8] show that if one varies D.E.S. by reducing the number of rounds then it 
quickly becomes insecure as the number of rounds decreases from 16. Thus, it appears 
necessary to use all 16 rounds in D.E.S. 

The design principle in D.E.S. seems to be to  employ simpler functions than those 
considered in [7] (more along the lines of those considered in [4,6]) and allow the 
length of the composition to be more than constant (yet shorter than the exponential 
lengths considered [4,6]). 

3 Results 
The main results are Theorem 5 and Theorem 6. 

3.1 Function Generators 

Definition 1: A function generator G is a function of the from G = (Jr=l G", where, 
for each n,  G" : (0, l}m(n) x {0,1}" t (0, l}". We call the first input to  G" (the 
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m(n)-bit string) the key. Each value of the key determines a function from (0, I}" 
to (0, l}". When convenient, we will sometimes interchange the notation G and G" 
when no ambiguity results. 

We are interested in classes of function generators that have certain properties, 
such as having polynomial (in n )  time complexity. 

Definition 2: P is the class of function generators computed in polynomial time. 
More formally, a function generator G" is in P (for polynomial-time) if, for each n,  
each output bit of G" is computed by a Boolean circuit of size polynomial in n. 

We are also interested in other classes of function generators. Each of the three 
classes defined below have the following properties. Each of the function generators 
G" are expressible as G"(y ,z )  = F " ( H " ( y ) , z ) ,  where H" : {O,1}"(") ---t ( O , l } P ( n )  
and F" : {O,l}P(") x {0,1}" + (0, I}", and H is polynomial-time computable, and 
F satisfies a condition that depends on which of the three specific classes that G is 
in. H is called the key preprocessing phase of the computation. For convenience, we 
may regard F" as a function from (O,l}P(")+" to (0, l}". 

Definition 3: FAN-IN[k(n))  denotes the class of all function generators that, after 
polynomial-time preprocessing of key bits, are computed by a function with fan-in 
bounded above by k(n), where the fun-in of a function is, informally, the maximum 
number of input bits that any output bit depends on. More formally, a function 
generator G" has fan-in k(n) if it is expressible as G ( y , z )  = F ( H ( y ) ,  z), where H : 

(0, l}m(n) 4 (O,l}P(") is polynomial-time computable, and F : (0, l}p(")+" -+ (0, 1)" 
has the following property. Each output bit of F(z1, ..., zP(,,)+.) is determined by the 
values of at most k(n) of the values 21, ..., zp(,,)+,.,. That is, for all i E (1, ..., n} ,  
there exists jl, ..., jqn) E (1, ..., n }  and f : (0,1}'(") + (0, l} such that, for all 

'--, Zp(n)tn E (0,111 [J'(zl ,  e e - 7  zp(n)+n)li = f(zji  7 ' "7  Zj,,,,). 

Definition 4: NC' is the class of function generators that, after polynomial- 
time preprocessing of key bits, are computed by logarithmic-depth Boolean circuits. 
More formally, a function generator G" is in NC' if it is expressible as G(y,z) = 
F ( H ( y ) ,  z), where H : (0, I}"(") + {O,1}P(") is polynomial-time computable, and F : 

(0, l}P(")+" -+ (0,1}" has the following property. Each output bit of F(z1, ..., Zp(n)+n) 

is computed by a Boolean circuit of depth O(1og n). 

Definition 5: SPACE[w(n)] is the class of all function generators that, after 
polynomial-time preprocessing of key bits, are computed by w(n)-space computa- 
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tions (which are defined formally below). Informally, when w(n)-space computations 
are analogous to non-uniform Turing machine computations that use w(n)-space and 
run in polynomial-time. Formally, a function generator G" is in SPACE[zo(n)] if it is 
expressible as G(y, x) = F ( H ( y ) ,  I), where H : (O,l}m(n) -+ {O,l}P(") is polynomial- 
time computable, and F : {O,l}P(")+" -+ {O, l}"  has the following property. The 
computation of F on the inputs (~~,...,z~(~)+~) = (H(y),s) is defined in terms of a 
sequence 

n1, ..-,II,(n) : {0,1} x (0, l}w(n) 4 (0, l }w(n)  

of transition functions, and a sequence 

q, ..., oqn) : (0, I } ~ ( ~ )  -+ (1, ..., p(n)  + n} 
of addressfunctions, where t (n)  E no('). The resulting computation is then a sequence 
SO, ..., sf(,,) E (0,1}"(") of configurations, where the initial configuration so is O...O, and, 
for i E {I, ..., t (n ) } ,  

si = J L ( ~ m , ( s , - ~ ) , s i - ~ )  . 
This latter part means that, from each configuration! the following configuration 
is determined by the current configuration and the value of one input (w-hich may 
depend on the current configuration), The output of the computation is 1 if the final 
configuration st(") is, say, O...O, and 0 otherwise. 

We consider some relationships between the above classes of function generators. 
Clearly, FAN-IN[O( l)] C FAN-IN[O(log n)] and this containment is proper. Also, 
the following theorem is elementary to prove. 

Theorem 1: FAN-IN[O(logn)] c NC' and the containment is proper. 

From Barrington's work [l], we can obtain the following. 

Theorem 2 (Barrington [l]): SPACE[4] = SPACE[O(l)] = NC'. 

Finally, it is clear that  NC' c SPACE[O(logn)] c P and it is not known whether 
any of these containments are proper (though they are widely believed to be so). 

3.2 Permutation Generators 

Definition 6: A permutation generator is a function of the form A = Ur'-l A", 
where A" : (0, l}m(n) x (0, l}l" -, (0, l}ln, and, for each z E (0, l}m(n) (called a key), 
A"(z) : (0, 1}2n -+ (0, 1}*" is a permutation (i.e. an invertible mapping). We call the 
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first input G" (the m(n)-bit string) the key, and the second input (the 2n-bit string) 
the plaintext. Also, we call the 2n-bit output string the ciphertext. (For technical 
reasons, that will soon become apparent, the sizes of the plaintext and ciphertext are 
2n rather than n.) For convenience, we will sometimes interchange the notation A 
and A" when no ambiguity results. The composi t ion of two permutation generators 
A and B is AoB : (0, l}m(n) x (0, l}2n + (0, l}ln, where the permutations are taken 
relative to the same key (i.e. ( A  o B ) ( z )  = A ( z )  o B(z) ,  for each z E {0,1)"(")). 

We are interested in permutation generators that have a structure similar to that 
of D.E.S. To this end, we define the following. 

Definition 7: 
the associated permutation generator TG : (0, l}m(n) x (0, 1)'" + (0, 1}2n a~ 

For any function generator G : (0, l}m(n) x { O , l } n  4 (0, l}n, define 

for all z E (0, l}m(n) and t, y E (0,1}" (where the @ is taken bitwise). Note that TG 
is clearly a permutation generator since TG o TG is the identity permutation for each 
d u e  of the key. Also, define the permutation S : (0, 1}2n + (0,1}*" as 

for all x , y  E (0, l}*. 

Definition 8 :  For any class of function generators B (e.g. FAN-IN[k(n) ] ,  NC',  
SPACE[w(n)], or P ) ,  define DES[B] as the class of permutation generators of the 
form 

TGI o S o TG2 o S o . . ' o S o TG,(,, , 

where ~ ( n )  is polynomial in n and GI, G;?, ..., G,(,, are all in B. 

It should be noted that the D.E.S. cipher is expressible in the form of the above 
definition with n = 64, m(n) = 56, r (n )  = 16, and B = FAiV-LV[12] (6 key bits and 
6 plaintext bits contribute to the fan-in). 

We also note that the form of the permutations in Definition 8 need not strictly 
alternate between TG permutations and S permutations, since T+ and S o T+ o S are 
both the identity permutation if 4 is the zero function generator (i.e. always zero). 

We consider any class that contains a realistic asymptotic extension of D.E.S. to  
be in DES[FAN-IN[k(n)]], where k(n) is somewhere between U(1) and U(1ogn). 
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Luby and Rackoff [7] show the following (we do not formally define pseudorandom 
permutation generators or one-way functions; the reader is referred to [7] for more 
details about this). 

Theorem 3 (Luby and Rackoff [7]): 
there exists a pseudorandom permutation generator in D E S [ P ] .  

If there exists a one-way function then 

As noted, we consider D E S [ P ]  to be too powerful to  reflect the design principles 
of D.E.S. In this report, we are primarily interested in DES[FAN-IN[O(l )]]  and 
DES[FAN-IN[O(logn)]] .  If we could show that one of these classes is equivalent to 
DES[P]  then, by the result of Luby and Rackoff, it would follow that there exists a 
pseudorandom permutation generator in DES[FAN-IN[O( l)]] or DES[FAN-IN[O(log n: 
(provided a one-way function exists). 

If one could, for any G E P ,  construct a permutation of the form TG in terms of 
polynomially many permutations of the form S and TI,, where H E FAN-IN[O(log n ) ] ,  
then we would have DES[FAN-IN[O(log n)]]  = DES[P] and a pseudorandom permu- 
tation generator would exist in DES[FAN-IN[O(log n)]]. 

Coppersmith and Grossman [4],  and Even and Goldreich [6] considered a class 
similar to DES[FAN-IN[2]],  but without the polynomial bound on the length of 
compositions of the permutations. Nevertheless, by analyzing their constructions, we 
find that permutations of the form T F  where F E FAN-IN[O(logn)] can be expressed 
as polynomial-length compositions of permutations of the form S, and TG, where 
G E FAN-IN[2].  Thus, we have the following theorem (which is also a consequence 
of Theorem 5 below). 

Theorem 4 (Coppersmith and Grossman [4]; Even and Goldreich [S]): 
DES [ FA N-IN [2]] = D ES [FAN- IN[O (log n ) ] ]  . 

Thus, we obtain the same complexity class if the fan-in is anywhere in the between 
O(1) and O(1ogn). Note that this is in spite of the fact that  FAN-IN[2] is a proper 
subset of FAN-IN[O(log n)] .  

We do not know whether DES[FAN-IN[2]] = D E S [ P ] ,  but we can show that,  for 
some interesting complexity classes B that are much more powerful than FAN-IN[O(log 
DES[FAN-IN[2]] = DES[B].  Our first result along these lines is the following (bear 
in mind that FAN-IN[O(logn)] is a proper subset of NC'). 

Theorem 5: DES[FAN-IN[2]] = DES[NC'] .  

Proof: It is sufficient to show that, for every function generator G that is in NC', 
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the permutation generator TG is in DES[FAN-IN[2]] .  Some parts of our constructions 
are related to those used by Ben-Or and Cleve in [2] .  

For i , j , k  E (1  ,..., n}, define @.;",, : {0,1}2n -+ {0,1}2n as, for all x , y  E (0, l}n, 
@+ t J .(z, y) = (2, z ) ,  where 

yk 63 (y; A yj) if r = k 
& = {  Yr i f r f k .  

We fist show that, for any i , j ,  k E (1, ..., n }  for which with i and j are both distinct 
from k, I p t j  E DES[FAiV-IN[2]]. To do this, define At, : (0, l}" --+ {0,1}" ( i , j ,  IC E 
(1, . -- ,n}> as 

for all 2 E (0, l}n. Note that  Atj f FAN-ZN[2]. Also, it is straightforward to verify 
tha t , fo ra l l i , j , kE{ l ,  ..., n] w i t h i , j  f k ,  

Therefore, E DES[FAN-IN[2]], as claimed. 
Now, for g : { O , l } m ( n )  x (0, l}" -+ {0,1} and i E {l, ..., n } ,  define the permutation 

generator rY,; : (0,1}"(") x (0, 1}2n -+ (0,1}2n as l?y,i = r4, where A : { O , l } m ( n )  x 
(0, l}" -+ {0,1}" is defined as 

for all y E (0, l}m(n) and x E (0, I}n. 
Now, let G E NC' be given and let F : (0, l}P(n) x (0,1}" -+ {0,1}" and H : 

(O,l)m(") + (O,l}p(") be as in Definition 4. In particular, the depth complexity of 
F over the basis { A , @ ,  1) is O(1ogn). Let (21, . . . , z~( , , )+~)  = (H(y),z). 

We shall show that, for each i E (1, . , . ,a}, r[q,,i E DES[FAN-IN[2]] .  First, note 
that, for each i E (1, ..., n} and j E { 1, ..., p(n)  + n } ,  

rl,; E DES[FAN-IN[O]I c D E S [ F A N - I X [ ~ I ~  

and 
rzJ,i E DES[FAN-IN[l]]  c DES[FAN-IN[2]] . 

Therefore, if the depth complexity of [F];  is 0 then r[qS,; E DES[FAN-IN[2]].  Also, 
for any two functions fi and fi, it is straightforward to verify that the identities 

Jberz) , :  = rh,I 0 rh,; 
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and 
r(fi*f2),k = at, rf1,i 0 @f,j 0 rj2,j 0 akj 0 rfl,i 0 @,j rfi,j 7 

for all Z , j , k  E (1, ..., n }  with i , j  # k, hold. Therefore, if the depth complexity of 
[F]; is d then, by recursively applying the above identities, r[q,,, is expressible as a 
composition of length 0(4d)  of elements of DES[FAN-ZN[2]]. Therefore, since: for 
each i 6 {l, ..., n } ,  the depth complexity of [ F ] ;  is O(logn), the composition is of 
polynomial length, so r[q,,% E DES[FAN-ZN[2]], as claimed. 

Finally, since l?[ql,l, F[q2,2,  ..., r[qn,,, E DES[FAN-IN[2]], it follows that 

U 

In is conceivable that NC' is equivalent to SPACE[O(logn)] ----or even P-but, 
given our current knowledge, such equivalences are considered unlikely. Thus, the 
following theorem extends Theorem 5. 

Theorem 6: DES[FAN-ZN[2]] = DES[SPACE[i log(;)]]. 

Prior to proving Theorem 6, we prove the following lemma. 

Lemma 7: If a function generator G" is in SPACE[w(n)] then it is expressible 
as G(y,s) = F ( H ( y ) , x ) ,  where H : {0,1}"(") + (0, l } P ( n )  is polynomial-time 
computable, and F : {O,l}P(")+" + (0, l}" has the following property. For each 
i E (1, ..., n } ,  there exists a sequence ofZW(" )  x zw(") matrices over {0,1, zl ,  .,., z ~ ( ~ ) + ~ ,  

721, ..., yzp(n)+n)r namely 
MI, Mz, ..*,Mi(,) 

(where t (n )  E such that 

where the iterated matrix product on the right is defined relative to modulo 2 arith- 
metic. 

Proof:  The idea of the proof is to associate each configuration s E (0, l}"'(") with 
a unique vector of length 2"(") that consists of a 1 in one position and 0s in all other 
positions. Then the transition functions for any computation are easily expressible 
in terms of the desired matrices. 
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More formally, for the function generator G, let H : {O,l}"'(") -+ (0, l}P(n), and 
F : (0, l}'(")+" -+ (0 , l )"  be as in Definition 5 .  Fix i E (1, ..., n} and let 

n,, ..., n,,,, : (0, l} x { O , l } W ( " )  --t (o,l}w(n) , 

and 
c r l , . . . , ( Y t ( n ) : { O , l } W ( n ) +  (1 ,..., p ( n ) + n }  

be as in Definition 5 for the i-th output bit of F .  
For s E (0,1}"("), associate the vector p ( s )  g {0,1}2w(") as follows. For F E 

(1, ~ ~ ~ ~ 2 ~ ~ " ~ ~ ,  

Clearly, p is a one-to-one mapping. 
NOW, for each j E (1, ..., t ( n ) } ,  we define M, so as to simulate the effect that 

113 and cr3 have on each s E {0,1}"("). For each k E (1, ..., SW(")}, the k-th row of 
M3 has the following form. If I I , ( O ,  p - * ( k ) )  = IIJ(l,p-l(k)) then the row has a 1 in 
position p ( I I 3 ( O , p - ' ( k ) ) ) ,  and 0s in all other positions. Otherwise (if I I 3 ( O , p - ' ( k ) )  # 
&(l,p-'(k))), the row has Z ~ , ( ~ - I ( ~ ) )  in position p (II,(I,p-'(k))), and i za , ( , , - l (k ) ) ,  

in position p (n,(O, p - ' ( k ) ) ) ,  and 0s in all other positions. It is then straightforward 
to verify that,  for all s E (0, 

c1 (n,(Gr,(s)l 4) = 4 s )  * MJ . 

St (" )  = p-l (p (0  ... 0 ) .  M ,  . Mz . ... . M1(,)) ,  

Therefore, the final configuration of the computation is 

and st(,,) = O...O if and only if 

1 = "1 0 ... 01 ' M,  . Mz . ... . Mt(")]l  = [MI . Mz . ... . Mt(,)]lJ 1 

as required. 0 

Proof of Theorem 6: It is sufficient to show that, for every function generator G 
that is in SPACE[$log(:)], the permutation generator T G  is in DES[FAN-IN[2]] .  The 
construction used here can be viewed as an extension of the construction of Theorem 
5. 

Let G E S P A C E [ ~ l o g ( ~ ) ]  be given, and let H : { O , l } m ( n )  -+ (0, l}P(n), and 
F : (0, 1}'(")+" --f {0,1}" be as in Lemma 7. Let ( z l ,  . . . , ~ p ( ~ ) + n ) )  = (H(y), x). 
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For any fi x fi matrix M whose entries are polynomials over (ZI, ..., Zp(n)+n), 

define the permutation generators Ah, Ah, A L  : ( O , l } m ( n )  x (0, 1}2n 3 (0,  1}2" as 
follows. For e E {1,2,3},  let A& = TD, where D : (0,1}"(") x {0,1}" ---t {0,1}" is 
defined as 

for all y E (0, l}m(n) and z E {0,1}". Here, 

p :  (1, ..., ;} + (1, ..., &} x (1 ,... ,& 
is the natural bijection defined as 

P(r) = ( ( ( r  - 1) mod 8) + 1, ( ( 7 -  - 1)divfi) + 1) . 

As in the proof of Theorem 5 ,  it is sufficient to show that, for any z E { 1, ..., n } ,  
r[q,,; E DES[FAN-IN[2]].  Let i E (1, ..., n}  be given, and let MI, M 2 ,  ..., hIL(,,) be the 
corresponding fi x 6 matrices over ( O , 1 ,  zl, ..., zP(,,)+,,. 7z l ,  ..., -zP(,,)+,,} that  exist 
from the application of Lemma 7. 

We shall show that, for each e E { 1,2,3}, ALl,M *...., M,(,, E D E S [ F A L - I N [ ~ ] ] .  First 
note that, for each j E (1, ..., t (n)} ,  since the entries of MJ are in {0, l , ~ l ,  ..., Zp(n)+nr  

-q, ..., -zp(,,)+,,}, it follows that A&, E DES[FAN-IN[l]]  c DES[FA"VIN[2]] ( e  E 

At this point, we define the permutations el, Oz, O3 : (0, l}zn ---f (0, 1}2". First. 
we introduce the following permutations in DES[FAN-IS-I2]]. Let a:,, : {0,1}2n -+ 

(0, Also, define 
Y1,Y2, Y3 : (0, 1}2" + (0, 1}2" as, for all 2 E (0, l}", and u , v ,  w E {0,1}4, 

{ L 2 ,  31). 

(for i , j ,  k E {l, ..., n } )  be as in the proof of Theorem 5. 

~ l ( ~ , u , v )  = ( 2 , ~ , v , 4  

TZ(2, u,  u,  w) = ( 2 ,  w, u, .) 

Y 3 ( 5 , % V , W )  = ( 5 , o , w , u )  

It is easily shown that TI, Yz, Y3 E DES[FAN-IN[2]]. Finally, for e E {1,2,3}, define 
0, : (0, l}',, + { O , l } Z n  as the composition 

Since 01, 02, 0 3  are polynomial-length compositions of elements of DES[FAN-IN[2]] ,  
0 1 , 0 2 , 0 3  E DES[FAN-IN[2]].  
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Now, the key part of our construction is the identity, for e G {1, 2, 3},

• (e+2)mod3 /-. A fe+l)mod3 ,-, » . r\ A (e+l)mod3 /-. /. c
AMM' = Qe ° A^T ' o Qe o Ae

M o Qe o AMJ > o 0 e o AM .

By applying this identity recursively, and using the fact that, for each j £ {1,. . . , t(n)},
AMj G DES[FAN-IN[2}\ (e G {1,2,3}), it follows that A ^ . . . . . ^ G
(c 6 {1,2,3}).

Since

[F(Z\, ..., Zp(n)+n)]i = [Afi • Ml • ... • Mt(n)]l,l ,

it follows that

whenever i <£ {1 + (e - l)(f) , . . . , e(f)} and, therefore, T[G]IT,- G DES[FAN-IN[2}}.
Finally, since r [G] l i l , r ^ , ^ , . . . , T[G]n,n e DES[FAN-IN[2}}, it follows that

TG =.r[G]l,i o r[G]2,2 o . . . o r[G)n,n e DES[FAN-IN[2\] .

It would be interesting to extend this work to showing that DES[FAN-IN[2]] —
DES[B] for more powerful complexity classes B. In particular, the following problem
is of interest.

Open Problem: Determine whether or not DES[FAN-IN[2}} = DES[P\.

4 Further Work
We can extend our results to function generators G in SPACE[c • logn], for ar-
bitrary c > 0, and for function generators in a nonuniform version of nondeter-
ministic logarithmic space. We cannot show that for such function generators G,
TG G DES[FAN-IN[2]], but we can show that, given a pseudorandom function gen-
erator in one of these classes, we can nevertheless construct a pseudorandom permu-
tation generator in DES[FAN-IN[2}\. Some of these results are explained in [3] and
will appear in the final paper.
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