
EXTENSION OF BRICKELL'S ALGORITHM €OR BREAKING 
HIGH DENSITY KNAPSACKS 

F. Jorissen, J. Vandewalle, R. Govaerts 

Katholieke Universiteit Leuven, 
Department of Electrical Engineering, ESAT Laboratory 

K. Mercierlaan 94, 8-3030 Heverlee, Belgium 

INTRODUCTION 

A knapsack (or subset-sum) problem that is useful for cryptographic 
purposes, consists of a set of n positive integers a = {al, a2, - - -  an}, 
called the knapsaek a, and a sum s. The density d of a knapsack is 
defined to be n / l o g 2 ( ~ ~ ) ~ ~ ~ .  The knapsack problem then consists of 
finding the set, if any, of binary numbers x = ( x l ,  x2, ... ,xn}, such 
that Zxi.ai = s. 

In {2}, E.F.Brickel1 presented an algorithm for breaking knapsacks 
of low density. It was expected { 2 }  that an improved version of it 
would solve most knapsacks of density less than . 5 4 .  For knapsacks of 
increasing density, the probability of having so-called "small 
coefficient identities" (SCI's) in the knapsack also increases. The 
presence of these SCI's appears to be the reason for the failure of 
Brickell's algorithm for knapsack problems of high density. 

Tests for low dimensions_ have shown that the effectiveness of the 
algorithm can thus be increased to solve knapsacks of densities even 
>.9 with high probability and reasonable supplementary computer power. 
Since the number of available knapsacks decreases very quickly with its 
density (cfr. fig. p.7), only a relatively small set of high density 
knapsacks of 1ow dimension remains difficult to solve. 
Moreover, ,all the advantages of Brickell's algorithm are preserved. The 
most important of these is that the algorithm is applicable to any 
knapsack public-key cipher based on the knapsack problem mentioned 
above, whether the cipher already exists or is to be invented. 
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THE EXTENSION OF BRICKELL'S ALGORITHM 

We shall now give a very brief overview of Brickell's algorithm and 
the improvements that have been accomplished. More details can be found 
in {2},{1}. Brickell made the basic observation that a knapsack problem 
Cxi.ai=s is in fact a linear equation in n binary unknown xi and with 
non-zero sum s. He concluded that if n linear equations 
(Zxi-yji = sj(k)) could be found such that: 
- they are not linearly dependent of each other 
- they all conform to the solution x of the knapsack problem 
- that finding such set of equations is computationally feasible 
that then each knapsack (problem) for which this is possible may be 
regarded as solved. 

In the first part of his algorithm, a technique is described to 
construct a nxn matrix Y from which the rows y, correspond to the 
coefficients of the n equations in the n unknown xi. The first row Y1 
of Y consists of the elements bi = ai.W mod M. The other rows of Y are 
derived by applying modular mappings with the small sum property on 
previous rows of Y.{2},{1} These modular mappings are calculated with 
the L.L.L.-algorithm (3). 

In the second part of his algorithm it is proven that 
Cxi.bi 6 {s', s'+M, ... ,s'+(n-l)M}, with s' - s.W mod M. 
Thus n integers s'(k) Q s'+k.M (Olkin-I) are derived, exactly one of 
which corresponds to the correct binary solution x. Because all rows of 
Y, except for the first one, have been calculated by applying modular 
mappings with the small sum property on previous rows, we can now 
calculate { 2 } , { 1 )  from the set of possible sums of the first row s'(k), 
a new set of possible sums s,(k) for every other row j, with: 
sj(k) - Zxi.yji, assuming that Cxi.bi,= s'(k). 
(for exactly one constant value of k, sj(k) will be the sum of the new 
knapsack problem Xxi.y,i = s,(k) with the same x as the original 
knapsack problem, 
values k we can thus compose a nxl matrix S ( k )  and we can calculate the 
possible solutions x as nxl matrices X from the matrix problems Y.X = 

S(k). If indeed s is the sum of a subset of the ails then one of the 
vectors S(k) 

and this for every row y, of Y.) For each of the 

will give a correct binary solution X for Y-'.S(k). 

If the first part of the algorithm can be completed then it is 
always straightforward to execute the second part and to solve the 
knapsack problem. 
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In experiments run by Brickell, his algorithm appeared to be always 
successful except when there were identities satisfied by the ails of 
the form: 
.Xai.ai - 0, with Zlai( I n. 
Such an identity is called a "small coefficient identity" (SCI). 
It appears that some "dangerous" types of these SCI's are easily 
"inherited" from one vector to another through the use of modular 
mappings, and in particular by modular mappings with the small sum 
property.{l) Brickell also demonstrated that the expected number of 
SCI's of a given knapsack increases with its density. 

Through experiments it has come clear to us that the basic 
algorithm of Brickell fails for knapsacks of high densities because the 
given knapsack contains one or more SCI's. Since the first row yl-b of 
Y, consisting of the numbers bi, is derived from the numbers ai through 
a modular mapping, some of the SCI's present in the knapsack a are 
inherited by the first row of Y. Since all the other rows of Y are 
analogously derived through modular mappings with the small sum 
property of the previous rows, it may happen that one or more of the 
dangerous SCI's of the initial knapsack are present in all the possible 
rows of Y. A s  a consequence of this, it becomes impossible to find a 
matrix Y with linearly independent rows and the algorithm fails. 

In order to be able to still use Brickell's algorithm in these 
cases, we propose to construct the first row b of Y such that its 
expected number of SCI's is smaller than unity. Hereto we proved that 
the density of b is so small for practical dimensions n that it would 
normally not contain any SCI's if it w a s  constructed randomly. It is 
also proven that, by construction, b can exclusively inherit SCI's 
present in a, for practical dimensions (1). It may therefore be 
concluded that the SCI's of b are mainly introduced by the non-random 
character of b. 
We therefore propose to construct b as: 

bi = ai.W mod M + ki-M 

The numbers ki can initially be regarded as relatively small random 
numbers. 
It can be proven that as a consequence of this: 

Xxi.bi E {s', s'+M, ... ,s'+(n-l+Zkill. 

So it remains possible for this choice of b to determine Cxi.bi, but 
n+Eki vectors S(k) have to be tested instead of n. 
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It is therefore advantageous to keep xki small, e.g. by restricting all 
the ki's to ki E [l,K], in which K is a small positive integer value. 

It has been mathematically and experimentally verified that this 
new technique has several advantages: 

- b can still exclusively contain SCI's of the knapsack a. 
- Therefore, b can only contain SCI's if at least one of the SCI'S 

of a is still present in b, the probability of which decreases 
with increasing K. 

- The average supplementary computer power needed, however, can be 
roughly estimated as the processing of (K-l).n/2 extra vectors 
S(k), and the implications of larger values of the bi's, mainly 
on the execution time of the L.L.L.-algorithm. 

These results have been verified experimentally for knapsacks of 
low dimensions n, in two ways. 

1. Knapsack problems with knapsacks of low dimensions and high 
density have been tested. 

For example the knapsack problems with knapsack: 

a -  { 2 ,  5 ,  6 ,  1 0 ,  20 1 ,  of - dimension n = 5 
- high density d = 1 . 1 6  

could not be solved with the original algorithm of Brickell due to the 
inheritance of the SCI a - { 0 , 0 , 0 , 2 , -1 ) from a to b and from 
there to all possible rows of the matrix Y. 
This knapsack was however solved with the better choice of b. 

2. Computer tests have been run on the effectiveness of both the 
original and the new version of Brickell's algorithm. 

The purpose of these Monte-Carlo tests was to gain experimental results 
on the probability that b contains SCI's, for both algorithms- 
A s  parameters were chosen the dimension n and the density d, plus, for 
the new algorithm, the value of K and the number of trials T ( i.0. the 
number T of vectors k that may be chosen for a given knapsack to try to 
find a SCI-free vector b for it). While considering the figures, we 
must bear the following in mind: 
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- A l l  figures represent dimension 5. Calculations were also made 
for dimension 8. For this higher dimension, the figures appear to 
remain flat till higher densities but then fall steeper. 
This may indicate worse efficiency for high dimensions. 
This observation is in line with results obtained by Lagarias and 
Odl yzko. 

- The figures, however, give rather pessimistic results for low 
dimensions, since : 
- Pessimistic approximations had to be made to calculate them. 
- It has been assumed that finding a SCI-free vector b is a 

necessary condition for solving a knapsack. To our experience 
however, a lot of knapsacks with b contaminated by SCI's could 
be solved,since only for dangerous SCI's the probability is 
high that they are inherited by all possible rows of Y. 

- In case only one SCI is transported through all possible rows 
of Y, a special countermeasure can be taken. { 2 }  

- The set of knapsacks that will remain unsolved will contain a 
relatively large fraction of "useless" knapsacks, since for 
increasing density, the probability also increases that 
knapsacks are not one-to-one. 

CONCLUSION 

In our work, Brickell's algorithm { 2 }  has been extended to the use 
of better vectors b. { l }  This makes the algorithm capable of solving 
low dimensional knapsacks of high densities larger than .9, with 
reasonable supplementary computer power. 
Since the efficiency of this improvement has only been tested for low 
dimensions, and considering contradictory results from Lagarias and 
Odlyzko for high dimensions, it remains to be tested to what extent our 
improvement remains efficient for increasing dimensions. 
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Figures 
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