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In this paper we present a public key cryptosystem based on error correcting codes 
[ l ,  7,151. The new public key system is obtained by extending the public key cryptosystem of 
McEliece [ 6 ,  121. 

In this scheme a message M, consisting of a column vector of k elements from a finite field 
is first scrambled by multiplying it by a non singular matrix Q to get 

M ' =  Q M 

This scrambled message has parity check variables added to it, by multiplying it by a genera- 
tor matrix G and then has all the variables reordered by multipliation by a permutation 
matrix P. Noise is then added to obtain the encrypted message 

C = P  G Q M + Z  (1) 

The product of the three matrices G ' = P G Q is made public, but the factors are not. 

are functions which we take to be square integrable on (0,l) or (0.2) [2-5, 11, 13, 14,181. The 
message M will now be denoted by x =~ x (t ), and x ' = Q x wil l  mean 

The analogs of these matrix operations are integral transforms, while the column vectors 

1 

x ' (t  ) = (t  ,s) x (s ds 
0 

where q (r ,s ) is the kernel of the transformation. P will be a similar operator except that it 
must be an orthogonal operator to avoid changing the magnitude of the noise. This noise will 
consist of a realization of a random process z (t ) on (0,2). The operator G will have a special 
form to be discussed below. 

In the McMiece digital scheme, the matrix G = [ -5 where the submatrix A intrw 

duces the new variables [121. Decryption is accomplished by multiplying both sides of 
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PT C=G Q M + PTZ (3) 

by a matrix H = [ A  I I. This annihilates the term G Q M and leaves the syndrome 
S = H PT C on the left. Coding Theory is used to estimate Plz which in turn is used with 
(3) to estimate G Q M .  An estimate for M then is obtained by a projection operator followed 
by Q-l. 

In the analog scheme G is based on a kernel k (t J ), r ,s ~ ( 0 , l )  and is given by 

and H is given by 

Clearly both are continuous operators and H G = 0. The analog encryption consists of 
first operating with Q , then G , then P on x and then adding noise, i.e. the ciphertext is 

y =  P G Q x + Z  (4) 

where y = y (t is in L (0,2). The kernel q (t ,s ) of the operator Q may be taken to be a 
Green’s function of appropriate differential operator. The kernel p (t J ) of P may be taken to 
be 

where {$,, } is a complete orthonormal system in L 2  (0,2), and i (n ) is a permutation of the 
integers. In general this will be a singular kernel, (i.c not an L z  function ) but in practical 
cases will be approximated by a finite sum. 

The kernel k (t ,s ) is chosen to be of the form 

k ( t , s )  = C$,(s)Nt-r,,) 
n 

where { $ J ~  } is again an orthonormal system, the Rademacher system, which takes the values 
f- 1 and {t,, } is a dense sequence of numbers in (0,l). The number of terms in the series will 
again be a bite number in practical situations and the impulse 6 will be approximated by a 



145 

function. Furthermore the integral transform 
1 
& ( s , t ) y ( s ) d s  = E + , ( r ) Y ( n )  
0 n 

(in which is y (s ) happens to be white noise) gives us a finite sum of independent normal ran- 
dom variables. 

Decryption begins by operating with H on 

P-' y=G Q n+P-'Z 

to obtain the syndrome S = HP-ly. The value of P-'Z of minimum error which satisfies 

H Z'=H P-'Z=S 

is then found. This can be done by using the generalized inverse 

where H' is the adjoint operator. This then is used to estimate P-lZ and P-Iy-2'  restricted 
to (0,l) is used to estimate Qx which is then inverted to obtain the estimate of the message. 

The final estimate cannot be made completely noise free as in the digital case but the noise 
can be reduced by this method. The reason noise could be eliminated completely in the digital 
case is that there is a minimum distance between a correct and an incorrect message. This is 
nor longer true in the analog case in which an incorrect message can be arbitrarily close to the 
correct message. Thus the best that can be done is to reduce the variance of the noise by means 
of a decoding algorithm. 

The error between the true noise and the estimated noise may be shown, after a few mani- 
pulations, to be given by 

e = G(G'G)-'G*z 

This in turn can be shown to be the average of a finite number of independent normal random 
variables with variance uz which has a variance approaching zero as the number of terms 
increases. 

Fortunately in analog signals it is unnecessary to obtain the exact correct message Since in 
most cases it suffices to obtain a message close to the correct one. In voice transmissions, for 
example, messages slightly corrupted by noise can be unders td .  

The three operators P, G and Q can be combined in a single integral transform which can 
then serve as a public key. The security of this arrangement will be at least as good as the on- 
ginal scheme of McEliece. This is particularly true if Q is taken to be a Green's function 
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operator as in [5]. However in this w e  the inverse would involve noise amplification and 
must be balanced against the noise reduction of G. 
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