
COLLISION FREE HASH FUNCTIONS 
AND PUBLIC KEY SIGNATURE SCHEMES 

Ivan Bjerre Darn@-d1 

Aarhus Universi , Inst. of Math. 
N y  Mun ? egade, 

DK 8000 Aarhus C, 
Denmark 

Abstract 
In this paper, we present a construction of hash functions. These functions are collision 

free in the sense that under some cryptographic assumption, it is provably hard for an enemy 
to find collisions. Assumptions that would be sufficient are the hardness of factoring, of 
discrete log, or the (possibly) more general assumption about the existence of claw free sets of 
permutations. 

The ablllty of a hash function to improve security and speed of a signature scheme is dis- 
cussed: for example, we can combine the RSA-system with a collision free hash function 
based on factoring to get a scheme which is more efficient and much more secure. 

Also, the effect of combining the Goldwasser-Micali-Rest signature scheme with one of 
our functions is studied. In the factoring based implementation of the scheme using a k-bit 
modulus, the signing process can be speeded up by a factor roughly equal to k 0  (logz(k)), 
while the signature checking process will be faster by a factor of 0 (10g2(k)). 

1. Introduction 
One of the most fascinating features of public key cryptography is the notion of digital 

signatures. However, for many of the so far proposed schemes a proof of security does not 
(yet) exist, or they have been shown to be breakable under sufliciently strong attacks. More- 
over, a practical implementation of a signature scheme is often made very difficult by the 
complexity of the algorithms needed in the system, These problems suggest the use of a hash 
function, some suitable transformation which is applied to a message before signing it. In par- 
ticular, we would Wse to mention the following: 

with a block oriented signature algorithm where messages are longer than a block, it is 
not safe to sign messages block by block: an enemy could remove blocks from a signed 
message or insert blocks of his choice into a message before it was signed. Thus, some 
transformation must be used to make a signature depend on all parts of a message. 

'This researchwas supported by the Danish Natural Science Research Council. 

D. Chaum and W.L. Pnce (Eds.): Advances in Cryptology - EUROCRYPT '87, LNCS 304, pp. 203-216, 1988 
0 Spnnger-Verlag Berlin Heidelberg 1988 



204 

if the message space has some algebraic structure, and the signing algorithm behaves too 
nicely with respect to this structure, the system can be vulnerable to a chosen message 
attack (see e.g. [De]). A hash function can be used to destroy this algebraic structure. 
usually, the output of the hash function is much shorter than the input, so if the signature 
algorithm is slower than the hash function used, a considerable amount of time can be 
gained in an implementation of the scheme. 
The need for hash functions has been realized before ( p e l ,  PP]) ,  and several attempts 

have been made to construct such functions using fx. DES or RSA as building blocks. How- 
ever, none of these suggestions have been proved to be secure, and several of the proposalS 
using DES have been proven insecure ([Wi], [Co]). Other variations of hash functions have 
also been proposed [we].. But the use of these functions, like pseudo random functions 
[GGM], require that sender and receiver share a secret key. They are therefore suitable for 
authentication purposes, but do not fit into the scenario of a public key signature scheme. We 
would hke to have publicly known hash functions that are easy for aU users to compute. 

2. Construction of Collision Free Hash Functions 
In stead of considering just one hash function, we wlll consider families of them, in order 

to make a complexity theoretic treatment possible. Any member of such a family wiU have a 
value of security parameter attached to it. A number of things, such as the overall security of 
a system ushg the hash function, will depend on it. For any security parameter value k, we 
choose a finite alphabet z k  with 1 x k  I = rk . A hash function with security parameter value k 
will be a map h : h f k  + A,, , where h f k  is the set of all finite words over Ck, and Ak is some 
Enite set. Note that when no confusion is possible, the subscript k’s wdl sometimes be 
dropped. 

The most basic demand to a good hash function is that it should be computationally 
infeasible for an enemy to find collisions, i.e. different messages hashing to the same value. 
There are a number of possible interpretations of what “computationally infeasible” means. 
In this paper we will choose circuit complexity to describe it, because it seems best suited in a 
cryptographic setting (cf. [BM], p.857). But note that other computational models, e.g. Tur- 
ing machmes, would allow our results to be proven in the same way, and would only result in 
a change in the intractability assumptions we make later. 

Throughout this paper, a problem will be said to be cumpurutionally infeasible to solve, if 
the following is satisfied: 

Let {c, 1 be a boolean circuit family of polynomidy bounded size. Let Ek be the frac- 
tion of the instances of size k which are solved by C p  . Then. as a function of k , Ek van- 
ishes faster than any polynomial fraction. 
Loosely speakmg, a problem is hard in above sense if no polynomial size circuit can 

solve more than a negligible fraction of the instances. Whenever h s  definition is used in this 
paper, k will be interpreted as a security parameter value. “Polynomial time” wdl always 

- 
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mean “computable by a polynomial (in k) size circuit farmly. Finally, a probability is “negli- 
gible” if it vanishes faster than any polynomial fraction as a function of the security parame- 
ter. 

Definition 2.1 
A family of collision free hash functions is a set of hash functions with the following proper- 
ties: 

There is a probabilistic polynomial time algorithm, which on input a value of security 
parameter selects uniformly and randomly a member of the family with the given value 
attached. 
All functions in the family are computable in polynomial time. 
The problem of finding x # y such that h (x)=h 0,) for a given h in the farmly is compu- 
tationally mfeasible to solve 0 

A member of a collision free farmly is also called collision free. If h is collision free, 
then h is also one-way in the following sense: 

Lemma 2.2 
Given a collision free family, and a member h :  M + A .  For any finite W c M  with 
I W I - IA I a nonneghgible fraction of IA I ,  it is computationally mfeasible given h(w), 
where w E W ,  to find any w ’  E W with h (w ’) = h (w), for more than a negligible fraction of 
thew i n W .  
Proof. 
Assume the lemma is false. Choose w E W at random and compute h(w). By assumption, 
we can efficiently find w ’ such that h (w )=h (w I ) .  By assumption on I W I ,  the probability that 
w f w ‘ is nonnegligible, which means that this procedure creates a collision for h with nonne- 
gligible probability 

It is important to note that since A might be negligibly s m d  compared to W ,  the above 
lemma does not imply that it is hard to invert h on almost all elements in A : even though the 
set of elements w E W for which it is easy to invert h on h (w ) is negligibly small compared 
to W ,  their images might constitute a large fraction of A ! It turns out that this last form of one 
way property is important in connection with chosen message attacks on signature schemes. 
Each hash function therefore has to be checked for this one way property. More de tah  can be 
found in [Da]. 

In [GMR], the notion of claw free pairs of trapdoor permutations are introduced. We wdl 
use a generalisation of this idea, without the trapdoor property. 
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Definition 2.3 
A clavfree family of permurations is a family of sets of permutations with the following pro- 
perties: 

Each set S in the family has a security parameter value attached to it, and there exists a 
function g :N -+ S such that when S has security parameter k ,  then I S I =g ( k ) .  
All members of a set S in the family have the same domain. 
There is a probabilistic polynomial time algorithm, which on input a security parameter 
value selects randomly and umformly a member of the farmly with the given value 
attached. 

For each set S = I f o ,  . . . , f r - l )  , and each x E domain (fo), it is easy to compute f , ( x )  
for all i=O . . . r-1, but it is computationally infeasible to create a claw, i.e. find I and y 
such that for some i # j ,  fi(.x) =fib) 

Assuming the existence of claw free permutations, we can construct collision free hash 
functions. First some notation: 

Let an alphabet C with cardinality r and a finite word m over C be given. We now let 
[ m ]  denote a prefix free encoding of rn over C. The choice of a particular encoding is not 
important to the results given here, except for the fact that it is possible to encode efficiently 
so that the length of [rn ] is a h e a t  function of the length of m . In binary, for example, 1 
could be encoded as 11, 0 as 00, and all encodings could be terminated with 01. This is 
important because a short encoding wdl make the mechanisms shown here more efficient. In 
fact, theoretical results show that the encoding can be chosen such that the length of rn is 
almost equal to the length of [rn]. In this case, however, the encoding process itself might 
become inefficient. Further details on prefixfree encodings can be found in [BPI. 

Now, if (f o, . . . , f r-l } is a set of permutations, all with domain D , we define 

f [ m ] ( I ) = f m , ( f m , ( .  . . f m , ( I ) .  . . 

where I E D , [m ] = m Irn2 . . . m, , and the letters in C are denoted by the numbers 
0, . . . , r-1. A similar construction is used in [GMR] with r=2. 

Theorem 2.4 
The family F constructed below is a collision free farmly of hash functions. 

Let P be a family of claw free permutations. For each value of the security parameter k , 
we let Ck be the alphabet of cardinality rk = g (k) given by Ek = ( O , l ,  . . . , rk-1 } . For each 
set S = [ f 0. . . . , f r,-l } E P and each I E domain c f o ) ,  we define a member h of F with secu- 
rity parameter k by: 

h (m ) = f [m](u* 
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f o r d m  E M k .  

Proof 
Assume for contradiction that F is not collision free. This means that for any h E F, we can 
efficiently find rn f m *, such that 

f [m ] ( I )  = f [m ), 

where [m] and [m'] have lengths s and s ' ,  respectively. Note that since m and rn' are 
assumed to be produced by a polynomial size circuit, both s and s' can be at most polynomial 
ink.  Ifrn, f m ' l ,  we have aclaw for the set S. Ifrn, =m' , ,  the fact that thef 's  are injective 
implies that 

f,,(- f , , (Z) - )=f  m 2  + - f m * , . ( Z ) ' " ) .  

The same argument now applies again, and since the encoding used is prefix free, this process 
must stop with the creation of a claw 

If we let T denote the time needed to evaluate one of the permutations used in the con- 
struction, it is clear that the time needed to compute h on a message of length L is 0 (TL ). 

The motivation for working with sets of claw free permutations rather than just pairs (a 
in [GMR]) is now clear any binary message can be seen as a word over a larger alphabet by 
treating s-bit chunks of it as symbols in an alphabet with 2' elements. Thus if we have claw 
free sets with 2' elements, the message can be hashed by processing s bits of it in stead of 1 
at time. 

2.1. Examples of Claw Free Permutations 
We first give a consmction of a claw free family of permutations under the assumption 

that factoring is hard. 
Choose any polynomially bounded function g :N + N. For each value of the security 

parameter k ,  we define the permutation set size to be g ( k ) ,  for short denoted by rk. Now, let 
n = p p 2 ' .  * p t ,  where all the p ' s  are k bit prime numbers equivalent to 3 modulo 4, and 
where t is the smallest integer such that 2'-'2rk. The set of integers of ths form is denoted 
H k .  For each n E Hk we shall construct a set of claw free permutations with security parame- 
ter k . 

For each a prime to n , define 

QR (n ) will be the set of quadratic residues mod n . Clearly, 

Q R ( n ) =  (a I J ( u ) = ( l , l ; . . , l ) ]  
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The set of all +I r-tuples form a group under pointwise multiplication. Let G, denote 
this group modulo the s u b p u p  generated by (-1 ,-1, . . . , -1). Clearly J induces a sujective 
homomorphism $ n :  Z,* + G,. Choose a set of rk elements in Zi, A = (ao,. . . ,ark-l 1 
such that I & (A ) I = I A I - This is clearly possible by choice of t . A is called an injective set 
of numbers, whenever it satisfies this condition. We can now define our set of permutations 
(f 6"' ,f l n ) ,  . . . ,f>:] } to be the set of permutations of QR (n) given by 

fi(")(x)=(qx)'mmodn, for x e Q R ( n )  and i =0, . . . ,  r-1. 

To prove that finding claws is as hard as factoring, it tums out to be essential that the ui ' S  

(and not just their squares) are made public. It might be argued that tlus could endanger the 
factorization of n , since checking whether a set is injective requires knowledge of the factors, 
and since the set size grows exponentially with the number of factors. To prove that such 
release of an injective set is not dangerous, we need the following series of technical, but ele- 
mentary lemmas: 

Lemma 2.5. 
Let G be a finite abelian group of exponent 2. Let S = (g . . . , g, } E G . Then < S  >, the 
subgroup generated by S , has order at most 2', and equality occurs exactly *hen no gi can 
expressed as a product of the others. 
proof. 
Trivial from the fact that all gi ' s  have order 1 or 2 0 

Lemma 2.6 
Let G be a finite abelian group of exponent 2, I G I = 2'. The probabllity that a randomly 
chosen subset S of G of cardinality s generates G is 

Moreover, 

z 0.289 for s + 00 
1 1  1 
3 3-7 3.7.15 

ps  j p - = -  

Proof. 
Lets = ( g l , .  . . ,gJ} .  Forall MIS we havethat 

provided '3 I ,  . . . , gi > has maximal size, by Lemma 2.5. Thus we get 
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This proves the first statement. The second follows from a long series of tedious and rather 
trivial manipulations with the expression for ps . The reader will be spared the details 0 

Lemma 2.7 
Consider a probabilistic polynomial s k e  circuit family that on inputs an integer n E H k  and an 
injective set for n , factors n with probability p k .  For any such circuit family and any E>O 
there exists another probabilistic polynomial size circuit family that factors n with probability 

Proof. 
The idea is to guess an injective set and to feed this and n to the factoring circuit we are 
given. It suffices to consider the case where the set size rk equals 2'-' (smaller sets are easier 
to guess). Choose r-1 numbers at random from Z,*, call them Q . . . , u ~ - ~ .  Under $,, , they 
correspond to r-1 randomly chosen elements in G, .  By Lemma 2.6, if we form the set 

q k  , such that IPk-qk I <&. 

A = { X E Z , * I X = ~ U ~  "t , v t = 0 o r i ) ,  
I 

then the probability that 9, ( A  ) = G ,  (and hence that A is an injective set) is at least p-. Since 
rk is at most polynomial in k ,  the process of choosing A can be completed by a plynomid 
size circuit. By going through this procedure s times, we obtain for the probabllity of success, 
q k *  that 

P k  2 q k  2Pa(l-(l-p-)'). 
Since p is independent of k , this proves the lemma. 

Theorem 2.8 
The family consisting of all sets of permutations constructed as above is a claw free family of 
permutations, provided factoring integers in { Hk } is computationally infeasible. 
Proof. 
Using well known algorithms and the Chinese remainder theorem, the p 's and the a 's for 
each n can easily be selected. Further, each permutation can be evaluated with two modular 
multiplications. Thus it suffices to prove that finding claws is as hard as factoring. Suppose a 
claw for the set {fp', . . . , f >:) } has been found. So for some i f j we have: 

or 

( Q ~ X  - L Z , ~ ) . ( Q ~ X  + uiy) ZE 0 mod R .  

By choice of the a ' s  and basic properties of the Jacobi symbol, t b s  means that 
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GCD(ajx +a jy  ,n) WIU produce a nontrivial factor of n .  By Lemma 2.7, we can now 
efficiently factor n if claws can be found efficiently 

With this construction of claw free sets, it will often be possible to improve performance 
of our hash functions by using larger sets, rather than fx. pairs. One should be aware, though, 
that with this construction a larger set requires more prime factors and hence a longer modulus 
- note that a modulus with many shorter prime factors will not be safe enough because of fac- 
toring algorithms like Lentra’s elliptic curve method [St], whoose running time depends 
mostly on the size of the smallest prime factor. 

There is, however, a slight variation on this construction which does not have this draw- 
back. It was inspired by a construction of “blobs”, which was presented in [BC]. In this 
case, let n be a modulus with exactly 2 k-bit prime factors equivalent to 3 mod 4. Next, 
choose a set A = ( a l , .  . . .ard1)  c_QR (n). Define a set of permutations {fp’, . . . , f,‘-“) 1 
by 

f , ( ” ) ( ~ )  = a,x3’, for x E QR (n ). 
It is now trivial to prove: 

Lemma 2.9 
Suppose an adversary can compute a claw for f l ( n )  and fp) as defined above. Then he can 

I’ compute a square root of uj .aj- . 

The practical advantage of this is that the set A can be enlarged without changing the 
modulus, so that one can use as many a ’s as one is willing to store (or generate pseudo ran- 
domly). Asymptotically, since we can only use a polynomial size A ,  this means that this vari- 
ation is faster than the previous construction by a factor of 0 (log2(k)). It does have a draw- 
back, which is only of theoretical significance, however: with the previous construction, we 
could prove that for uny choice of injective set, knowledge of a claw implied knowledge of a 
factor of n . In the new construction, it is conceivable that an adversary could know some 
square roots of quotients of elements in A just “by chance”, and not as a result of possessing 
an algorithm for computing square roots of randomly chosen elements in QR (n ). We may 
assume, however, that the probabhty of this is negligible in practice: if the elements of A are 
chosen at random, then the probabhty that some polynomial size circuit can find their square 
roots is negligible, unless square roots can be computed in random polynomial time. More 
details can be found in [Da]. 

The final example is based on the hardness of discrete log. and shows that claw free per- 
mutations need not be trapdoor. It is of theoretical si@ficance for that reason, but of no great 
practical use, since one permutation evaluation needs a full modular exponentiation. Choose a 
large prime p , a generator g of Z i ,  and a set A = ( Q  o, . . . , a,-[ ) c Z,‘. Define 



21 1 

f i (x)=aigX;for  .r €2,’. and 094-1 .  

In the same way as before, it is easy to prove that to find claws, one must be able to find the 
discrete log base g of quotients of elements in A . 

3. Combining a Signature Scheme and a Hash Function 

message space A 

signature space B 

which for any message a E A produces as output a signature A(S ,a ) E B , using the secret key 
S .  

A could be probabilistic, and its output could depend on the number of messages previ- 
ously signed, or how they were signed in which case the signature scheme is called non- 
memoryless. Since memorylessness is not relevant to the results proved below, the depen- 
dence on random inputs or previously signed messages has been omitted from the notation. 
Finally we have 

a verification predicate r, 
which for any message a and signature s produces as output a boolean value T(P ,a ,.s ) using 
the public key P . r(P ,a ,s ) = TRUE if and only if s is a valid signature for a using the secret 
key matching P . 

This scheme is referred to as the original scheme. A full model of a signature scheme 
would also have to include an algorithm that generates matching pairs of public and secret 
keys, but this wdl not be important in this context. 

As usual, a number of things such as the length of the keys, the running time of A and r, 
the overall security of the scheme depend on the value of a security parameter k . 

We now combine t h s  scheme with a hash function h : Jf + A .  A message is signed by 
computing A(S ,h (rn >) and signatures are checked by computing T(P , h (m ), A(S , h (m 1)). 
This scheme wdl be called the combined scheme. 

When combining with a collision free hash function, we always assume for simplicity 
that the signature scheme and the hash function have the same value of security parameter. 

Following [GMR], a signature scheme is called existentially forgeable if under some 
attack, an enemy can forge the signature of at least one message. This message cannot neces- 
sanly be chosen by the enemy. 

A chosen message attack is an attack where the enemy can choose messages to be signed 
by the legitimate signer before trying to forge a signature. If he is also allowed to choose such 
messages during the process of forgery, we speak of an adaptive chosen message anack. 

The model we shall use is the following: we have a signature scheme with 

and a signature algorithm A, 
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It is of course essential to be able to compare the security of the two schemes. A first 
result in this direction is: 

Theorem 3.1 
Suppose that the combined scheme is at least existentially forgeable under a chosen message 
attack, and that the hash function used is collision free. Then the original scheme can be. 
existentially forged under a chosen message attack. 
Proof. 
Assume for contradiction that we have an algorithm Q, that forges at least one signature in the 
combined scheme after receiving signatures of messages of its choice. Assume also that we 
can mount a chosen message attack on the original scheme. While running Q, we will be 
asked for signatures of messages in some subset N of M .  They are easily found by comput- 
ing the set h ( N )  and using the chosen message attack to obtain A(S ,h ( N ) ) .  With nonnegligi- 
ble probability, Q, will produce as output a message m S E N  and a valid signature for rn . If 
h ( m )  E h ( N )  we have found a colhsion for h , but by assumption on h this can only occur 
with negligible probability. We may therefore assume that h ( m ) ~  h ( N )  which means that we 
have forged a new signature in the original scheme 17 

Note that the proof goes through in the same way if the attack is adaptive. Therefore 
“adaptive chosen message attack” could substituted for “chosen message attack” in the 
theorem. 

This result has two useful implications: 
If the original scheme is not existentially forgeable, then neither is thz combined scheme. 
If the combined scheme has any kind of weakness, then the original scheme was already 
existentially forgeable. 
The last fact states that the use of the hash function does not introduce any “completely 

new” weaknesses. This may make a security analysis of the combined scheme easier, but 
unfortunately it does not rule out the possibility that the combined scheme is much weaker 
than the original scheme! This will be illustrated by an example later. 

The next result, however, shows that at least a large class of attacks directed against the 
original scheme are prevented by the use of a hash function with the right property: 

- 
- 

Proposition 3.1 
Suppose the harh function used is one way in the sense that it is hard to invert on a randomly 
chosen element in A (c.f. the discussion following Lemma 2.1). Consider an algorithm for 
forging signatures which is directed against the original scheme, i.e. the hash function used is 
not part of the input to the algorithm. No such algorithm which satisfies i) or ii) below will be 
of any use in attacking the combined scheme. 
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i) The algorithm only works under a chosen message attack, and will during the attack ask 
for signatures of messages uniformly distributed in A .  

ii) The algorithm can only forge signatures for a small (i.e. polynomial) number of mes- 
sages, which are non-chosen and umformly distributed over the message space (where 
the distribution is taken over all choices of messages to sign made by the signer and all 
choices made by the enemy). 

Proof 
i): by the one way property, even a chosen message attack on the combined scheme does not 
allow a chosen message attack on the original scheme: Since h is not part of the input to the 
forgery algorithm, any procedure which could implement a chosen message attack on the ori- 
ginal scheme based on a chosen message attack on the combined scheme, would in fact be an 
inversion algorithm for h .  ii): Call the set of messages for whch the algorithm has forged 
signatures X .  Since X is in fact a random variable, then to use these signatures, the enemy 
must have an algorithm that on input any set of messages Y with I Y I = IX I efficiently pro- 
duces an element m E 1M with h (m ) E Y .  But this would enable him to invert h OR a ran- 
domly chosen element with non negligible probability 

Let us see whether the functions constucted in the previous section have the one way pro- 
perty required in the proposition. As far as the functions based on factoring are concerned the 
answer, curiously, is yes if discrete log is hard! A simple example: suppose we construct a 
hash function based on the pair of permutations 

f o ( x )  = x 2  and f = ax2 

where, as usual, all computations are modulo an appropriately chosen modulus n . We now 
chose a random I E SQ (n ) and define h (w ) = f tw ](I) But with these permutations, it is easy 
to see that in fact 

h (w) = &".p""), 
where l(w) is the length in bits of [w]. Thus, even if an enemy when presented with an ele- 
ment in Im ( h )  could guess the length of a preimage, he would stdl have to solve a discrete log 
problem base a .  Moreover, the set of discrete log problems that arise in this way certainly 
constitute a non negligible fraction of all possible discrete log problems base a .  

As far as hashfunctions based on claw free permutations in general are concerned. it 
seems to be hard to give actual proof that the one way property is always satisfied. It is possi- 
ble, however, to give heuristic arguments suggesting that such functions will hit any element 
in their image with almost equal probability. This and the cohsion freeness would imply the 
one way property (more details on t h s  can be found in [Da]). 

Assumptions i) and ii) in the proposition above seem to be reasonable models of the mul- 
tiplicative attacks on RSA mentioned in [De]. Thus a collision free function would prevent 
these. But let us stress once again that the proposition does not talk about attacks directed 
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against the combined scheme. Therefore an analysis of this combination is needed in each 
concrete case. 

As an example of these problems, consider a combined scheme with RSA as the original 
scheme, and a hash function based on factoring as described in Section 2. 

If the modulus used for the hash function is chosen independently of the RSA-modulus, . 
then the following assumption seems reasonable: 

If there exists an algorithm that forges RSA signatures under condition 1) below, then 
there exists an equally efficient algorithm that forges signatures under condition 2). 
1) All messages signed are of the form h (m ), and h and M are known to the forgery 

2)  All messages are chosen at random from Im(h). 
In other words, as far as forging RSA-signatures is concerned, the hash function might as 

well be a random function. If this is indeed true, then by Proposition 3.2 the only way to 
break the combined scheme is to totally break RSA under a non chosen message attack 0.e. 
forge the signature of any message with nonnegligible probability). It therefore seems that 
this combination is much more secure than plain RSA. 

A word of warning, however: if the two moduli used are not independent, then the above 
assumption can be seriously violated. For example, if for convenience we use the same 
modulus for the hash function as for the RSA, then by an attack due to Bert den Boer [Bo], the 
combined scheme can in fact be broken. The attack relies heavily on the fact that the multipli- 
cative structure used in computing the hash function is exactly the same as the one used in 
computing signatures. It therefore does not generalise to the case where the moduli are 
independently chosen. 

It is worth noting that in addition to being more secure, the combination with RSA has a 
number of practical advantages: 

Since modular arithmetic is used for both the hash function and RSA, the combination 
can be implemented without using more hardware than is needed for basic USA. 
Using the most efficient construction mentioned in Section 2 will yield a scheme which is 
more efficient than plain RSA on long messages. For example, if one is willing to store a 
set of 512 constant coefficients, then the combined scheme will be 9 times faster than the 
original one. 

Signatures have length 1 RSA block, independent of the message length. 

algorithm. 

4. Speeding up the Goldwasser Micali Rivest Signature Scheme 
In [GMR], the Goldwasser-Micah-Rivest (GMR) signature scheme is introduced and is 

proven to be not existentially forgeable, even under an adaptive chosen message attack. The 
basic building blocks in the scheme are two pairs of claw free trapdoor permutations, Cf of 1) 

and (g0.g To sign a message a ,  the following is done: 
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1) A random value R is chosen. 
2) A value a is computed using the trapdoor information for the g-permutations such that 

3) R is authenticated using the f -permutations. 
The signature for a now consists of a, R , and the authentication for R . It is pointed out 

that the scheme is most practical when messages have length much greater than the value of 
security parameter used, since in this case signatures are short compared to the messages. 
Clearly, if a is computed in a straightforward way by inverting the g -permutations involved 
one by one, then the time needed to compute a signature for a message of length L is 
0 (LTinV), where Ti,, is the time needed to invert one permutation. Moreover, if (as proposed 
in [GMR]) we use the factoring based construction of claw free pairs of permutations, then 
Tiny is greater than the time for one permutation evaluation by a factor of log2@ ), where n is 
the modulus used. 

Using the constructions from Section 2, we can improve the efficiency of h s  scheme 
substantially: 

1) It is trivial to check that the GMR scheme wdl work equally well with any size of sets of 
claw free permutations. Therefore we can use the most efficient construction from Sec- 
tion 2 in place of both the f - and the g -permutations. TIUS will speed up both the sign- 
ing and the signature checking process by a factor of 0 (log2(logz(n ))). 

By combining with a collision free hash function based on factoring, we can avoid most 
of the permutation inversions. It is easy to check that t h ~ ~  will speed up the signing pro- 
cess further by a factor of about logz(n) for long messages. Moreover, by Theorem 2.4 
and 3.1, the combined scheme is as secure as the original one. 
Other methods for speeding up the GMR scheme have been proposed, both by Goldreich 

[Go] and Goldwasser, Wcali and Rivest in the full version of their paper [Gh4R2]. They both 
apply only to the signing process and achieve a slightly smaller improvement than our method 
(the factor gained is logz(n)). They are also fundamentally different: the method from [Go] 
only applies to the factoring based implementation of claw free permutations, while our 
method is potentially useful with any implementation. The method from [GMR2] will not 
allow the use of non trapdoor permutations, whde the construction of a hash function only 
uses the claw free property. 

5. Conclusion 
We have seen that hash functions can be useful, both in improving the security and the 

efficiency of signature schemes. We have also seen that if factoring or discrete log is hard, 
provably secure and reasonably efficient hash functions can be constructed. 

g[,](@ = R .  

2) 
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