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ABSTRACT 

The a l t e r n a t i n g  s t e p  generator ( A S G )  i s  a new generator of pseudo- 
random sequences which is c lose ly  r e l a t ed  t o  the stop-and-go generator .  
I t  shares a l l  the good p rope r t i e s  of t h i s  l a t t e r  generator without PO- 

sess ing i t s  weaknesses. The ASG consis ts  of three subgenerators K , f l  , 
and ;"i - The main c h a r a c t e r i s t i c  of i ts s t ructure  i s  t h a t  the output  of 
one of the subgenerators,  K ,  controls  the clock of the two o t h e r s ,  f l  

and . In the  p re sen t  contr ibut ion,  we determine the period, t h e  d i s -  
t r i b u t i o n  of s h o r t  p a t t e r n s  and a lower bound for  the l i n e a r  complexity 
o f  the sequences generated by an ASG. The proof of the lower bound is  
g rea t ly  s impl i f i ed  by assuming t h a t  K generates a de Bruijn sequence. 
Under t h i s  and o t h e r  no t  very r e s t r i c t i v e  assumptions the per iod and 
the  l i n e a r  complexity a r e  found t o  be proportional t o  the per iod of  the 
de Bruijn sequence. Furthermore the frequency of a l l  short  p a t t e r n s  as 
w e l l  as  the au tocor re l a t ions  tu rn  ou t  t o  be ideal .  This means t h a t  t h e  
sequences generated by t h e  ASG a r e  provably secure against  t he  standard 
at tacks.  

1. INTRODUCTION 

In  stream c iphe r  cryptography messages are usualy combined with 
pseudorandom sequences by modular addition. Therefore, schemes f o r  t he  
generation of such sequences a re  important. They a re  generally based 
on f i n i t e  s t a t e  machines and most frequently on l i n e a r  feedback s h i f t  
r e g i s t e r s  (LFSR's). To avoid c e r t a i n  c lasses  of a t tacks,  these se- 
quences a r e  required t o  have a large period, a high l i n e a r  complexity 
and good s t a t i s t i c a l  p r o p e r t i e s .  
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In one approach to the generation of these sequences, the clock 
of an LFSR is controlled by the output of another LFSR. Examples of 
generators based on this principle are various kinds of stop-and-go 
generators [1]-[5] and binary rate multipliers [6]. Both types of 
generators easily produce sequences of large period and high linear 
complexity (exponential in the length of the register which controls 
the clock). The binary rate multipliers furthermore generate sequences 
with good statistical properties. One disadvantage of these generators 
is, however, that they need several clock cycles for the generation 
of one single pseudorandom bit. 

the following one: 
Amongst the various kinds of stop-and-go generators we consider 

, 

Fig. 1 

In this generator the output of f l  is repeated each time the K register 
produces a " 0 " .  On the one side, this leads, under suitable conditions, 
to a large period and a high linear complexity, on the other side, 

3 this always implies bad statistics (eg. p(00) 2 p(1l) B z, p(O1) = 

p(10) 
if K~ = 1, determines one half of all the lllllIs present in the sequence 
K. This can strongly reduce the effort needed to reconstruct K. 
Similar weaknesses exist in all known stop-and-go gecerators. 

1 8 ) .  Furthermore, the fact that the output ut can only change 
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11. THE ALTERNATING STEP GENERATOR 

The a l t e r n a t i n g  s t e p  generator (ASG) i s  closely r e l a t ed  t o  t h e  
stop-and-go generator .  Noteworthy is t h a t  it has a l l  the  good proper- 
t i e s  of t he  l a t t e r  generator  bu t  does not share i t s  weaknesses. 

The ASG c o n s i s t s  of  t h r e e  subgeneratorsK,fl  and 3, which a r e  
interconnected such t h a t  fl and # are  clocked when the output of K 
equals "1" and "0". r e spec t ive ly  (Fig.  2 ) .  

Mathematically, t h i s  generator  can be described as follows: l e t  K ,  p 

and 
they a r e  independently clocked. In addition, l e t  f t :  = 

be the sequences generated by the subgenerators K , f l  and 3, when 
t-1 
1 

s=o 
K~ and 

P = t-f t ,  then t 

W t = p  @ 
ft  

In p r a c t i c e  t h e  

the output  ut i s  described by 

sequences K ,  1.1 amd will typical ly  be e i t h e r  maximum 
length l i n e a r  r ecu r r ing  sequences (m-sequences) o r  l i n e a r  r ecu r r ing  
sequences. In  t h e  p re sen t  paper, however, K w i l l  be assumed t o  be a 
de Bruijn sequence [7]. Such a sequence can e a s i l y  be obtained from 
an in-sequence. I n  t h e  case of a de Bruijn sequence, the proof fo r  a 
lower bound on t h e  l i n e a r  complexity becomes pa r t i cu la r ly  simple. A 
treatment of  t h e  case i n  which K ,  p and a re  a l l  l i n e a r  r ecu r r ing  
sequences as  wel l  a s  some clues  on the cascading of the s t r u c t u r e  can 
be found i n  [ a ] .  

The only a t t a c k  on t h e  ASG we could find so f a r  i s  a c o r r e l a t i o n  
at tack on K [ 9 ] .  In t h e  p re sen t  case,  however, it does not substan- 



t i a l l y  reduce the e f f o r t  t o  break the system. In t h i s  co r re l a t ion  
a t t ack  (Fig.  3 )  a t r i a l  sequence 2 i s  correlated with K using t h e  
r e l a t i o n  

clock 
t w d e l a y  t 

> m ,~ 
J - A S G  

Vt 

Fortunately, t h i s  a t t a c k  only reduces the e f f o r t  t o  break the system t o  
e s s e n t i a l l y  the  t h i r d  r o o t  of t he  e f f o r t  needed f o r  an exhaustive search. 
For typ ica l  parameters K = T ( K )  * Zlz7 it would need 10” years t o  search 
through a l l  phases i f  10” phases could be tes ted per second. I n  the  fo l -  
lowing sect ion t h e  r e s u l t s  on the period, l i nea r  complexity and frequen- 
c i e s  of  sho r t  p a t t e r n s  a r e  presented. 
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111 THE MAIN RESULTS 

Theorem 1: (period and linear complexity) 

k Assn: a) K is a de Bruijn sequence of period K = 2 , 
b) the characteristic polynomials p(x) and G ( x )  of p and c 

are irreducible and different and have the degrees m 
and iii and the periods M and w, respectively, 

c) M, 5 > 1 ; gcd(M,fi) = 1. 

Under these assumptions the period T and the linear complexity L 
of w satisfy the following relations: 

T = 2% ( 3 )  

Proof: Using that p(x) and G(x) are relatively prime, the proof follows 
immediatly ( [ 101 - [ 111 ) from 
i) s:=T(~~) = 2% 

ii) 

and corresponding assertions for c i .  
the characteristic polynomial of pf has the form p(x)I with 
Zk- l  k ( 2 5 2 ,  

The proof of i) only requires 2#M, which is implied by the irreducibi- 
lity of p(x) [lo]. It reads as follows: The defining equation of S, i.e. 

the difference of this equation and of the corresponding equation for 
t+l, i-e. K ~ + ~  f K~ (mod M), becomes K ~ + ~  = K ~ ,  1.e. S = ~ 2 ~ .  As a 
de Bruijn sequence is "1" with frequency one half, this implies 
f + y2k-1 5 ft (mod M) and as 2+M: y = M, 1.e. S = 2%. ' 

- - pft , Y t E 2, implies ft+S = ft (mod M), V t E Z. With M > 1 %+S 

t 

The proof of ii) is very similar to that of the lower bound for the 
linear complexity of a de Bruijn sequence [12]. Let D be the time 

i shift operator D K ~  = K ~ - ~  and let p(x) = @ 
rn 

i=O 
ni x , then 
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k m 
P(D2 )I.I = @ n i  p 

f t  i = o  f t - i 2 k  
m 

= $  A k- 1 i = O  i " f t - i 2  

= o  , 

- - 
where 
implies t h a t  t h e  c h a r a c t e r i s t i c  polynomial of p f t  must divide p(xZk ) 
= p ( ~ ) ~ ~ ,  1.e.  it must have t h e  form p(x)',  with 11 5 2k. Now assume 
2 - < 2k-1, then 

and 5 w e r e  defined by % = f t  and D p z  = p"t1. This equation 

-1 I 

2k-l  2 '-'M p ( x f  I (xM-l)a  I (xM-l)  = x  

which con t r ad ic t s  S = 2%. This completes the proof. 0 

assumptions a r e  made on p ( x )  and p ( x ) :  
The r e s u l t s  o f  theorem 1 a r e  e a s i l y  adapted t o  the case t h a t  no 

T = 2% 

Z k + l  < L 5 (rn+iii)2k . 

The proof i s  based on the f a c t  t h a t  gcd(M,i) = 1 implies 
g c d ( p ( x ) , p ( x ) )  I x-1 and can e a s i l y  be figured out. 

The following theorem on t h e  frequency of pat terns  holds f o r  a l -  
most a r b i t r a r y  K .  However, w e  w i l l  restrict ourselves t o  the case 
where K 1s a de Brui jn  sequence, s ince we would otherwise need a more 
general a s s e r t i o n  on the per iod.  For a more general statement w e  re- 
f e r  t o  [81.  In t h i s  theorem w e  u s e  the notation Z/(T):= {O,l,-..,T-1~- 
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Theorem 2: (frequency of short patterns) 

k & s s ~ ~ :  a) K is a de Bruijn sequence of period K = 2 , 
b) p and 

c) gcd (M,M) = 1. 

are m-sequences with the periods 
M = 2m-l and fi = 2 m - l ,  respectively, 

Under these assumptions the frequency of any pattern a of length 
i 5 min (m,m) is 2-' up to an error of order O(-&) + O(-), 2m-% 
i.e. 

1 

a for any a = (a 0 I . . . ,  ' s e - l )  I 0 , l I  . 
( 9 )  

Remark : 

We note that the deviation of this distribution from an ideal 
one is very similar to the corresponding deviation f o r  an m-sequence. 
In addition, this deviation is due to the corresponding deviation for 
m-sequences. 

Proof of theorem 2: Let t E Z/(T) be represented in the form t = 1: + 

(s+EM)2 , r E 2/(2 ) ,  s B Z/(M), s E Z / ( f i )  and let us first consider 
the frequency of patterns for a fixed r E Z/(2 ) . Let p = p ( r )  and 
p = p(r) be defined by 

k k 
k 

- 
p o : = O  , p o : = a o  , 

for i E Z / ( . Q - l ) -  Then a can be decomposed into (i E Z / ( i ) )  

- 
ai = pi @ pi . 
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For the matching condition at time t 

W t+i = ui , i E Z/(A) , 

this implies 

1-I @ i;- = pi @ pi , i E z/(A) . 
ft+i ft+i 

Using the following relations 

i E Z/(A-1) , 

the sum of equation (13) and of  the corresponding equation for i+l 
becomes: (i E Z/(g-l)) 

This has two solutions: (i E Z / ( a ) )  

- 1-I - Pi 
ft+i 

- - - IJ- - Pi 
ft+i 

and 

The number of solutions to this equation is equal to the number Of 
occurences of the pattern u in the sequence ~ ~ + ( ~ + ; ~ ) ~ k ,  s E Z/(M), 
5 E Z / ( & ) ,  1.e. to the quantity we want to determine. 
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Without r e s t r i c t i n g  ou r se lves  w e  consider the so lu t ions  of 
k 

equat ion (16a ) .  Making use  o f  t h e  f a c t  t h a t  K has t h e  per iod K = 2 
and t h a t  .I K~ = , t h i s  equat ion becomes: (i E Z/(Q)) K-1 2 k - l  

s =o 

+ s2k-1 = i '  'fr+i 

IJ- + (S+ZM)2k4 = p .  1 * fr+i 

(17)  

L e t  4 r :  = fr+e-l - f r ,  t h e n  t h e  assumptions 2jM and 1.1 an m-sequence 
imply t h a t  equa t ion  ( 1 7 )  has  Zm-@r- l  so lu t ions  i f  p # 0 .  L e t  J r  = 

i - l -~$~,  #en s i m i l a r l y  2#& - gcd ( M , f i )  = 1 and an m-sequence imply 
t h a t  equat ion (,18) has  2m-@r-1 so lu t ions  i f  p' f 0 .  This remains t r u e  
f o r  p = 0 and/or p' = 0 i f  w e  accept  an e r r o r  of a t  most 0 ( ~ )  + 

O ( p ) .  Clea r ly  the same r e s u l t  also holds fo r  equation (16b) .  
Hence the t o t a l  number o f  s o l u t i o n s  t o  equation ( 1 2 )  is  
2*2m''r-1 2K-'r'1 = 2m+iii-a, which i s  independent of r .  This  f i n a l l y  
implies  t h a t  t h e  frequency o f  t h e  p a t t e r n  a i s  given by 

1 
1 

2m+m-Q + O(- 1 
6 

and thereby y i e l d s  the a s s e r t i o n .  c] 

IV. CONCLUDING REMARKS 

Under s u i t a b l e  assumptions t h e  a l t e rna t ing  s t ep  genera tor  ( A S G )  

is a simple and v e r y  e f f i c i e n t  pseudorandom number genera tor .  I t  1s 
f a s t  and provably s a t i s f i e s  t he  usual c r i t e r i a .  

The a u t o c o r r e l a t i o n s ,  which were not  d e a l t  with i n  t h e  p r e s e n t  
paper, a r e  a l s o  i d e a l  f o r  a l a r g e  range of  delays ( 1 1 1  E Z/(K)). [S] 

The s t r u c t u r e  o f  t h e  ASG i s  favorable  t o  cascading, i . e .  t o  
have one o r  s e v e r a l  o f  t h e  subgenerators  K , 17 and being A S G ' s  

themselves. This  i s  f u r t h e r  discussed i n  [8]. 
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