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ABSTRACT

The alternating step generator (ASG) is a new generator of pseudo-
random sequences which 1s closely related to the stop-and-go generator.
It shares all the good properties of this latter generator without po-
sessing its weaknesses. The ASG consists of three subgenerators X , 1,
and 7 . The main characteristic of its structure is that the output of
one of the subgenerators, X, controls the clock of the two others, 7
and 7 . In the present contribution, we determine the period, the dis-
tribution of short patterns and a lower bound for the linear complexity
of the sequences generated by an ASG. The proof of the lower bound is
greatly simplified by assuming that X generates a de Bruijn sedquence.
Under this and other not very restrictive assumptions the period and
the linear complexity are found to be proportional to the period of the
de Bruijn sequence. Furthermore the frequency of all short patterns as
well as the autocorrelations turn out to be ideal. This means that the
sequences generated by the ASG are provably secure against the standard
attacks.

1. INTRODUCTION

In stream cipher cryptography messages are usualy combined with
pseudorandom sequences by modular addition. Therefore, schemes for the
generation of such sequences are important. They are generally based
on finite state machines and most frequently on linear feedback shift
registers (LFSR's). To avoid certain classes of attacks, these se-
quences are required to have a large period, a high linear complexity
and good statistical properties.
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In one approach to the generation of these sequences, the clock
of an LFSR is controlled by the output of another LFSR. Examples of
generators based on this principle are various kinds of stop-and-go
generators [1]1-[5] and binary rate multipliers [6]. Both types of
generators easily produce sequences of large period and high linear
complexity (exponential in the length of the register which controls
the clock). The binary rate multipliers furthermore generate sequences
with good statistical properties. One disadvantage of these generators
is, however, that they need several clock cycles for the generation
of one single pseudorandom bit.

Amongst the various kinds of stop-and-go generators we consider
the feollowing one:
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In this generator the output of /M is repeated each time the A register
produces a "O". On the one side, this leads, under suitable conditions,
to a large period and a high linear complexity, on the other side,

this always implies bad statistics (eg. p(00) p(ll) = %, p(01) =
p(10) %). Furthermore, the fact that the output w, can only change

if Ke = 1, determines one half of all the "1"'s present in the segquence
k. This can strongly reduce the effort needed to reconstruct k.

Similar weaknesses exist in all known stop-and-go generators.

n

R



II. THE ALTERNATING STEP GENERATOR

The alternating step generator (ASG) is closely related to the
stop-and-go generator. Noteworthy is that it has all the good proper-
ties of the latter generator but does not share its weaknesses.

The ASG consists of three subgenerators X, and A, which are
interconnected such that  and 77 are clocked when the output of A
eqguals "1" and "0", respectively (Fig. 2).

clock

Mathematically, this generator can be described as follows: let k, y
and § be the sequences generated by the subgenerators K£JZand M, when
Ehey are independently clocked. In addition, let ft: = szo Kg and

ft = t—ft, then the output Wy is described by

We = Hg ®ug . (1)

In practice the sequences k, py amd p will typically be either maximum
length linear recurring sequences (m-sequences) or linear recurring
sequences. In the present paper, however, k¥ will be assumed to be a
de Bruijn sequence [7]. Such a sequence can easily be obtained from
an m-sequence. In the case of a de Bruijn sequence, the proof for a
lower bound on the linear complexity becomes particularly simple. A
treatment of the case in which «k, p and i are all linear recurring
sequences as well as some clues on the cascading of the structure can
be found in [8].

The only attack on the ASG we could find so far is a correlation

attack on k [9]. In the present case, however, it does not substan-



tially reduce the effort to break the system. In this correlation
attack (Fig. 3) a trial sequence K is correlated with « using the
relation

w, ® w = if K = (1)

and the fact that the sum of two linear recurring sequences is again
such a sequence. The signature for k = x is that the linear complexity
of the sequences v and/or v (Fig.3) does not increase beyond the length
of M and/or 7, respectively. This is determined by the Massey-Berlekamp

algorithm.
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Fortunately, this attack only reduces the effort to break the system to
essentially the third root of the effort needed for an exhaustive search.
For typical parameters K = T(k) »~ 2127 it would need 10lB years to search
through all phases if 1012 phases could be tested per second. In the fol-
lowing section the results on the period, linear complexity and frequen-
cies of short patterns are presented.



II1. THE MAIN RESULTS

Theorem 1: (period and linear complexity)

Assume: a) K is a de Bruijn sequence of period K = 2k,

b) the characteristic polynomials p(x) and p(x) of p and o
are irreducible and different and have the degrees m
and m and the periods M and M, respectively,

c) M, M>1; gcd(M,M) = 1.

Under these assumptions the period T and the linear complexity L
of w satisfy the following relations:

T = 2% (3)

1

(mm)25Y < L < (mem)2® (4)

Proof: Using that p(x) and p(x) are relatively prime, the proof follows
immediatly ([10}-[11]) from
i) s:=T(up) = 2"
ii) the characteristic polynomial of He has the form p(x)2 with
2K oy < 2K,

and corresponding assertions for ﬁf.

The proof of i) only requires 24M, which is implied by the irreducibi-~
lity of p(x) [10]. It reads as follows: The defining equation of S, i.e.
“fus .= e, ¥ t € 2, implies ft+s = ft (mod M), ¥ t ¢ Z. With M > 1
the difference of this equation and of the corresponding equation for
t+l, i.e. Kesg = Kg (mod M), becomes Kepg = Kyo i.e. § = yzk. As a

de Bruijn sequence is "1" with frequency one half, this implies

£, +v2" 1 = £ (mod M) and as 24M: y = M, i.e. s = 2FH

The proof of ii) is very similar to that of the lower bound for the
linear complexity of a de Bruijn sequence [12]. Let D be the time

m
shift operator DKt = K and let p(x) = @ n, xl, then

t-1 i 1
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where T and D were defined by t = f, and ﬁpE = Ei-l’ This equatio%(

. . A - 2
implies that the characteristic polynomial of He, must divide p(x~ )
= p(x)?", i.e. it must have the form p(x)?, with 2 < 2X. Now assume

g < 251, then

k-1 k-1
px)f 1 (-0t M2 = x 1, (6)

which contradicts s = ZkM. This completes the proof. O
The results of theorem 1 are easily adapted to the case that no

assumptions are made on p(x) and p(x):

T = 2R (7)
2

Kl ooL o< qmem2® . (8)

The proof is based on the fact that gcd(M,M) = 1 implies
ged(p{x),p(x)) | x-1 and can easily be figured out.

The following theorem on the freguency of patterns holds for al-
most arbitrary x. However, we will restrict ourselves to the case
where k is a de Bruijn seguence, since we would otherwise need a more
general assertion on the period. For a more general statement we re-
fer to [8]. In this theorem we use the notation 2/(T):= {0,1,...,T-1}.
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Theorem 2: (frequency of short patterns)

Assume: a) x is a de Bruijn sequence of period K = Zk,

b) p and § are m-sequences with the periods
M = 2"-1 and M = 2"-1, respectively,

c) gcd (M,M) = 1.

Under these assumptions the frequency of any pattern ¢ of length

2 < min {m,m} is 2~2 up to an error of order O(—/=7) + 0(—;%3),
i.e. 2 2
L cardftez/(T)| w,.. = 0., ¥ieZ/(2)} = = + 0(—L-) + O(—==>)
T t+i i’ 22 2m-2 zﬁ-z

\ (9)
for any o = (GO""’UQ-l) g {0,1}

Remark:

We note that the deviation of this distribution from an ideal
one is very similar to the corresponding deviation for an m-sequence.
In addition, this deviation is due to the corresponding deviation for
m~sequences.

Proof of theorem 2: Let t € Z/(T) be represented in the form t = r +
(s+§M)2k, re Z/(Zk), s & Z2/(M), s ¢ 2/(M) and let us first consider
the frequency of patterns for a fixed r ¢ Z/(Zk). Let p = p(xr) and

p = p(r) be defined by

Py = o , Po * = 0y ,
Pis1 * = P4 o Kr+i(0i+1 ® oi) , (10)
Pipy 2 TPy & (Iokp yMo;,, @ 05)

for i ¢ 2/(2£-1). Then o can be decomposed into (i & 2Z/(2))

(11)
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For the matching condition at time t

w,. . = 0, , ie 2/(2) . (12)

u @ u= =p, & p, , ie 2/(2) . (13)
feei frvi 1 1
Using the following relations
freier T frag * Kpyg
ie 2/(2-1) , (14)
Lrvien © Fpgg ¥ 1o%pyy

the sum of equation (13) and of the corresponding equation for i+l
becomes: (i ¢ Z/(2-1))

M ® u = p. ® p.
ft+i+1 ft+i 1+l *
- - - _ (15)
Mg ® pz =p;,.q ®p,
t+i+l feiq 1+l 1
This has two solutions: (i ¢ Z/(2))
b = p, » HE =Dy (16a)
ft+i 1 ft+i 1
and
H =1@p, , HBF  =18®5p, (16b)
ft+i 1 t+i 1

The number of solutions to this equation is equal to the number of

occurences of the pattern o in the sequence wr+(s+§M)2k' s & Z/(M),

§ ¢ 2/(M), i.e. to the quantity we want to determine.
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without restricting ourselves we consider the solutions of

) k
equation (16a). Making use of the fact that x has the period K = 2
K=-1 - . )
and that ZO Kg = Zk l, this equation becomes: (i ¢ Z2/(2))
s=
v k-1 =p, (17)
fr+i + s2 1
Wz - k-1 = p. X (18)
r+i + (s+sM)2 i
Let ¢r: = fr+£-l - fr' then the assumptions 2{M and p an m-sequence

imply that equation (17) has 2™ % "1 solutions if p Z 0. Let $r =
2-1-¢ , then similarly 24M, gcd (M,M) = 1 and § an m-sequence imply
that equation (18) has 2™%r-1 Solutions if p F 0. This remains true
for p = 0 and/or E = 0 1f we accept an error of at most O(EE%;) +
Otzﬁ%r). Clearly the same result also holds for equation (16b).
Hence the total number of solutions to equation (12) is

2.200r=l M= -1 _ omE-L  ich is independent of r. This finally
implies that the frequency of the pattern o is given by

2

m+m-2 1 1
=t 0CGED 0GR (19)

and thereby yields the assertion. O

Iv. CONCLUDING REMARKS

Under suitable assumptions the alternating step generator (ASG)
is a simple and very efficient pseudorandom number generator. It is
fast and provably satisfies the usual criteria.

The autocorrelations, which were not dealt with in the present
paper, are also ideal for a large range of delays {(|t| & 2/(K)). [8].
The structure of the ASG is favorable to cascading, i.e. to
have one or several of the subgenerators X , / and M being ASG's

themselves. This is further discussed in [8].
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