
HIGH-PERFORMANCE INTERFACE ARCHITECTlTREs
FOR CRYPTOGRAPHIC HARDWARE

David P. Anderson & P. Venkat Rangan

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720

1. INTRODUCTION

In general, secure communication in a distributed system that spans physically

insecure networks and hosts must be implemented using cryptography. Software hnple-

mentations of cryptographic algorithms such as DES are much slower than typical net-

work bandwidths. However, fast hardware implementations of these algorithms are

being developed [4,61 and are projected to have encryption speeds comparable to net-

work bandwidths (i z , 10-100 megabits per second).

Current efforts at increasing the performance of hardware encryption are directed

largely at increasing the speed of encryption within the device itself [5]. Less attention is

being paid to the efficiency of the interface between the cryptographic hardware and the

rest of the computer system.

This research was supported by the Defense Advanced Research Projects Agency @OD), ARPA
Order NO. 4871, monitored by the Naval Electronic Systems Command under Contract No.
N00039-84-(2-0089, by the ZBM Corporation, by Olivetti S.p.k, by MICOM-Interlan, Inc., by
CSELT S.p.A., and by the University of California under the MZCRO Program, Venkat Rangan is
also supported by an ZBM Doctoral Fellowship. The views and conclusions contained in this do-
cument are those of the authors, and should not be interpreted as representing official policies, ei-
ther expressed or implied, of any of the sponsoring agencies or corporations.

D. Chaum and W.L. Pnce (Eds.): Advances in Cryptology - EUROCRYPT '87, LNCS 304, pp. 301-309, 1988.
0 Spnnger-Verlag Berlin Heidelberg 1988

302

While implementing a secure network communication system [1,2] using commer-

cially available components, we found that interface to the encryption device, rather than

the encryption speed of the device, imposed the major limits on performance.

Specifically, CPU speed was both the bandwidth bottleneck and the major source of

delay, and CPU overhead was significant.

In this paper we address the problem of designing an interface to encryption

hardware that removes many of the performance limitations we encountered. With such

an interface, the performance of secure network communication is determined by

memory bandwidth, encryption speed, and network performance. We feel that these

interface considerations should influence future hardware implementations of crypto-

graphic algorithms.

2. COMPONENTS OF NETWORK PERFORMANCE

Three components are of primary interest in evaluating the performance of network

communication:

0 Message latency: the interval from the time a message is generated to the time it is

received by its destination process.

Throughput: the average data transfer rate that can be sustained between processes.

Processor overhead: the fraction of processor time spent in network communication. 0

File server access (virtual memory paging and access to user files) is the dominant

component of network communication in current distributed systems. Low latency is

303

critical to the performance of network file access [3], and to applications involving real-

time control and user interfaces. High bandwidth is required for many applications, such

as those involving graphic and audio user interfaces. Processor overhead can have a

significant effect on local processing speed, and also affects the latency and throughput

components .

3. A CURRENT INTERFACE AND ITS LIMITATIONS

Our secure communication system was developed using widely available hardware:

Sun-3 workstations with a built-in interface for the Zilog 8068 DES encryption proces-

sor. The operation of the DES encryption processor and its interface to the Sun-3 works-

tation is as follows: the CPU fmt loads the DES chip with a key. Starting from the begin-

ning of the data, the CPU loads an 8-byte block of data into the processor, waits for the

encryption operation to finish, then removes the encrypted data from the DES chip. The

CPU repeats this process until there is no more data left in the input. Once the encryp-

tion is completed, the message can be transmitted over the network.

In the above sequence of operations, data transfers in and out of the DES chip are

done one byte at a time. During the encryption of a long message, the CPU is devoted

entirely to operating the cryptographic hardware, either copying data or polling the status

of the cryptographic hardware for completion of an operation.

Our measurements show that during the encryption of long messages, 90% of the

time is spent copying data to and from the chip, and the remaining time is spent polling

the chip for completion. Maximum throughput of the encryption operation alone is 2.88

304

megabits per second, and maximum network throughput of secure messages (including

encryption, transmission, and decryption) is 2.80 megabits per second. Maximum net-

work throughput of unencrypted messages is 7.60 megabits per second.

The way in which the DES chip is interfaced have the following implications for the

various performance components:

Message Throughput:

Because of software copying of data, the maximum encryption throughput of the

system is limited by processor speed. Even if encryption time were zero, the

encryption throughput would be only 3.18 megabits per second.

Message Latency:

Latency of encrypted packets is the sum of latency without encryption, the time for

encryption, and the time for software data copying. In our system, the total latency

for an 1024 byte message is 7.60 milliseconds, of which 5.60 milliseconds is due to

encryption. Of this, 5.04 milliseconds is spent in software data copying and would

be present even if encryption time were zero.

Processor Overhead:

Under a communication workload taken from traces of a real system (a heavily-

used file server), the CPU overhead due to communication is 47.0% with encryption

and 20.6% without. Of this, 42.0% is due to software copying and would be present

even if encryption time were zero.

Therefore, the limitations on the performance of secure network communication in

this system are imposed by the way in which the encryption hardware is interfaced,

rather than by the spxd of the encryption hardware.

305

4. PROPOSED FEATURES OF ENCRYF’TION HARDWARE INTERFACES

We propose the following hardware architectural features for the interface between

any cryptographic hardware and rest of a computer system.

4.1. Interface to Main Memory

Software data copying should be avoided. This can be achieved either by integrat-

ing the cryptographic hardware with the network interface (discussed in the next section)

or by providing a direct memory access @MA) interface to the cryptographic hardware.

If the network interface hardware is fixed, only the latter alternative is possible. Whether

or not DMA is used, the width of the data interface should be a word (32 or 64 bits)

instead of a byte.

A DMA interface would work as follows: the CPU loads the interface with the start

and end addresses of a data area in memory, and instructs it to begin an encryption,

decryption, or cryptographic checksumming operation. During the operation, the inter-

face fetches data during memory cycles “stolen” from the CPU. The CPU is free to do

other work during encryption. The interface interrupts the CPU after completing the

operation.

If the memory bandwidth is high enough to support the demands of both the CPU

and the cryptographic hardware, the CPU and cryptographic hardware can operate at full

speed in parallel. In this case the CPU overhead is essentially eliminated, and throughput

is limited by memory bandwidth, encryption speed, and network bandwidth, rather than

306

by CPU speed. If memory bandwidth is not t ius high, CPU operation is slowed by

encryption DMA, but there will still be improvements in throughput, latency, and CPU

overhead relative to software copying. The DMA technique is inherently limited by

memory speed; if encryption speed is significantly greater, other approaches are required.

4.2. Pipelined Operation

The operation of the cryptographic hardware should be pipelined with that of the

network interface, so that the encryption of a long message is overlapped with its

transmission. In a non-pipelined system, the latencies for encryption and decryption are

added directly to the total latency. In a pipelined system, the latency due to the combina-

tion of encryption and transmission is the maximum of the two latencies, rather than their

sum. The same applies for reception and decryption.

This pipelining can be achieved in several ways. First, if the network interface and

the cryptographic hardware are independent DMA devices, their operations in sending a

particular packet can potentially be done in parallel. This solution is effective if the

memory bandwidth is gxcater than that required by either operation alone, and is maxi-

mally effective when the memory bandwidth is at least the sum.

In this DMA pipelining technique, the devices must be synchronized so that (a) at

the transmitting host the network interface does not transmit data yet to be encrypted, and

(b) at the receiving host the cryptographic hardware decrypts data only after it has been

received by the network interface. This synchronization is automatic if the appropriate .

device (the sender’s encryption device, and the receiver’s network interface) is faster and

307

has higher DMA priority. If the second device in the pipeline is slower than the first,

synchronization can be ensured by giving it a sufficient head start. A third alternative is

to use a special-purpose synchronizing DMA controller that can perform multiple opera-

tions simultaneously, and in addition can delay the first operation in the pipeline to

prevent it from advancing through the data faster than the second.

The second pipelining approach is to combine cryptographic and network functions

in a single hardware device, within which the two operations ate pipelined and synchron-

ized. The unit would require a complex control interface, since different regions within a

network packet may need to be encrypted with different keys or not encrypted at all.

This approach has the significant advantage that no extra memory bandwidth is used for

encryption.

Both of the above designs can be extended to include other UO devices. As was

mentioned previously, the latency of disk I/O is significant in network file access.

Ideally, this latency could be overlapped with, rather than added to, that of network

transmission and encryption. This could be done by either 1) having a single interface

unit control all three devices, or 2) interfacing the disk via a common DMA controller

capable of synchronizing 3 independent operations (disk access, encryption, and network

transmission). In the latter case, memory bandwidth is again a limiting factor on the

effectiveness of the technique.

308

4.3. Cryptographic Checksumming

In situations where authentication rather than secrecy is needed, cryptographic

checksumming (using chained encryption and retaining only the final encrypted block)

may be used rather than complete encryption. This reduces memory traffic by a factor of

two, since data needs to be copied into, but not out of, the encryption hardware. This

reduction yields an improvement in throughput, latency and CPU overhead, particularly

in the cases mentioned above in which memory bandwidth is a limiting factor.

To exploit this efficiency, the encryption hardware and its interface must support the

checksumming operation. This is not the case with the Zilog DES chip, which requires

that all encrypted data be read from the chip.

4.4. Large Key Bank

The cryptographic hardware should have a large number of write-only registers for

key storage. Keys can be loaded by software as secure communication channels are esta-

blished. Encryption operations identify their key by an index into the register bank. The

bank should have as many entries as the largest number of secure channels commonly in

use (perhaps 256 or so).

This scheme has the following advantages: 1) it saves time since there is no need to

load a key before each cryptographic operation; 2) the write-only property and the fact

that keys are not kept in main memory ensure that keys are not compromised if an

intruder gains control of the kernel on the host computer.

309

References

1. D. P. Anderson, D. Ferrari, P. V. Rangan and S . TZOU, The DASH Project: Issues

in the Design of Very Large Distributed Systems, UCBlCompurer Science Dpr.

Technical Report 871338, January 1987 .

2. D. P. Anderson and P. V. Rangan, A Basis for Secure Communication in Large

Distributed Systems, IEEE Symposium on Securiry and Privacy, April 1987.

D. R. Cheriton, The V Kernel: A Software Base for Distributed Systems, ZEEE

Software, April 1984, 19-42.

M. Davio e t al., Efficient Hardware and Software Implementations for the DES,

Proceedings of the CRYPTO 84, 1984, 144-147.

F. Hoomaert et. al., Efficient Hardware Implementation of the DES, Proceedings

of the CRYPTO 84, 1984, 147-174.

M. Kochanski, Developing an RSA Chip, CRYPTO 1985.

3.

4.

5.

6.

