
Efficient and Secure Pseud-Random Number Generation.

(Extended Abstract)

Umesh V. Varirani

University of California

Vijay V. Vazirani.'

Harvard University

Cornell University

'Supported by NSF Grant MCS 82-04506, and by the IBM Doctoral Fellowship.
"Supported by NSF Grant MCS 81-21431.

Abstract: Cryptographically secure pseuderandom number generators known so far
suffer from the handicap of being ineficient; the most efficient ones can generate only
one bit on each modular multiplication (n2 steps). Blum, Blum and Shub ask t he open
problem of outputting even two bits securely. We state a simple condition, t he XOR-
Condition, and show that any generator satisfying this condition can output logn
bits on each multiplication. We also show that the l o p least significant bits of RSA,
Rabin's Scheme, and the z2 mod N generator satisfy this condition. As a corollary, we
prove that all boolean predicates of these bits are secure. Furthermore, we strengthen
the security of the z2 mod N generator, which being a Trapdoor Generator, has several
applications, by proving it as hard as Factoring.

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPT0 '84, LNCS 196, pp. 193-202, 1985.
0 Springer-Verlag Berlin Heidelberg 1985

194

1. Introduction.

Recently, there has been a lot of interest in provably "good" pseudo-random
number generators [lo, 4, 14, 31. These cryptographically secure generators are "good"
in the sense that they pass all probabilistic polynomial time statistical tests. However,
despite these nice properties, the secure generators known so far suffer from the handi-
cap of being inefiicient; t he most efiicient of these take n 2 steps (one modular multipli-
cation, n being the length of the seed) to generate one bit. Pseudc-random number gen-
erators that are currently used in practice output n bits per multiplication (n2 steps).
An important open problem was t o output even two bits on each multiplication in a
cryptographically secure way. This problem was stated by Blum, Blum & Shub [3] in
the context of their z2 mod N generator. They further ask: how many bits can be out-
put per multiplication, maintaining cryptographic security?

In this paper we state a simple condition, the XOR-Condition and show that any
generator satisfying this condition can output logn bits on each multiplication. W e
show that the XOR-Condition is satisfied by the l o p least significant bits of t he z2-mod
N generator. The security of the z2 mod N generator was based on Quadratic Residuos-
ity [3]. This generator is an example of a Trapdoor Generator [13], and its trapdoor
properties have been used in protocol design. We strengthen the security of this genera-
tor by proving it as hard as factoring. We also prove the XOR-Condition for logn
least significant bits of RSA/Rabin Schemes. Our proofs are based on recent develop-
ments in RSA/Rabin Scheme bit security. We present a history of these recent
developments in the next paragraph. More recently, by a difierent proof Alexi, Chor,
Goldreich & Schnorr [I] also proved the simultaneous security of logn least significant
bits of RSA/Rabin Schemes. Previously, Long & Wigderson (71 showed how to extract
logn bits at each stage from the generator of Blum and Micali [4]; however, this gain in
efficiency is not enough to compensate for the extra time taken by this generator (O(n3)
steps for each stage).

The RSA-bit security problem has not only yielded several valuable proof tech-
niques, but its two year history is also revealing in how mathematical progress is made -
with successive partial solutions, simplifications and changes in point of view.

The first result on RSA bit security was proved by Goldwasser, Micali & Tong [S].
They proved that any oracle for RSA least significant bit (an effcent procedure which
computes the least significant bit of the plaintext message when input the ciphertext)
could be efficiently used to decrypt RSA messages, thus showing that RSA least
significant bit is hard to compute unless RSA is easy to decrypt. However, the oracle
was allowed to err on only - fraction of the inputs.

logN
The next breakthrough came with the "binary gcd method" of Ben-Or, Chor 8.2

Shamir [2], which has been fundamental to all future developments. This procedure to
decrypt RSA, probes the oracle at pa i r s of points, to determine the least significant bits
of small messages. Each pair of probes is correct with probability 1/2+ E , provided the
oracle is correct on 3/4+ t fraction of inputs, where c is any positive constant. They also
showed that with more accurate oracles (7/8+ c correct) for other RSA bits they could

decrypt RSA.
At this stage it was not clear if even 3/4 security could be proved for the least

significant bit. This question was resolved by Vazirani & Vazirani (121. They showed
that by guessing the least significant bits of loglogN random small messages (which can
be done in polynomial time by considering all loglogN possibilities), they could random-
ize the oracle probes thereby decrypting with a less-than-3/4 oracle. They also give a
method for extending the proof of security to loglogN least significant bits and the xor's
of all non-empty subsets of these bits. Goldreich [6] analyzed their combinatorial prob-
lem exactly and showed that less-than-3/4 could be interpreted as .725 + L.

In the next major development, Schnorr & Alexi used the strong Chernoff bound
along with guessing least significant bits of IoglogN random messages to obtain a decryp-
tion procedure that used a single oracle probe for computing the least significant bit of
small messages. Thus they proved 1/2+t security for any constant c. However, this
security was still not good enough for using RSA for direct pseudo-random number gen-
eration - 1/2+ l / n ' security was needed.

By guessing IoglogiV most significant bits of only two random numbers, Chor & Gol-
dreich [S] showed how to generate l o g N pairwise independent numbers, whose least
significant bits were known. Thus they could ask the oracle logN painvise independent
questions. Then using the Chebychev inequality, they show that a 1/2+ l /n' oracle will
suffice.

2. Extracting Two Bits from the z2 mod N Generator:

The z2 mod N generator [31 is the following: On input N , zo (where N is the pro-
duct of two distinct primes each congruent to 3 mod 4, and zo is a quadratic residue
mod N), i t outputs b , b , b , ... where 6; = p a r i t y (z i) and zi+* = mod N . Its security
was based on Quadratic Residuosity.

A variant of this generator outputs 6; = locat ion(z;) , where l o c a t i o n (z) = 0 if
z < (N-1) /2 , 1 if z 2 (N - f) / 2 . The cryptographic security of this generator was also
based on Quadratic Residuosity [3]. However, the generator which extracts parity
as well as location at each stage may not be cryptographically secure, because revealing
parily(z;) may make focation(zi) predictable. Blum, Blum and Shub conjecture that this
generator is also cryptographically secure, and ask the open problem: how many bits can
be extracted at each stage, maintaining cryptographic security?

In this section we will prove their conjecture. In section 3 we will answer the open
problem by giving a simple condition, the XOR-Condition. We will prove that logn
bits (n = I N I) can be extracted at each stage from any generator satisfying this con-
dition. We will also prove that the z2 mod N generator as well as the generators based
on RSA and Rabin's scheme satisfy this condition.

196

The following theorem will also give an intuitive idea for the general results of sec-

The 2-Bit z2 mod N generator on input N , zo (N and zo as before), outputs
tion 3, for which we will need to introduce some new definitions.

a o b o a l b l ... where ai = p a n ' t y (z i) , and bi = location(zi), z ;+~ = 2;" mod N .

Theorem 1: The 2-Bit 2 mod N generator is cryptographically secure.

Praof: Suppose the %Bit z2 mod N generator is predictable to the left. There are two
Cases:

Case 1: It is predictable at an odd position, i.e. there is a probabilistic polynomial time
procedure, P, which predicts b-, with probability 1/2 + c, given a o b o a l b l ._. . Now we
can use P to obtain focat ion(z - l) : given any zo, simply generate the sequence a o b o a l b l
... , and use P to obtain b - , = focation(z-,). Contradiction, since location is secure
under the Quadratic Residuosity Assumption [3].

Case 2: It is predictable at an even position, i.e. there is a probabilistic polynomial time
procedure, P, which predicts a-l with probability 1 / 2 + 6 , given b~,aoboa,bl Given
zo, we can generate aobOalb , , but not b-,. Notice that P can be arbitrarilly bad at
predicting a_, if i t is not provided with the correct bit b-, . So instead we will use P to
obtain two procedures, P , and P,, such that either P I has an -advantage in guessing

parity(z-l) or P2 has an -advantage in guessing parity(zdl) zor location(z-l).

€

2
€

2
Let u be the bit output by P on input Oaoboa,b, , and u be the bit output on

l a o b o a l b l . If u = W , P I outputs u , else it outputs the flip of a fair coin. On the other
hand, P 2 outputs the flip of a fair coin if u = w , else it outputs u (in this case,
u = (0 zor u) = (1 zor w)) . Notice the following facts:

1). On each input, zo, exactly one of the two procedures, P1 and P2 uses the output of
P, and the other one flips a coin.

2) . Whenever P gives the correct answer, so does the procedure using its output; the
other procedure, of course, flips a coin.

So the total number of correct answers output by both procedures is the number of
correct answers output by P plus the number of correct answers output by the coin-
flips. The fraction of total correct answers is (1/2 + €) + 1/2 = (1 + 6) . So at least
one of the two procedures must be correct on 1/2 + 6/2 fraction of inputs. In Theorem
3, we will show that parity(z-l) zor locat ion(z- l) is also secure, thus contradicting the
existence of P , and P 2 and therefore P.

z-l is the unique square root of zo (mod N) , which is a quadratic residue.
a-l = parity(z-,) and b- , = lac at ion(^-^).

197

3. The XOR-Condition & Relative Security of Bits.

The difliculty in outputting two bits b,(z) and b 2 (2) at each stage (and the
corresponding core of the above proof) lies in showing that there is no procedure that
has any advantage in outputting bit b 2 (~) , even though it is given b,(z) for free, i.e. in
showing the relative security of b,, given b , . In general, in order t o output k. bits
securely at each stage from a pseuderandom number generator, the main fact to be
proved is that for all i < k, there is no procedure that outputs bit bi+,(z) given bits
b,(z) , * . . ,b;(z). In this section we shall prove that the XOR-Condition suffices to
prove the relative security of these bits.

BIum & Micali (41 give suficient conditions for using a one-way function and a
boolean predicate for cryptographically secure pseudo-random number generation. In the
past the security of boolean predicates (bits) has been proved by assuming the intracta-
bility of the underlying one-way function (e.g. in proving the security of RSA least
significant bits). There are several forms for these intractability assumptions (in terms
of curcuit complexity, or Turing machine complexity, etc.). To make our theorems
cleaner and independent of the nature of the intractability assumption, we shall in fact
define the boolean predicate to be secure if the problem of inverting the underlying one-
way function can be reduced in probabilistic polynomial time to the problem of comput-
ing the boolean predicate with a non-trivial advantage. We will require the reduction to
be done uniformly (i.e. by the same Turing machine, for all N). As a result, any reason-
able intractability assumption for the underlying one-way function will translate into a
similar security for the boolean predicate. Since this reduction process is the onIy
known technique for proving bit security, the proposed simplification does not sacrifice
generality for all practical purposes.
First, we define formally the underlying one-way function:
let N be a set of positive integers, the parameter values, and for each N E N, let n =
IN(and XN C (0,l)" be the domain . We will assume that a random element of X,
can be generated.
EN: XN -> X N is the one-way function with parameter N.
6:
Definition: Oracle O ~ , N has an 1/2 + t advantage in computing the boolean predi-
cate b, if for 1/2 + E fraction of domain elements x E X N , Ob,N outputs b(x) on input

Definition: Boolean predicates b , , . . . , ! k [") are inversion secure if for each t > 0 there
is a Las Vegas Algorithm T that runs in prob. poly. time:

where O ~ , , N is a 1/2 + l / n ' advantage oracle for b; with respect to N.
Definition: Oracle 0, has a l /2 + t advantage for boolean predicate bf relative to
b , , . . . , b [- , if for at least 1/2 + e fraction of x E X N ,

The behavior of 0,v is unspecsed, and may be arbitrarily bad, if any of the 1-1 bits is
incorrectly input.

(N,x) -> { O , l } is a boolean predicate computable in prob. poly. time.

EN(X 1.

robq; ,EV(z)] = x.

O N [Edz) t 6 1(5),-.., bl-l(z)] = bf(z) .

198

Definition: 61 is secure relative to 61, ..., bl-l if for each t > 0, there is a Las V e g ~
algorithm T which runs in polynomial time:

where ON is a 112 + l ln ' advantage oracle for bl relative to 61,...,b1-1.
ToN[EN(2)] = x

Notice that T can Use the oracle effectively only if it can guess correctly each of
b l (2) * * * 6{-,(2). But in our case, these boolean predicates are already inversion
secure. For this reason, proving relative security (i.e. the aistence of T) is considerably
more difficult than proving simple bit security. We now give the XOR-Condition, and
show (in Theorem 2) how it yields a proof of relative bit security from simple bit secu-
rity.

The XOR-Condition: Boolean predicates 6 ,
XOR of each on-empty subset of these predicates is inversion secure.

. . * 6, satisfy the XOR-Condition if the

Theorem: Let k(n) = O(10gn). Let b , , . . . , b!(,,) be boolean predicates which satisfy
the XOR-condition. Then for every i < k(n),

Proof: Suppose that 0, is a 1/2 + l jn ' advantage oracle for bi relative to bl, , bi-1.
Let T be the eflicient procedure in the definition of the XOR-Condition for 61,...,6h(,,).
Then T' is an efficient Las Vegas algorithm which uses the oracle 0, to invert EN (see
explaination at the end of the procedure).

19 secure relative to 61, ..., 6i-1.

T': On input N, i, q x) ;
o 'N <- Construct-Oracle[ON, i-1, l /n t] ;
Run T with oracle O f N to invert EN.

end;

Construct-Oracle: On input ON, j, c;
If j = 0 then return ON.
Else, let u = O,[E(z),6, ,... 16i-1,1]

Oracle O I [E (2) , 6 l,...,6j-l] =
V = O"E(Z)Ib 1,. 4 - 1 , O I ;

u if u=u,
{ the f l i p of a fair co in otherwise

{ the f l i p of a f a i r co in ofherwiae'
Sample the two oracles on 8e210gn random elements of X N , to determine the frac-
tion of correct answers given by each.

Oracle O,[E(2),bl ,..., bj-,] =
u if u#u,

199

If 0, gives atleast 1/2 + ~ / 4 fraction correct answers then
return(ConstrucbOrac1ej O,, j-1, 6/41).
Else return(Construct-Oracle[O,, j-1, 6/41).

end.

T' first calls the recursive procedure Construct-Oracle. By a proof similar to that of
Theorem 1 either there is an oracle having 1/2+1/2n'-advantage for 6; relative to
b 1 . * . 6i-2 or there is an oracle having 1/2 + 1/2n'-advantage for bi-l XOR b; rela-
tive to b , * . . bi-2. Moreover, sampling the two oracles a polynomial (8n2'logn)
number of times, Construct-Oracle can determine with high probability (1- 1/210gn)
which of the two oracles has the advantage. Continuing this procedure i-1 times,
Construct-Oracle will obtain, with probability 2 1/2, a 1/2 + l / n f + '-advantage oracle
for the XOR of some subset of 6 , . - * bj. T' can now use this oracle to invert EN.

4. Proving the XOR-Condition, and Improving the Security of the
z2-mod N Generator.

In this section we state the theorems on the XOR-Condition, and brieffy sketch the
main ideas of their proofs. Detailed proofs will follow in the final paper.

Theorem 3: The parity function of the &mod N generator is as hard as factoring, i.e.
for any t > 0, an oracle which has a 1/2 + nt advantage in guessing parity(z) on input
z2 mod N can be used to factor N. Here x is the unique square root of z2 mod N which
is a quadratic residue.

By modifying the algorithm of [l], we show how to use the parityoracle to extract
square roots mod N efficiently. The main difficulty is that the parity oracle gives the
least significant bit of the square root which is a quadratic residue. Thus on query z2
mod N, if x is a quadratic residue mod N, the oracle will give lsb(x). Else, it gives the
complement. In some sense the oracle gives the lsb(x) encrypted within the hard func-
tion - quadratic residuosity. How can the oracle's answers be interpreted correctly? The
key idea is that a parity oracle with a small advantage can be used to implement a resi-
duosity oracle which is correct with overwhelming probability [3]. This residuosity ora-
cle may be used to "decrypt" the answers of the parity oracle.

This proves that the location function is also as hard as factoring since a
f/2 + l / n ' oracle for location can be converted to a 1/2 + l / n t oracle for parity:

parity(x) = 0 iff location(x/2) = 0.

Theorem 4: The function parity zor location of the &mod N generator is as hard as
factoring.

200

We simply note that in the decryption algorithm [l], we already know the location
of the numbers we query about. So the oracle for parity %or location is in effect giving us
parity, which is sufficient for decryption.

Theorem 6: For each non-empty subset S, of the loglogN least significant bits, of the
z2-mod N generator: obtaining a 1/2 + l / n t advantage in guessing the XOR of these
bits is as hard as factoring.

T h e idea presented in [12) will suffice along with the decryption algorithm [l]. Let
the most significant bit being considered in S be the k" bit, k 5 loglogN. Instead of
running the gcd algorithm on "small messages" in the interval [-LN,cN], we will choose
the small messages in the interval [--CN/~~-' , ~N/2~-'1. Now, for any x in this smaller
interval, lsb(x)= 1 iff XOR2"-'2 =1 because the k-1 least significant bits of 2"-' are all
0's. So, in order t o obtain the lsb of a number in the interval [-+N/2L-', .5N/2'-'], we
simply multiply i t by Zk-', and run the modified algorithm of Theorem 3. In a similar
manner, we can prove the XOR-Condition for RSA and Rabin Scheme also:

S

Theorem 6: For each non-empty subset S, of the loglogN least significant bits, of
RSA/Rabin Schemes: obtaining a 1/2 + l /n ' advantage in guessing the XOR of these
bits is as hard as decrypting RSA/factoring.

5. Going Beyond logn Bits.

Ve How many bits can we hope to extract s e c u r q on each multiplication rst
make two simple observations. Certainly not all n bits. Because then all boolean predi-
cates of z will be secure even though E (z) is given. But, for example for RSA, we know
that Jacobi Symbol(2) = Jucobi Symbol(E(z)), which is efficiently computable.
Secondly, notice that in all the proofs, logn can be replaced by clogn, for any constant
C .

In proving bit security, we limited the reductions (algorithms to decrypt the one-
way funciton, using oracle for the bit) to be probabilistic polynomial time. If the compu-
tational complexity of the underlying one-way function is much more than a polyno-
mial, then there is no reason to put this restriction. For example, if the intractability
asssumption on the underlying one-way function states that its computational complex-
ity is o(n"'g"), then the reduction can be allowed O(n'"P) time. In this case our proofs
can be modified to show that l o c n least significant bits satisfy the XOR-Condition with
1/2 + l/nl"g" security for the bits and their XORs. These lo$n bits can be output by
a pseuderandom number generator, by a simple modification of the proof of Theorem 2.
In general, if the the assumption on the complexity of the underlying one-way function
is o(f(n)), then our proofs extend to showing that log(f(n)) bits can be securely output at
each stage. For example, presently the fastest factoring algorithm runs in time

201

O (2 G) n. So, if we assume f (n) = 2&, we can securely extract 6 bits on each
multiplication.

6. Acknowledgements: We are extremely grateful to Lenore Blum, Manuel Blum,
Michael Rabin and Les Valiant for some very fruitful discussions.

7. References.

1). W. Alexi, B. Chor, 0. Goldreich & C. Schnorr, "RSA/Rabin Bits are
1/2 + l/poly(logN) Secure," this conference.

2). M. Ben-Or, B. Chor and A. Shamir, "On the Cryptographic Security of RSA bits,"
1983 STOC.

3). L. Blum, M. Blum and M. Shub, "A Simple Secure Pseudo-Random Number Genera-
tor," to appear in SIAM Journal of Computing.

4). M. Blum and S. Micali, "How to Generate Cryptographically Strong Sequences of
PseudeRandom Bits," 1982 FOCS.

5) . B. Chor and 0. Goldreich, " ," in preparation.

6). 0. Goldreich, "On the number of Close-and-Equal Pairs of Bits in a String (with
implications on the security of RSA's L.s.b.)", MIT/LCS/TM-256, March 1984.

7). S. Goldwasser, S. Micali and P. Tong, "Why and How to Estabish a Private Code on
a Public Network," 1982 FOCS.

8). D. Long and A. Wigderson, "How Discreet is the Discrete Log?" 1983 STOC.

8). M. 0. Rabin, "Digital Signatures and Public-key Functions as Intractable as Factori-
zation," MIT/LCS/TR-212 Tech. memo, MIT, 1979.

10). C. Schnorr and W. Alexi, "RSA-bits are 0.5 + epsion secure," 1984 EURO-
CRYPT.

11). A. Shamir, "On the Generation of Cryptographically Strong PseudeRandom
Sequences," 1981 ICALP.

202

12). U. Vazirani and V. Vazirani, "RSA bits are .732 + c secure," CRYPTO-83.

13). U. Vazirani and V. Vazirani, "Trapdoor Pseudo-random Number Generators, with
Applications to Protocol Design," 1983 FOCS.

14). A. Yao, "Theory and Applications of Trapdoor Functions," 1982 FOCS.

