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Abstract: Cryptographically secure pseuderandom number generators known so far 
suffer from the handicap of being ineficient; the most efficient ones can generate only 
one bit on each modular multiplication (n2  steps). Blum, Blum and Shub ask t he  open 
problem of outputting even two bits securely. We state a simple condition, t he  XOR- 
Condition, and show that  any generator satisfying this condition can output logn 
bits on each multiplication. We also show that the l o p  least significant bits of RSA, 
Rabin's Scheme, and the  z2 mod N generator satisfy this condition. As a corollary, we 
prove that all boolean predicates of these bits are secure. Furthermore, we strengthen 
the security of the z2 mod N generator, which being a Trapdoor Generator, has several 
applications, by proving it as hard as Factoring. 
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1. Introduction. 

Recently, there has been a lot of interest in provably "good" pseudo-random 
number generators [lo, 4, 14, 31. These cryptographically secure generators are "good" 
in the sense that they pass all probabilistic polynomial time statistical tests. However, 
despite these nice properties, the secure generators known so far suffer from the handi- 
cap of being inefiicient; t he  most efiicient of these take n 2  steps (one modular multipli- 
cation, n being the length of the seed) to  generate one bit. Pseudc-random number gen- 
erators that are currently used in practice output n bits per multiplication (n2 steps). 
An important open problem was t o  output even two bits on each multiplication in a 
cryptographically secure way. This problem was stated by Blum, Blum & Shub [3] in 
the context of their z2 mod N generator. They further ask: how many bits can be out- 
put per multiplication, maintaining cryptographic security? 

In this paper we state a simple condition, the XOR-Condition and show that  any 
generator satisfying this condition can output logn bits on each multiplication. W e  
show that the XOR-Condition is satisfied by the l o p  least significant bits of t he  z2-mod 
N generator. The security of the z2 mod N generator was based on Quadratic Residuos- 
ity [3]. This generator is an example of a Trapdoor Generator [13], and its trapdoor 
properties have been used in protocol design. We strengthen the security of this genera- 
tor by proving it as hard as factoring. We also prove the XOR-Condition for logn 
least significant bits of RSA/Rabin Schemes. Our proofs are based on recent develop- 
ments in RSA/Rabin Scheme bit security. We present a history of these recent 
developments in the next paragraph. More recently, by a difierent proof Alexi, Chor, 
Goldreich & Schnorr [I] also proved the simultaneous security of logn least significant 
bits of RSA/Rabin Schemes. Previously, Long & Wigderson (71 showed how to extract 
logn bits at  each stage from the generator of Blum and Micali [4]; however, this gain in 
efficiency is not enough to compensate for the extra time taken by this generator (O(n3) 
steps for each stage). 

The RSA-bit security problem has not only yielded several valuable proof tech- 
niques, but its two year history is also revealing in how mathematical progress is made - 
with successive partial solutions, simplifications and changes in point of view. 

The first result on RSA bit security was proved by Goldwasser, Micali & Tong [S]. 
They proved that any oracle for RSA least significant bit (an effcent procedure which 
computes the least significant bit of the plaintext message when input the ciphertext) 
could be efficiently used to  decrypt RSA messages, thus showing that RSA least 
significant bit is hard to compute unless RSA is easy to decrypt. However, the oracle 
was allowed to  err on only - fraction of the inputs. 

logN 
The next breakthrough came with the "binary gcd method" of Ben-Or, Chor 8.2 

Shamir [2], which has been fundamental to  all future developments. This procedure to 
decrypt RSA, probes the oracle at pa i r s  of points, to  determine the least significant bits 
of small messages. Each pair of probes is correct with probability 1/2+ E ,  provided the 
oracle is correct on 3/4+ t fraction of inputs, where c is any positive constant. They also 
showed that with more accurate oracles (7/8+ c correct) for other RSA bits they could 



decrypt RSA. 
At this stage it was not clear if even 3/4 security could be proved for the  least 

significant bit. This question was resolved by Vazirani & Vazirani (121. They showed 
that by guessing the least significant bits of loglogN random small messages (which can 
be done in polynomial time by considering all loglogN possibilities), they could random- 
ize the oracle probes thereby decrypting with a less-than-3/4 oracle. They also give a 
method for extending the proof of security to  loglogN least significant bits and the xor's 
of all non-empty subsets of these bits. Goldreich [6] analyzed their combinatorial prob- 
lem exactly and showed that  less-than-3/4 could be interpreted as .725 + L. 

In the next major development, Schnorr & Alexi used the strong Chernoff bound 
along with guessing least significant bits of IoglogN random messages to obtain a decryp- 
tion procedure that  used a single oracle probe for computing the least significant bit of 
small messages. Thus they proved 1/2+t security for any constant c. However, this 
security was still not good enough for using RSA for direct pseudo-random number gen- 
eration - 1/2+ l / n '  security was needed. 

By guessing IoglogiV most significant bits of only two random numbers, Chor & Gol- 
dreich [S] showed how to generate l o g N  pairwise independent numbers, whose least 
significant bits were known. Thus they could ask the oracle logN painvise independent 
questions. Then using the Chebychev inequality, they show that a 1/2+ l /n'  oracle will 
suffice. 

2. Extracting Two Bits from the z2 mod N Generator: 

The z2 mod N generator [31 is the following: On input N ,  zo (where N is the pro- 
duct of two distinct primes each congruent to 3 mod 4, and zo is a quadratic residue 
mod N), i t  outputs b , b , b ,  ... where 6; = p a r i t y ( z i )  and zi+* = mod N .  Its security 
was based on Quadratic Residuosity. 

A variant of this generator outputs 6; = locat ion(z; ) ,  where l o c a t i o n ( z )  = 0 if 
z < (N-1) /2 ,  1 if z 2 ( N - f ) / 2 .  The cryptographic security of this generator was also 
based on Quadratic Residuosity [3]. However, the generator which extracts parity 
as well as location at each stage may not be cryptographically secure, because revealing 
parily(z;) may make focation(zi) predictable. Blum, Blum and Shub conjecture that  this 
generator is also cryptographically secure, and ask the open problem: how many bits can 
be extracted at each stage, maintaining cryptographic security? 

In this section we will prove their conjecture. In section 3 we will answer the open 
problem by giving a simple condition, the XOR-Condition. We will prove that  logn 
bits ( n  = I N I )  can be extracted at each stage from any generator satisfying this con- 
dition. We will also prove that  the z2 mod N generator as well as the generators based 
on RSA and Rabin's scheme satisfy this condition. 
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The following theorem will also give an intuitive idea for the general results of sec- 

The 2-Bit z2 mod N generator on input N ,  zo ( N  and zo as before), outputs 
tion 3, for which we will need to introduce some new definitions. 

a o b o a l b l  ... where ai = p a n ' t y ( z i ) ,  and bi = location(zi), z ;+~  = 2;" mod N .  

Theorem 1: The 2-Bit 2 mod N generator is cryptographically secure. 

Praof: Suppose the %Bit z2 mod N generator is predictable to the left. There are two 
Cases: 

Case 1: It is predictable at an odd position, i.e. there is a probabilistic polynomial time 
procedure, P, which predicts b-,  with probability 1/2  + c, given a o b o a l b l  ._. . Now we 
can use P to obtain focat ion(z - l ) :  given any zo, simply generate the sequence a o b o a l b l  
... , and use P to obtain b - ,  = focation(z-,).  Contradiction, since location is secure 
under the Quadratic Residuosity Assumption [3]. 

Case 2: It is predictable at an even position, i.e. there is a probabilistic polynomial time 
procedure, P, which predicts a-l with probability 1 / 2  + 6 ,  given b~,aoboa,bl ... . Given 
zo, we can generate aobOalb ,  , but not b-,. Notice that P can be arbitrarilly bad at 
predicting a_, if i t  is not provided with the correct bit b-, .  So instead we will use P to  
obtain two procedures, P ,  and P,, such that either P I  has an -advantage in guessing 

parity(z-l) or P2 has an -advantage in guessing parity(zdl)  zor location(z-l). 

€ 

2 
€ 

2 
Let u be the bit output by P on input Oaoboa,b,  , and u be the bit output on 

l a o b o a l b l  . If u = W ,  P I  outputs u ,  else it outputs the flip of a fair coin. On the other 
hand, P 2  outputs the flip of a fair coin if u = w ,  else it outputs u (in this case, 
u = (0  zor u) = (1 zor w ) ) .  Notice the following facts: 

1). On each input, zo, exactly one of the two procedures, P1 and P2 uses the output of 
P, and the other one flips a coin. 

2 ) .  Whenever P gives the correct answer, so does the procedure using its output; the 
other procedure, of course, flips a coin. 

So the total number of correct answers output by both procedures is the number of 
correct answers output by P plus the number of correct answers output by the coin- 
flips. The fraction of total correct answers is (1/2 + €) + 1/2 = (1 + 6 ) .  So at least 
one of the two procedures must be correct on 1/2 + 6/2 fraction of inputs. In Theorem 
3, we will show that  parity(z-l) zor locat ion(z- l )  is also secure, thus contradicting the 
existence of P ,  and P 2  and therefore P. 

z-l is the unique square root of zo (mod N ) ,  which is a quadratic residue. 
a-l  = parity(z-,) and b- ,  = lac at ion(^-^). 
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3. The XOR-Condition & Relative Security of Bits. 

The difliculty in outputting two bits b,(z) and b 2 ( 2 )  at each stage (and the 
corresponding core of the above proof) lies in showing that there is no procedure that  
has any advantage in outputting bit b 2 ( ~ ) ,  even though it is given b,(z) for free, i.e. in 
showing the relative security of b,, given b , .  In general, in order t o  output k. bits 
securely at  each stage from a pseuderandom number generator, the main fact to be 
proved is that for all i < k, there is no procedure that outputs bit bi+,(z) given bits 
b,(z) ,  * . . ,b;(z). In this section we shall prove that the XOR-Condition suffices to  
prove the relative security of these bits. 

BIum & Micali (41 give suficient conditions for using a one-way function and a 
boolean predicate for cryptographically secure pseudo-random number generation. In the 
past the security of boolean predicates (bits) has been proved by assuming the intracta- 
bility of the underlying one-way function (e.g. in proving the security of RSA least 
significant bits). There are several forms for these intractability assumptions (in terms 
of curcuit complexity, or Turing machine complexity, etc.). To make our theorems 
cleaner and independent of the nature of the intractability assumption, we shall in fact 
define the boolean predicate to be secure if the problem of inverting the underlying one- 
way function can be reduced in probabilistic polynomial time to the problem of comput- 
ing the boolean predicate with a non-trivial advantage. We will require the reduction to 
be done uniformly (i.e. by the same Turing machine, for all N). As a result, any reason- 
able intractability assumption for the underlying one-way function will translate into a 
similar security for the boolean predicate. Since this reduction process is the onIy 
known technique for proving bit security, the proposed simplification does not sacrifice 
generality for all practical purposes. 
First, we define formally the underlying one-way function: 
let N be a set of positive integers, the parameter values, and for each N E N, let n = 
IN( and XN C (0,l)" be the domain .  We will assume that a random element of X, 
can be generated. 
EN: XN -> X N  is the one-way function with parameter N. 
6: 
Definition: Oracle O ~ , N  has an 1/2 + t advantage in computing the boolean predi- 
cate b, if for 1/2 + E fraction of domain elements x E X N ,  Ob,N outputs b(x) on input 

Definition: Boolean predicates b , , . . . , ! k [ " )  are inversion secure if for each t > 0 there 
is a Las Vegas Algorithm T that runs in prob. poly. time: 

where O ~ , , N  is a 1/2 + l / n '  advantage oracle for b; with respect to  N. 
Definition: Oracle 0, has a l /2  + t advantage for boolean predicate bf relative to 
b , , . . . , b [ - ,  if for at least 1/2 + e fraction of x E X N ,  

The behavior of 0,v is unspecsed, and may be arbitrarily bad, if any of the 1-1 bits is 
incorrectly input. 

(N,x) -> { O , l }  is a boolean predicate computable in prob. poly. time. 

EN(X 1. 

robq; ,EV(z)]  = x. 

O N  [Edz) t 6 1(5 ),-.., bl-l(z)] = bf(z) .  
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Definition: 61 is secure relative to 61, ..., bl-l if for each t > 0, there is a Las V e g ~  
algorithm T which runs in polynomial time: 

where ON is a 112 + l ln '  advantage oracle for bl relative to 61,...,b1-1. 
ToN[EN(2)] = x 

Notice that T can Use the oracle effectively only if it can guess correctly each of 
b l ( 2 )  * * * 6{-,(2). But in our case, these boolean predicates are already inversion 
secure. For this reason, proving relative security (i.e. the aistence of T) is considerably 
more difficult than proving simple bit security. We now give the XOR-Condition, and 
show (in Theorem 2) how it yields a proof of relative bit security from simple bit secu- 
rity. 

The XOR-Condition: Boolean predicates 6 ,  
XOR of each on-empty subset of these predicates is inversion secure. 

. . * 6, satisfy the XOR-Condition if the 

Theorem: Let k(n) = O(10gn). Let b , ,  . . . , b!(,,) be boolean predicates which satisfy 
the XOR-condition. Then for every i < k(n), 

Proof: Suppose that 0, is a 1/2 + l jn '  advantage oracle for bi relative to bl,  ...., bi-1. 
Let T be the eflicient procedure in the definition of the XOR-Condition for 61,...,6h(,,). 
Then T' is an efficient Las Vegas algorithm which uses the oracle 0, to invert EN (see 
explaination at the end of the procedure). 

19 secure relative to 61, ..., 6i-1. 

T': On input N, i, q x ) ;  
o 'N <- Construct-Oracle[ON, i-1, l /n t ] ;  
Run T with oracle O f N  to invert EN. 

end; 

Construct-Oracle: On input ON,  j, c; 
If j = 0 then return ON. 
Else, let u = O,[E(z),6, ,... 16i-1,1] 

Oracle O I [ E ( 2 ) , 6  l,...,6j-l] = 
V =  O"E(Z)Ib 1,. 4 - 1 , O I ;  

u if u=u,  
{ the f l i p  of a fair co in  otherwise 

{ the f l i p  of a f a i r  co in  ofherwiae' 
Sample the two oracles on 8e210gn random elements of X N ,  to determine the frac- 
tion of correct answers given by each. 

Oracle O,[E(2),bl ,..., bj-,]  = 
u if u#u,  
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If 0, gives atleast 1/2 + ~ / 4  fraction correct answers then 
return(ConstrucbOrac1ej O,, j-1, 6/41). 
Else return( Construct-Oracle[ O,, j-1, 6/41). 

end. 

T' first calls the recursive procedure Construct-Oracle. By a proof similar to that  of 
Theorem 1 either there is an oracle having 1/2+1/2n'-advantage for 6; relative to  
b 1  . * . 6i-2 or there is an oracle having 1/2 + 1/2n'-advantage for bi-l XOR b; rela- 
tive to  b ,  * . . bi-2. Moreover, sampling the two oracles a polynomial (8n2'logn) 
number of times, Construct-Oracle can determine with high probability (1- 1/210gn) 
which of the two oracles has the advantage. Continuing this procedure i-1 times, 
Construct-Oracle will obtain, with probability 2 1/2, a 1/2 + l / n f +  '-advantage oracle 
for the XOR of some subset of 6 ,  . - * bj. T' can now use this oracle to invert EN. 

4. Proving the XOR-Condition, and Improving the Security of the 
z2-mod N Generator. 

In this section we state the theorems on the XOR-Condition, and brieffy sketch the 
main ideas of their proofs. Detailed proofs will follow in the final paper. 

Theorem 3: The parity function of the &mod N generator is as hard as factoring, i.e. 
for any t > 0, an oracle which has a 1/2 + nt advantage in guessing parity(z) on input 
z2 mod N can be used to  factor N. Here x is the unique square root of z2 mod N which 
is a quadratic residue. 

By modifying the algorithm of [l], we show how to use the parityoracle to extract 
square roots mod N efficiently. The main difficulty is that the parity oracle gives the 
least significant bit of the square root which is a quadratic residue. Thus on query z2 
mod N, if x is a quadratic residue mod N, the oracle will give lsb(x). Else, it gives the 
complement. In some sense the oracle gives the lsb(x) encrypted within the hard func- 
tion - quadratic residuosity. How can the oracle's answers be interpreted correctly? The 
key idea is that  a parity oracle with a small advantage can be used to implement a resi- 
duosity oracle which is correct with overwhelming probability [3]. This residuosity ora- 
cle may be used to  "decrypt" the answers of the parity oracle. 

This proves that  the location function is also as hard as factoring since a 
f/2 + l / n '  oracle for location can be converted to  a 1/2 + l / n t  oracle for parity: 

parity(x) = 0 iff location(x/2) = 0. 

Theorem 4: The function parity zor location of the &mod N generator is as hard as 
factoring. 
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We simply note that in the decryption algorithm [l], we already know the location 
of the numbers we query about. So the oracle for parity %or location is in effect giving us 
parity, which is sufficient for decryption. 

Theorem 6: For each non-empty subset S, of the loglogN least significant bits, of the 
z2-mod N generator: obtaining a 1/2 + l / n t  advantage in guessing the XOR of these 
bits is as hard as factoring. 

T h e  idea presented in [12) will suffice along with the decryption algorithm [l]. Let 
the most significant bit being considered in S be the k" bit, k 5 loglogN. Instead of 
running the gcd algorithm on "small messages" in the interval [-LN,cN], we will choose 
the small messages in the interval [--CN/~~-' ,  ~N/2~-'1.  Now, for any x in this smaller 
interval, lsb(x)= 1 iff XOR2"-'2 =1 because the k-1 least significant bits of 2"-' are all 
0's. So, in order t o  obtain the lsb of a number in the interval [-+N/2L-', .5N/2'-'], we 
simply multiply i t  by Zk-', and run the modified algorithm of Theorem 3. In a similar 
manner, we can prove the XOR-Condition for RSA and Rabin Scheme also: 

S 

Theorem 6: For each non-empty subset S, of the loglogN least significant bits, of 
RSA/Rabin Schemes: obtaining a 1/2 + l /n '  advantage in guessing the XOR of these 
bits is as hard as decrypting RSA/factoring. 

5. Going Beyond logn Bits. 

Ve How many bits can we hope to  extract s e c u r q  on each multiplication rst 
make two simple observations. Certainly not all n bits. Because then all boolean predi- 
cates of z will be secure even though E ( z )  is given. But, for example for RSA, we know 
that Jacobi Symbol( 2) = Jucobi Symbol(E( z)), which is efficiently computable. 
Secondly, notice that  in all the proofs, logn can be replaced by clogn, for any constant 
C .  

In proving bit security, we limited the reductions (algorithms to decrypt the one- 
way funciton, using oracle for the bit) to be probabilistic polynomial time. If the compu- 
tational complexity of the underlying one-way function is much more than a polyno- 
mial, then there is no reason to put this restriction. For example, if the intractability 
asssumption on the underlying one-way function states that its computational complex- 
ity is o(n"'g"), then the reduction can be allowed O(n'"P) time. In this case our proofs 
can be modified to show that  l o c n  least significant bits satisfy the XOR-Condition with 
1/2 + l/nl"g" security for the bits and their XORs. These lo$n bits can be output by 
a pseuderandom number generator, by a simple modification of the proof of Theorem 2. 
In general, if the the assumption on the complexity of the underlying one-way function 
is o(f(n)), then our proofs extend to showing that log(f(n)) bits can be securely output at 
each stage. For example, presently the fastest factoring algorithm runs in time 
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O ( 2 G )  n. So, if we assume f ( n )  = 2&, we can securely extract 6 bits on each 
multiplication. 
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