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Abstract -- We prove t h a t  RSA least significant bit is 4 + &fl secure, for any constant c (where 
N is t h i  RSA modulus). This means tha t  an adversary, given the ciphertext, cannot guess the  
least significant bit of t h e  plaintext with probability better than 3 + &, unless he can break 
RSA. 

Our proof technique is strong enough to give, with slight modifications, the following related 
results: 
(1) The log logN least significant bits are simultaneously + secure. 
(2) The above also holds for Rabin's encryption function. 

generation, provided t h a t  factoring/inverting RSA is hard. 
Our results imply that Rabin/RSA encryption can be directly used for pseudo random bits 

1. INTRODUCTION 
Given a secure public key cryptosystem 171, it is hard to recover the plaintext z from its 

encryption, E(z) .  However, this does not necessarily mean that a cryptanalyst cannot gain some 
partial informstion about  z without actually computing it. The ability to derive partial informa- 
tion can render a cryptosystcm useless in specific applications (e.g. mental poker [18],[13],[11]). 
For example, even a moderate ability of guessing the least significant bit of the plaintext may be 
a threat to sccurity. 

In the current s ta te  of knowledge we are unable to prove even the existence of secure public 
key cryptosystems. However, under reasonable assumptions on the computational complexity 
of certain problems, secure public key cryptosystems do exist and can be explicitly constructed. 
One of the most fascinating questions regarding those systems is "what partial information about 
the plaintezt is hard t o  eztract f rom the ciphertezt?" 

This question was rigorously dcfined and studied, with respect to probabilistic encryption, by 
Goldwasser and Micali [ll]. They constructed a public key cryptosystem which leaks no partial 
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information. However, their system encrypts messages by expanding each plaintext bit into a 
ciphertext block, making i t  undesirable from a practical point of view. 

The RSA [16] is the  most widely known public key cryptosystcm, and probably t h e  first one 
which will be used in practice. I t  has been an open problem to demonstrate a predicate, P(-), 
such tha t  having any advantage in guessing P ( z )  given the encryption of z, is as hard as inverting 
RSA. 

In this paper, we show t h a t  RSA least significant bit is 4 + E secure for any polynomial 
fraction E ( 6 - l  = O(logCN)),  where N is the RSA modulus. With a small modification, our 
proof technique also allows us to show that  IoglogN of RSA bits are simultaneously 4 + & 
secure. Le., if RSA is indeed secure, then no heuristic which runs in polynomial t ime can get 
information about any function of these plaintext bits, given the ciphertext. Hence these bits 
provide instances of secure partial information for RSA. 

Our results have important implications for generating sequences of cryptographically strong 
pseudo-random bits. RSA encryption E can be directly used for generating such sequences by 
starting from a random seed s and iterating E on it. 

Slightly modifying our  proof techniques, we also prove the same strong bit security for Rabin 
public key scheme [IS]. This implies a fast and “direct” pseudo-random bits generator which 
is as hard to crack (distinguish its outputs from truly random strings) as factoring. Important 
consequences follow also w.r.t the  probabilistic encryption scheme of Goldwasaer & Micali [ll] 
(see section 8.2). 

Organization of the paper : In section 2 we formally define the question of security for 
RSA least significant bit and cover previously known results. In section 3 we sketch t h e  proof of 
Ben-Or, Chor & Shamir result, and in section 4 - its improvement by Schnorr & Alexi. These two 
investigations are  the  basis for ou r  work, which is described in section 5. Section 6 extends our 
proof to other RSA bits and section 7 - to bits in Rabin’s scheme. Section 8 contains concluding 
remarks on the applications of our results for the direct construction of pseudo-random bit 
generators and probabilistic encryption schemes. 

2. PROBLEM DEFINITION AND PREVIOUS RESULTS 
The RSA encryption function is operating i n  the message space ZN, where N = p q  is the  

product of two large primes (which are kept secret). The encryption of z is E N ( z )  = ze (mod N ) ,  
where e is relatively prime to p(N) = ( p  - l ) ( q  - 1) . For 0 <_ z < N ,  L(z) denotes the  leaat 
significant bit in the  binary representation of 2. 

Let ON be an oracle which, given  EN(^), outputs a guess for y z )  (this guess might depend 
on a random coin used by ON). Let p ( N )  be a function from integers into the interval [B,l]. 
We say tha t  ON is a p(N)-oracle if the probability that the oracle is correct, given E N ( z )  its 
input, is p(N)  (the probability space is that  of all z E 2, with uniform distribution and -if ON 
uses a random coin- also of all 0 - 1 sequences of coin tosses with uniform distribution ). 

We say that  RSA least significant bit is p(N)-secure if there is a probabilistic polynomid 
time algorithm which inverts E N ,  using queries of any  p(N)-oracle ON. Since an unbiased coin 
can be used as an $-oracle, the best possible security result can be 4 + c security for any 6-l  = 
poly(logN) (h  security means RSA is breakable). These notions originate from Blum & Micali’s 
work (51, where they have been stated w.r.t the discrete exponentiation function. 
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Coldwasser, Micali and Tong [12] showed that the least significant bit is as hard to compute 
as inverting the RSA. Furthermore, they showed that  it is (1 - *)-secure. 

Ben-Or, Chor and Shamir [ I ]  showed a + c security (6-l  = pofy( logN)) .  They presented 
an algorithm which inverts t h e  RSA by carrying out a gcd calculation on two multiples of the 
ciphertext and using any ( $  + c)-oracle. Sampling the oracle they amplified its $ + c advantage 
to ’almost certainty”, for a polynomial fraction of the massage space. 

Vazirani and Vazirani [19] improved the result using a novel oraclesampling technique. They 
proved that  their modification is guaranteed to succeed when given access to any 0.732-oracle. 

Goldreich [9] used a better combinatorial analysis to show that  the Vazirani & Vazirani 
modification inverts even when given access to  a 0.725-oracle. He also pointed out some Iirnitations 
of the Vazirani & Vazirani and simiIar proof techniques. 

Schnorr and Alexi [17] introduced a conceptual change in the way the oracle is used. This 
enabled them to greatly improve the  result showing that  the least significant bit is (4  + €)-secure 
for any constant c > 0. Their result still leaves a gap towards the optimal + poly(~og N )  security. 

3. A SKETCH OF BEN-OR CHOR AND S H A M I R  ALGORITHMIC PROCEDURE 
The essence of the Inverting Algorithm: 
Given an encrypted message, E N ( z ) ,  the plaintext z is reconstructed by performing a gcd 

algorithm on two small multiples of it (small means in the interval [F, y ]  (mod N )  ). A 
special binary variant is used for the  gcd algorithm. To operate, this variant needs to know the 
parity of the absolute value of O(log2N) small multiples of the plaintext. Thus, i t  is provided 
with a subroufine t h a t  determines the  parity of these multiples. 

Determining Parity using an Oracle which may err: 
The d r o u t i n e  determines the parity of a small multiple d = kz, of the plaintext ,z, by using 

an p(N)-oracle for RSA’s 1.s.b as follows. It picks a random r and asks the oracle for t h e  lea& 
significant bit of both r z  and r z  + d, by feeding it in turn with EN(r2) = EN(r)EN(z) and 
EN((r  + k)z) = EN(r  + k ) E ~ ( z ) .  The oracle’s answers are processed according to the  rollowing 
observation. Since d = kz is “small”, with very high probability no wrap around 0 occurs when 
d is added to  r z .  Then,  the parity of Id[ is equal to 0 if the least significant bits of r z  and r z+  d 
are identical; and equal to 1 otherwise. This is repeated many times; every repetition (instance) 
is called a d-measurement. Note t h a t  the outcome of a d-measurement is correct if the  oracle 
was correct on both r z  and r z  + d (the outcome is also correct if the oracle was wrong on both 
queries, but  this fact is not used in [I]). 

(Trivial) Measurement Analysir: 
A d-measurement is correct with probability at least 1 - 2(1 - p )  = 2p - 1. 
(This suffices if p = f + c.) 

4. A SKETCH OF SCHNORR AND ALEXI IMPROVEMENT: + E FOR ANY 
CONSTANT 6 

Schnorr & Alexi [17] improvement is based on trying all possibilities for the least significant 
bit of L = B(1oglog N )  random, independent positions wi = r,z and using these positions as 
“end points” in all measuremcnts for the O(Iog2N) d’s of the binary gcd algorithm. This way 
the oracle is queried only about  one end-point of each measurement and the error is causcd by 
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single position queries rather than by pairs of positions. This enables the error probability per a 
single measurement to be approximately the oracle’s error, rather than twice this magnitude a8 
in Ben-Or, Chor & Shamir. Using the fact that the L positions are indepcndcnt, Chernoff bound 
implies that  the error probability in deciding the parity of d by the majority of d-measurements is 
2-n(Le’) < & (here e is a constant). This guarantees that the accumulated error probability 
in deciding the parity of all O(Iog2 N) d’s in the modified binary gcd algorithm is < a, small 
enough to put the algorithm in random polynomial time. 

Note that  the running time of Schnorr & Alexi’s algorithm is exponential in L. On the  other 
hand, the probabilistic analysis requires that  L = Cl(w). Thus, c can not be replaced by 
any function which tends to 0 with N -+ co. 

5. OUR MAIN RESULT 
In this section we prove tha t  RSA least significant bit is $ + poly(,ogN) * secure. 

Let ON be. an oracle for RSA least significant bit whose error probability is 3 - e, where 
6- l  5 logc N. 

Instead of picking B(log log N) random independent positions, we generate L = B(10g2c+3 N )  
random positions which are only pairwise independent, such that  we know (with very high 
probability) the least significant bit of each. As in Schnorr and Alcxi’s work, we query the  oracle 
only about one end-point of each measurement and use the same “decision by majority” idea. 
Since the positions are  not independent, Chernoff bound cannot be used in our case. However, 
since the points are  pairwise independent, Chebyshev’s inequality still holds. It gives a n  o(&) 
upper bound on the  error probability. With L being so large, this error is sufficiently small. 

Generating L “random” positiona knowing their least significant bits 
We generate L positions by picking two random independent variables y, x E ZN and trying 

all possibilities for their least significant bits and location in one of the intervals [if&, (i + l)$), 
0 5 i < L3 . There are (2L3)2 possibilities altogether, and exactly one of them is correct. kt 
us now assume t h a t  we are  dealing with the correct choice, i.e. both least significant bit and 
approximate magnitude of y, z are known. The positions we’ll look at are w; = y+iz (mod N) for 
i = 1 , 2 , .  , ., L. Notice t h a t  w; is a random element in 2~ with uniform probability distribution. 
Since the location of both y and z are known up to 5, the location of w; = y + ir is known 
up to 5 + $ < 5. The probability of w, to be within an interval of length % containing 0 
(mod N) is exactly 6. If w; is not in such interval, then i t s  least significant bit is determined 
by i and the least significant bits of z and y. Therefore we get 

2 
L2 Pr( least significant bit of w i  is unknown) 5 - . 

Determining parity using the generated positions and the oracle 

Let d E ZN be any fixed “small” number (one of those generated by the gcd procedure). In 
order to determine the parity of Id/, we’ll query the oracle about all points of the form w; + d, 
XOR the answers with the (known) least significant bits of the corresponding w i ,  and take the 
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majority.'Using Chebyshev's inequality, we'll get a bound for the probability that  the majority 
of the oracle's answers will be biased to  the wrong direction. 

Error analysis : 
Suppose d E 2, is any %mall" number (in the interval [+, 71). For a random r E ZN, 

the probability tha t  a wrap around 0 (mod N )  occurs when d isadded to r is no greater t h a n  3. 
Hence if [dl is even, the  probability that  ON, on input EN(t  + d),  gives the same answer as the  
(true) least significant bit of r is at least 4 + E - 5 = + i . Similarly, if /dl is odd, then with 
probability at least + 5 ,  ON answer t o  the least significant bit of r + d is different than  the 
least significant bit of r. By the above discussion, we get 

1 6  
2 2  

Pt(w; + d did not wrap around and ON is correct on it) 2 - + - , for every i . 

Define 

0 if wi + d did not wrap around and ON is correct on it and w; 1.s.b. is known 
otherwise 

si = 

Hence 
Pi-((; = 0 )  2 Pr(w; + d did not wrap around and ON is correct on it) 

- Pr(wu; least significant bit is unknown) 
1 € 2  2-+--- 
2 2 L2 
1 r  > - + - (for L > 
2 4  

We can apply Chebyshev's inequality (see Feller [8, p. 2191) and get, 

Since y and r are independent random variables and y + ir, y + jz are linearly independent for 
i # j, then w; and wj are also independent random variables for any i # j. Therefore, for any 

'Notice that this decision procedure is exactly the one employed in Ben-Or, Char & Shamir. The crucid &thence 
is that they had to use the oracle's b w e r  to find wi'n least signi6caot bit, while we know it beforehand (with 
overwhelming probability). 
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i # j ,  c; and c, are also independent random variables with identicahdistribution. (Whenever the 
same function is applied to two indcpcndcnt random variables, thew results are  independent 
random variables). Let = c;-Ezp(<;). By pairwise indepcndener?&p(c-g) = Ezp(C)-Ezp(G). 
Hence. 

Thus the probability t h a t  C:', c; 2 i is smaller than h. But P r ( i  c:-, <; 2 4) is exactly 

the error probability for a single d. We query at most Iog'N d's in the course of the  gcd 
computation and thus the  error probability (for one binary gcd) is bounded by 

log2 N . Pr( error for a single d ) .  

Taking L = 10g2c+3 N ,  the  overall error probability is bounded from above by 

Hence we can recover the  original message in random polynomial time, as desired. This  implies 
Theorem 1: RSA least significant bit is (a  +. &)-secure, for any constant e. 

6. OTHER RSA BITS 

bits. In particular the following holds: 
Theorem 2: 

a) Let I 
(i.e. 1 if z E I and 0 otherwise). This bit is (4 -t &)-secure. 

b) Let k = O(log1ogN). The  k-th bit in the binary expansion of the plaintext is is 4 + 
secure. 
c) Let k = O(log log N ) .  The plaintext's k least significant bits are simultaneously secure. 
I.e., even if all least significant bits z k - 1 , .  . ., zz, z1 are given together with EN(z) ,  still zk is 
(3 + &)-secure.' 

d) All bits in the binary expansion of z (except maybe the log log N most significant ones) are 
( 3  + +))-secure. N A t  least half of them are ($ + &)-secure. 

Proof sketch : 
(u) and (d) follow from Theorem 1, by reductions due to Bcn-Or, Chor and Shamir (11. 

Our proof tcchnique easily extends to  provide strong security results for several other RSA 

[0, N ]  be an interval of length N / 2 .  The I bit of z is the characteristic function of I 

'Equivalently, given E N ( z )  distinguishing between zk.. . t ~ t 1  and a randomly selected string of length 1: is aa hard 
as inverLing the RSA. This equivalence is due to Yao [21]. 
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6)  First note that using our proof technique, it is possible to guess all k least significant bits of 
a n d  t. This determines all k least significant bits of each w,. 

Apply the gcd procedure to two small multiples of the plaintext, thc greatest common divisor 
of which is 2k. This way all d’s in the gcd calculation will have zeros in all k - 1 least significant 
bits. Replace all reference to the least significant bit, in the inverting algorithm (presented in 
section 5), by references to the  k-th bit. Note that this time we have access to an oracle to the  
k-th bit. 
(This method of transforming certain inverting algorithms which use an oracle for the 1-st bit into 
inverting algorithms which use a n  oracle for the k-th bit originates from Vazirani and Vazirani 

c) Going through the proof of Tbeorem 2(b), notice that  when querying the oracle about  the  
k-bit of w; + d we can give i t  the k - 1 previous bits of w; + d. (The latter are equal to t h e  k - 1 
least significant bits of w i ,  which we know!) 
(Vazirani and Vazirani [20] had previously shown that, certain inverting algorithms which use a 
p(X) oracle for RSA least significant bit, can be transformed into inverting algorithms which use 
a p ( N )  oracle for predicting Z k  (given Z k - l , . .  ., zl). I t  turns out that  the inverting algorithm 
of section 5 falls into t h e  above category; this yields an alternative (but much harder) way of 
proving Theorem 2(c).) 

~91. )  

7. 
TION 

BITS E Q W A L E N T  TO FACTORING IN -IN’S ENCRYPTION FUNC- 

7.1 Previous Reeulb 
The Rabin encryption function is operating in the message space Z N ,  where N = w is the  

product of two large primes (which a re  kept secret). The encryption of z is E N ( z )  = z* (mod N ) .  
The ciphertext space is QN = { yI 32 y c z2 (mod N )  }. Rabin 1151 has shown that  extracting 
square roots (“inverting EN”) is polynomially equivalent to factoring. 

Note tha t  the function EN defined above is 4 to 1 rather than being 1 to 1 (as is t h e  case in 
the RSA). Blum (21 has pointed out t h a t  if p E q E 3 (mod 4) then E N  induces a permutation 
over QN. These N’s will hereby be called B h m  integez3. Goldwasser, Micali and Tong [12] havc 
presented a predicate the  evaluation of which is as hard as factoring. Specifically, they showed 
that if p 3 (mod 4) and p G q (mod 8) then factoring N is polynomially reducible to guessing 
their predicate with success probability 1 - A. 

Ben-Or,Chor and Sbamir [l] considered the same predicate. Using a modification of their 
RSA techniques they showed $ + E security for this predicate. Their modification requires t h a t  
IV be a Blum integer and furthermore that  there exists a small odd number 1 ( I  = O(logc N ) )  
with (k) = -1. Its correctness proof makes use of non-elementary number theory. 

7.2 Our Result 
We transform our RSA security result into a similar result for the Rabin encryption function. 

Our transformation is simpler than the one used in [l], and its correctness proof is elementary. 
Furthermore, it  holds for any Blum integer. 

8z ( 5 )  = 1). Let J%’ be a Blum integer, SN = { 210 5 x < $ }  and hf~ = { 210 5 z < 
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Rcdcfining E N  for 2 E M N  as 

N 
if zz (mod N )  < - 

2 
z2 (mod N )  

-2’ (mod N )  otherwise 
E N ( ~ )  = 

makes EN a 1 -I mapping from MN onto itself, without losing the intractability result of Rabin. 
1.e. factoring N is polynomially reducible to inverting EN.  Let L(z )  be the least significant bit 
of 2. 

The main idca in the reduction (as in the RSA case) is to pick L positions w; E SN which are 
uniformly distributed in SN and pairwise independent, such that their least significant bits are 
known. Some difficulties arise, but they can be taken care OB (see 161). We get 
Theorem 3: The least significant bit for the modified Rabin encryption function is (3 + &)- 
secure, for any constant c. 
Corollary: Factoring a Blum integer, N ,  is polynomially reducible to guessing L(z) with success 
probability 4 + & when given E N ( z ) ,  for z E M N .  

The proofs from the  previous section about simultaneous security of log log N least significant 
bits and of b i t  intervals (for intervals of length out of the 9 long interval containing M N )  
hold here just as well, thus all these bits are also + & secure. 

8. APPLICATIONS 

8.1 Direct Construction of Peeudo-Random Bit Generatora 
A pseudo-random bits generator is a device which “expands randomness”. Given a truly 

random bit sequence 8 (the seed), it  expands it to a longer pseudo-random sequence. T h e  question 
or “how random” this pseudo-random sequence is depends on what exact definition of randomnew 
we are after. A strong requirement is that  the expended sequence will pass all polynomial time 
statistical tests, namely given a pseudo-random and a truly random sequences of equal length, no 
probabilistic polynomial time algorithm can tell which is which with better than 50 - 50 succesa 
(this definition was proposed by Yao [21], who also showed i t  is equivalent to some other  natural 
definitions like unpredictability). 

Blum and Micali were the first to construct such strong pseudo-random generators. Their 
construction combines two results: 
a) If g : M + M is a 1 - 1 one way function, and B N ( ~ )  is 4 + E secure bit for g (where E = any 
polynomial fraction), then starting with a random 8 E M ,  the sequence obtained by iterating g 
and outputting b; = B(gi(s))  for each iteration is pseudo random (in the sense t h a t  each of its 
bits can not be predicted better than 50-50, from the previous ones). 
b) Demonstrating t h a t  a specific bit is $ + E secure for the discrete exponentiation function. 

We say that  a generator is direct w.r.t the (underlying) one way function g if i t  produces at 
least one bit per one iteration of g. We say that a generator is strong w.r.t an (assumed) intractable 
problem, P ,  if distinguishing i t s  output  from truly random sequences is as hard as solving P. 
Notice that  both t h e  Blum & MiCali generator and the Long & Wigderson generator’ .([14]) are 

‘Long & Wigdcrson’s generator praduccs log logp bits per each itcration of the discrete exponentiation (mod p) 
runclion. This is due ta their proof that this fundon h a  log logp sirnultaneoualy hard bib. 



31 1 

dirccl w.r.1 tliscrdc cxpoiicnliiilioii inid slroria w.r.1 discrete log. 
Aiiolhcr dirccl gciicralor witx tronslriiclcd by Illurn, 1 1 1 1 1 ~ 1 i  aid Shub IS]. 'l'hcir gcncrnlor i s  

dirccl w.r.1 qiinririg modulo a cornposilc riiirri1)cr ;d w;u provcn strong w.r.t dccitling ciundr;rLic 
rcsitluoci ly . 

Yao 12I] ui:ulc soinc gcncr:iliz;rlions to lhc I3luiri k. Micali rcxull. I lc SIIOWMI llinl having n 1 - 1 
oiic w:iy I'iinclion j is ciiougli :iiicl i t  is iioL ncccsswy Lo Iinvc a sljccific wcurc bil. 'I'tic riioin idm 
is 11i:it ir 1 is oric way Lhcn soiiic Idln rrnisl he sccurc (cvcri though no1 riccmrily + c sccurc). 
Picking x polynomial r ionihr  of ranrlorn sccds { .Yj ,k} ,  we gct onc strongly pseudo-random biL bi  
by conipuling 

( I l j ( ~ )  is lhe j - lh  bit of n @ is lhc one bit XO11 or thc rcuull.) 

Yew XOlling kick works Tor any 1 - 1 onc! way runction, 1, but the generators achieved that 
way a r e  not direct w.r.1 - Lo produce onc bil, niany npiilications of arc nccilccl. Il'or fiirlhcr 
dctails or1 Ym's XOlling trick and ib proof consult Goltlwmicr [lo]. 

All previously known resulte about the cryplographic mririty of 11abiri/llSh sclicmc 
(including Scluiorr ,!I Alrxi rcsult) do not suffice for constructing generators which arc 
strong w.r.t factoring/inverting the RSA and direct w.r.t &lin/RSA encryption 
function. 

With  4 + pocy~oK,., sccurity, we can finally gr:t gcnoralors wliicli nre dirccl w.r.1 Ilnbin/ItSA 
ciicryplion r~inclinn aid strong w.r.1 f;~cloriiig/iriv~irl~ii~ IlSA. Kach or tlic bits wliosc Q+ 1, N 
wctrrily is provcn can bc uscd as Llic '%art1 bil" tlic gcncrator oulprits. k a nr:dLcr or fad, 
with the strutiger rcrrill lhzt ;dl log log N least signiliwiit bils arc siiririllancously & 4- .p&p 
wcurc, we c m  gcl log log N rnntlorii hits per on(! a~ip1it:;itioii of LIJI* wi:ryplioii fuiiclion. Siiicc 
the cncryptioii in Rabin sclicrtic is jusl on(! squaring and onc suhlr;rcl.ion, WP get a vcry fast 
gcncralor, wliosc sccurity is cquivalenl LO Factoring a f~~ i i in  iiitcgcr l .  

Ilsing our lccliiiiqucs, Vazirani and Vazirani [201 Iiwc Iminleti out that Lhc  Dl i in i ,  Illurn nnd 
Shub [3] gcncrator is slrong d s o  w.r.1. factoring 1)Iiirn intcgcra. 

8.2 Dircct Construction of Probabilistic Encryption Schcniee 
Olmrv:ilioii, diiuilar to tlic OIICY o l  scclion 8.1, apply lo tlic prolialdislic cncryplion schcnic 

sugg~dcd by Golt1w-r arid Micali [Ill. Using our rcsull we iiilrotlucc! tlic first direct prob- 
abilistic cncryplion cquivalcnt to f:icloring/iincrting RSA. Ilowevcr, Ibis inipIciricn1:ltiori sLill has 
tlic b:rnclwitl!+h cxpansion drawback; Llic plaiiitcxl is rxpcntled by ii factor of O($:ts). 

Ilcccnliy, Ulum aiid Coldwrrsuer [4] iisccl our restill to introduce a ricw irnpl(:nicnhLion of 
probnldislic cncryption, griivxlcnt la fu:Loring, in which tiic plninlcxt is only expanded by a 
constant factor. Goldwnsser's d i c r n c  is :rpproxiirtalcly rn clljciciil as Llic 1tSh wldc provably 
Icitkiirg 110 p;irti:il inrorniation, providcd l l i d  radming is i~ilract~tblc. 
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