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ABSTRACT

We consider a communications scenario in which a transmitter attempts to inform
a remote receiver of the state of a source by sending messages through an imperfect
communications channel. There are two fundamentally different ways in which the
receiver can end up being misinformed. The channel may be noisy so that symbolas in
the transmitted message can be received in error, or the channel may be under the
control of an opponent who can either deliberately modify legitimate messages or
else introduce fraudulent ones to deceive the receiver, i.e., what Wyner has called
an "active wiretapper™ [1]. The device by which the receiver improves his chances ’
of detecting error (deception) is the same in either case: the deliberate intro-
duction of redundant information into the transmitted message. The way in whicﬁ
this redundant information is introduced and used, though, is diametrically opposite
in the two cases.

For a statistically described noisy channel, coding theory is concerned with
schemes (codes) that introduce redundancy in such a way that the most likely alter-
ationa to the encoded messages are in some sense close to the code they derive from.
The receiver can then use a maximum likelihood detector to decide which (acceptable)
message he should infer as having been transmitted from the {possibly altered) code
that was received. In other words, the object in coding theory is to cluster the
most likely alterations of an acceptable code as closely as possible (in an appro-
priate metric) to the code itself, and disjoint from the corresponding clusters

about other acceptable codes.
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In [1,2] the present author showed that the problem of detecting either the
deliberate modification of legitimate messages or the introduction of fraudulent
messages; i.e., of transmitter and digital message authentication, could be modeled
in complete generality by replacing the classical noisy communications channel of
coding theory with a game-theoretic noiseless channel in which an intelligent oppon-
ent, who knows the system and can observe the channel, plays so as to optimize his
chances of deceiving the receiver. To provide some degree of immunity to deception
(of the receiver), the transmitter also introduces redundancy in this case, but does
30 in such a way that, for any message the transmitter may send, the altered mes-
sages that the opponent would introduce using his optimal strategy are spread ran-
domly, i.e., as uniformly as possible (again with respect to an appropriate metric)
over the set of possible messages, M, Authentication theory is concerned with
devising and analyzing schemes (codes) to achieve this "spreading.™ It is in this
sense that coding theory and authentication theory are dual theories: one is con-
cerned with clustering the most likely alterations as closely about the original
code as possible and the other with spreading the optimal (to the opponent) altera-—
tions as uniformly as possibly over M.

The probability that the receiver will be deceived by the opponent, Pd, can be
bounded below by any of several expressions involving the entropy of the source
H(S), of the channel H(M), of the encoding rules used by the transmitter to assign
messages to states of the source H(E), etc. For example:

(1) log P, 2 H{MES) - H(E) - H(M)

d

The authentication system is said to be perfect if equality holds in (1), since
in this case all of the information capacity of a transmitted message is used to
either inform the receiver as to the state of the source or else to confound the
opponent. In a sense, inequality (1) defines an authentication channel bound simi-
lar to the communication channel bounds of coding theory. Constructions for perfect
authentication systems are consequently of great interest since they fully realize
the capacity of the authentication channel. 1In the paper given at Crypto 84 we
analyzed several infinite families of perfect systems and also extended the channel
bounds to include cases in which the opponent knew the state of the source. Here we
have the more modest goal of rigorously deriving the channel bound (1) and then

using this result to derive a family of related bounds.

FUNDAMENTALS

In authentlcation, there are three participants: a transmitter who observes an
information source 8 and wishes to communicate these observations to a remotely

located receiver over a publicly exposed, noiseless, communications channel and a
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receiver who wishes to not only learn what the transmitter has observed but also to
assure himself that the communications (messages) that he receives actually came
from the transmitter and that no alterations have been made in transit to the
messages sent by the transmitter. The third participant, the opponent, wishes to
deceive the receiver into accepting a message that will.misinform him as to the
state of the source. He can achieve this end in either of two ways: by imperson-—
ating the transmitter and sending a fraudulent message to the receiver when in fact
none has been sent by the transmitter, or else by waiting and intercepting a message
sent by the transmitter and substituting some other message. There are two possi-
bilities to be considered; the opponent may either know or not know the state of the
source; he does however know the message sent by the transmitter., Using this
information, in either case, he can choose some other message to forward to the
receiver. The opponent "wins" if the receiver accepts the fraudulent message in any
of these situations as being a genuine (authentic) communication from the trans-
mitter, and thereby ends up being misinformed about the state of the source. We
have defined the authentication problem in its narrowest sense here; however, the
model can be easily extended to include cases in which the source can he influenced
(controlled) by either the transmitter or the opponent or in which the opponent's
objectives are more restricted —- i.e., he may wish to deceive the receiver into
believing the source 1s in some particular state(s) not merely an arbitrary decep-
tion of the receiver. It is beyond the scope of this paper to treat these other
authentication concerns, however, it is essential that the reader appreciate the
precise constraints on the model of authentication used here. One of the simpli-
fying assumptions made is that the transmitter and receiver act with common purpsse,
i.e., that they trust each other completely and that neither acts (either alone or
in collaboration with an opponent) to deceive the other. In general, especially in
commercial applications, this is an unrealistic assumption, since in practice the
transmitter may wish to disavow messages (authentic) that he originated, or the
recelver may wish to falsely attribute messages to the transmitter -- or even dis-
claim having received an authentic message actually sent by the transmitter (and
recelved by him). These questions get into areas of digital signatures, notariza-
tion, dating, certification (in the sense of certified mail), etec., which, while
closely related to authentication, are primarily questions of systems protocol in
which message authentication plays an essential part. We also assume (here) that
only the receiver need be convinced of the authenticity of a message —-- as opposed
to either the transmitter or receiver having to convince a third party (arbiter).

In addition, as already mentioned we assume that all successful deceptions of the
receiver are of equal value to the opponent, i.e., that his objective is purely to
misinform the receiver about the state of the source -- not to cause him to conclude
that it is in any particular state. Even though the mcst interesting applications
of digital message authentication made thus far [3,4] have been in situations in

which the opponent knew the state of the source (message authentication without
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secrecy) we shall mostly be concerned with message authentication in situations in
which the opponent is ignorant of the information being communicated to the receiver
by the transmitter. Subject to these constraints, we now describe the general
authentication system model.

There is a source {set) 8 with a probablility distribution S on its elements for
which the binary entropy is H(S). H(S) is the average amount of information about
the source communicated to the receiver by the transmitter in each message. There
is also a message space M consisting of all of the possible messages that the trans-
mitter can send to the receiver. Since an unstated assumption is that the transmit
ter can communicate to the receiver any observation he makes of the source, |m| 2 |8|
where [8] is interpreted to be the cardinality of states of 8 that have nonzero
probabllity of occurrence. It should be obvious that authentication depends on the
set of messages that the receiver may receive being partitioned into two nonempty
parts: a collection of messages that the receiver will accept as authentic and
another collection that he will reject as inauthentic. If |m| = [8], all messages
would have to be acceptable to the receiver, hence no authentication would be
possible in this case. Therefore, |B| > |8| and as we shall see later the even
stronger inequality H(M) > H(S) holds as well. Figure 1 schematically shows the

essential features of what has been described thus far

Figure 1.

Any message in the shaded region of M would be rejected by the receiver, while any

message in the set M. would be accepted as authentic. Figure 1 also lllustrates

1
that it is possible for the opponent to fail to deceive the receiver, even though he

succeeds in getting him to accept a message that was not sent by the transmitter.

Assume that the state of the socurce is 8, and that the transmitter chooses to encode

this information by sending message m2 to the recelver. If the opponent -- not
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knowing the information shown in Figure 1 of course -- intercepts the message m2 and

replaces it withm the receiver would accept m, as being authentic since it is one

3’ 3
of the messages that the transmitter might have sent, even though it was not the
message actually sent in this case. However the receiver would interpret m3 to mean

that the source state was 32 -- as observed by the transmitter. The opponent would
lose in this case, in spite of the fact that he succeeded in having the receiver
accept a fraudulent message, since the receiver is not misinformed as to the state
of the source.

There is a well known precept in cryptography, known as Kerckhoff's principle,
that the opponent knows the system, i.e, the information contained in Figure 1. It
is equally reasonable to assume the same for authentication. Consequently there
would be no authentication possible for the receiver using the scheme shown in
Figure 1 alone. What is done instead is to have many such encoding rules in an
authentication system -— all of which are known to the opponent -- with the choice
of the particular encoding rule in use being known only to the transmitter and
receiver, similar in many respects to the "key" known only to the transmitter and

receiver in a cryptosystem. Figure 2 suggests the general scheme:

Figure 2.

Each encoding rule, e determines a proper subset M

of R, ‘Mi’ 2 |8], and a
The inverse mapping D is a well

the function D(e,m) defines a

i'
mapping -- perhaps one to many —- of S onto M

i
i
defined function, i.e., for any e ¢ & and n ¢ Mi'
unique state in 8 U ¢, where ¢ is the null set.
Even this very intuitive description of authentication should make clear the
reason for describing authentication as a problem in "spreading" messages in m. 1f

m, is an acceptable message only in set M then the opponent, knowing the system,

ll
was the coding rule being used if he saw my in the

1

would be able to conclude that e1
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channel and would then be able to substitute another message with certainty of
deceiving the receiver. To avoid this it is necessary that each message occur in
sufficiently many authenticating sets to (ideally) leave the opponent no more able
to "guess" at an acceptable message after he has observed what the transmitter sent
than he could have before the observation. This ildeal can be achieved in infinitely

many perfect authentication systems [5,6].

THE "GAME"™ MODEL OF AUTHENTICATION

A concise representation of the authentication system depicted in Figure 2 is
possible in the form of an [8| x M| matrix, A, where & is the set of encoding
rules. The rows of A are indexed by encoding rules and the columns by messages.

The entry in a(ei,m )} is the element of 8 encoded by rule e, into message mJ if such

J i
a source mapping exists under ei and 0 otherwise. Every element of 8 appears in

each row of A at least once and perhaps several times. We define an authentication
system to be the triple (8, S, A). Earlier comments imply that each row and column

contains at least one O entry. We now define another [€| x |[M| matrix X, in which

1 if a(ei,m.) e 8
x(ei,mj) = J .
0 otherwise

For example, for |8| = 2, |M| = 4, the "best" authentication system possible has:

oW o
OO
QO
HOoORFO
OO

It is now easy to see the relationship of the impersonation "game™" to the matrix X.
Ir mj is an acceptable (authentic) message to the receiver when encoding rule e1 has
been agreed to by the transmitter and receiver then x(eimj) = 1 and the opponent has
a probability of success of p = 1 if he communicates mJ to the receiver. Con-
versely, whenever x(ei,mj) = 0 he is certain the message will be rejected. It is
certainly plausible -- and in fact rigorously true —- that the opponents probability
of success in impersonating the transmitter is the value, Yos of the zero sum game
whose payoff matrix is X. It is possible to define a companion payoff matrix Y for
the substitution game, although it is considerably more complex. The value of this
game, vs, is the probability that the opponent will be successful in deceiving the
receiver through intercepting a message sent by the transmitter and substituting one

of his own devising. Given an authentication system the transmitter/receiver have
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the freedom to choose among the encoding rules and if some state(s) of the source
can be encoded Into more than one message under some of the encoding rules, a choice
of which messages to use, i.e., a splitting strategy. The opponent on the other
hand can choose between impersonation and substitution with whatever probability
distribution he wishes and then choose according to his optimal strategy which
fraudulent message he will communicate to the receiver, either with no conditioning
if he is impersonating the transmitter or else conditioned on the message he
observed 1f he 1s substituting messages. Not surprisingly there exist authenti-
cation systems in which the optimal strategy for the opponent is either pure imper-
sonation, pure substitution, immaterial mixes of the twa, or moest interesting --
essential mixing of both as well as examples in which splitting is essential in the
transmitter/receiver's -optimal strategies. The point of these remarks is that we
have shown in earlier papers that an opponent's overall probability of success in
deceiving the receiver, Pd, is simply the value of the game whose payoff matrix is

the concatenation of X and Y, and hence that

= 2
(2) Py = Vg 3 max(vl,vs)
It 1s not germane to this paper to develop the payoff matrix Y, since (2) is the
only result pertaining to the substitution game that we shall need later.
With these preliminaries out of the way we survey the essential notation used

in the authentication model.

Name Set Element Variable
Source 3 8 S
Message Space M mj M
Encoding Rules e e, E
Splitting Strategies "(mjlsiek) i
Impersonation Strategy Q qJ Q
P(X = x) probability that the random variable X takes the value Xx,

as for example P(M = m), P(S = g) or P(E = &),

Name Entropy
Source Distribution H(S)
Message Distribution H(M)
Coding Strategy H(E)

Joint (message coding strategy source) Distribution H(MES)
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A encoding matrix
X impersonation payoff matrix
Y substitution payoff matrix
XY concatenated authentication payoff matrix
v value of impersonation game on X (to opponent)
Vo value of substitution game or Y (to opponent)
Pd = vG probability that opponent deceives the recelver:
value of game on XY.
Ieil = X(ei,m) number of nonzero entries in the &, row of
mel
either A or X.

[m | = Z x(e,m,) number of nonzero entries in the m, column of

3 et J J

either A or X. /

THE AUTHENTICATION CHANNEL BOUND

Our object in this paper 13 to derive channel bounds for the authentication

channel, Several such bounds are easy.

Theorem 1.
minje
(3) P v>a
da ™ Ve =T
™

il

Proof :

As has already been noted, the opponent has avallable as part of his strategy
the cholce of whether to impersonate the transmitter or to substitute messages,
hence the value of the concatenated game i{s at least as large as the value of either
game alone. We actually prove that for the impersonation game:

minje, |
e i

Im]

The payoff matrix for A is the [&] x || (0,1) matrix X in which x(i,j) = 1 if some
state of 8 is encoded into m‘j by the encoding rule ei, and 0 otherwise. If the
transmitter/receiver are playing an optimal strategy E (probability that encoding
rule ey i{s played is P(E = ei) and the opponent is impersonating the transmitter
with an optimal strategy Q (probability that he sends mj

value to the opponent of impersonating with message m‘j is

is qj) then the expected
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r, = J PE = elyle,m

)
J eel J

and his expected payoff from playing strategy Q is simply the value of the game

ve = I (am) [ PE - e)x(e,m) .
mem ecl

Since vI is the value of the game for the opponent, realized playing an optimal
strategy Q, it is at least as large as the value realized by his playing any other
strategy -- in particular, the uniform probability distribution of M. Therefore,

vi= I (am) J PE=e)xlem)) 2 | S P(E = edgle,m)
mep ecg mem || ece

)

] P(E=e) § xlem) =—— T le|p(E=e) .
[m| eee meM Im| eee

The inequality is only weakened by replacing |e| by min]e|. Therefore,

min|e|
vV, 2 v, 2 &
G~ I
L
as was to be shown.l
Corollary:
Since minle| 2 [s|
e
(5) P 2 il
=v, 22— .
d G
Im |

Theorem 2.

Given an authentication system (8, S, A) for which

min{el
e

(6) v, =
G
m|

in every optimal strategy, E, for the transmitter/receiver P(E = e) = 0 for any

encoding rule for which |e| > min]e].
e

Proof:

As in the proof of Theorem 1 we use the fact that vG 2 vI and actually prove

the conditions of the theorem for the impersonation game. From (4) we have
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v. = Y qlm) § P(E = e)x(e,m) .

I meM ecl
Assume that there is some encoding rule, e for which leJ| > mén]e] and for which
P(E = e.,) > 0. As noted before Q is an optimal strategy for the opponent and hence

J

vI is at least as great an expectation for him as he céuld achieve using any other

strategy -~ in particular the uniform probability distribution on M.

v. 2 v(uniform) = } - I P(E = e)x(e,m)

I mel M| ece

= YP(E=e) § xle.m) | } P(E = eg) — >
eel melh || ecl im Im]

if P(E =€) > 0 for any e ¢ & for which |e| > minje|. ]}
A

Corollary:

If for an authentication system (8, S, A)

8]
v . m——

G
|m}

which by Theorem 1 can only happen if mén[el = |8|, then every optimal strategy for
the transmitter/receiver, E, has P(E = e) = O for any encoding rule for which |e| >
|8].

Another way of stating the conclusion of the Corollary is that if v, = vl
no splitting occurs in any encoding rule occurring in an optimal strategy! It is
worth remarking that

min|e]
L
Im|

does not imply that spiitting does not occur in any of the encoding rules that occur
in €. What is true, by Theorem 2, is that in this case all of the encoding rules
that occur (with positive probability) in an optimal strategy use the same number of
messages.

Several other channel capacity theorems of similar flavor can be proven, how-
ever we now turn to our primary object in this paper; establishing bounds on the
authentication channel in terms of the variocus entropies on the primary variables.

A trivial bound can be given in terms of H(E). Since H(E) is the total equivocation
that the opponent has as to which encoding rule is being used by the transmitter/
receiver, and since he could deceive the receiver with certainty if he only knew the

rule they had chosen, we have
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(7 log P, = log Vo ® -H(E)
(7) isn't a particularly useful result since as we shall see later there is a much
stronger bound in terms of H(E). The bound of the following theorem is the main

result on which the theory of authentication is based.
Theorem 3. (Authentication Channel Capacity)
(8) log Py 2 H(MES) - H(E) - H(M)

Proof:

Let P(M = m) be the probability that message m will be observed in the channel
when states of the source occur according to the probability distribution S and are
encoded by the transmitter with an encoding rule chosen from € with probability

distribution E, employing splitting strategies . P(M = m) is formally

(9) P(M = m) = 7 PMam E=e, S=8)
(e,s)eex8

or equivalently by

(10) P(M =m) = ] PM=m E=e¢e, §=3)ylem
(e,8)elx8

1 if some state of the source can be

where y(e,m) = encoded Into m using encoding rule e .

0 otherwise

The formal sum (10) has the same value as {9) since
P(M=m, E=e, S=38)#0~+y(emn =1

The converse need not be true, i.e., x(e,m) = 1 can hold while P(M = m, E = e,
S = 3) = 0, either because some s', other than the s in P(M = m, E= e, S = 8) i3
encoded into m by e, or else that the state occurring in P(M =m, E = e, S = 3)
could be encoded into m and some other message(s) under m, but that the splitting
rule used by the transmitter never uses m. y(e,m) is the authentication function on
M since the receiver will accept a message m when encoding rule e has been selected
if and only if y(e,m) = 1.

The joint probability P(M = m, E = e, S = s) can be represented as the product
of the conditional probability that m will be sent given that state s occurred and
that encoding rule e is being used H(m|e,s), times the independent probabilities

that these events occur.
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(11) P(M = m) = 1 P(E = e)xle.m)P(5 = s)N(m|e,s) .
(e,s)elx8

We now wish to restrict the domain from the Cartesian product € x 8 to only € by
using the inverse mapping to e; D(e,m), y(e,m) was introduced in (2) to make this
possible,

(12) P(M =m) = § P(E = e)y(e,m)P(S = D(e,mn) )r(m|e,D(e,m))
el
since
x(e,m) w(mles) = 0 unless D(e,m) = s

Define a probability distribution W{m) = {we(m)} onec & for every m ¢ M:

(13) w (m) = P(E = e) x(e,m)

J P(E = e¥)y(e*,m)
e*gg

we(m) is well defined since every m ¢ In is acceptable to the receiver for at least

one choice of an encoding rule. Also 1} we(m)x(e,m) = 1, Multiplying the summand

eel
in (12) by
Y P(E = e*)y(e*,m)
e*cl
¥ P(E = e*)y(e¥*,m)
e*eg
we obtain
(14) PM=m) = Fw(m{( ] PE = ex)y(e*,m))P(S = D(e,m)}n(m]e,D(e,m}}} .
ecg eel

We now wish to form -P(M = m) log P(M = m) on both sides of (14) as a first step to
calculating the entropy H(M) of the messages observed in the channel. Formally,

(15) ~P(M = m)logP(M = m) = —[ ) we(m){...}] log [2 we(m){...}] .

ecl

Noting that -x log x is concave downwards, we use Jensen's inequality -- which says
that if g(x) is a concave function on (a,b), and if {xi} are arbitrary real

arguments, a < xi < b, then for any set of positive weights w, where E wi = 1;

i

g(lw;x;) 2 Iw g(x))
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to replace the equality in (15) with an inequality.
Let x = {...} in (7):

(16) ~P(M = m)logP(M =m) 2 - § w(m{...}log{...} .
eel

By canceling the sum §} P(E = e)x{e,m) between the denominator of we(m) and {...},
ec
and by splitting the logarithm of the product in {...} into the sum of three

logarithms, we get

-P(M = m)10gP(M = m) 2 - } P(E = e)x(e,m)P(S = D(e,m)r(m)e, D{e,m))
ecl
(n

x {log( § P(E = e)y(e,m)) + logP(S = D(e,m)) + logn(m|e, D(e,m))
eeg

Now, we make use of the game model for the authentication channel to bound (17)

below. The value of the impersonation game, VI' is
(18) vy = max } P(E* = e)y(e,m) 2 J P(E = e)y(e,m)
mgh ecl eel

where E¥* is an optimal strategy for the transmitter/receiver and E is an arbitrary

strategy. Inequality (18) is at worst weakened through replacing
7 P(E = e)x(e,m)

in [...] with the maximum value it can have for any choice of m. Summing both sides
of (18) over all m € M, we get

H(M) = - ] P(M = m)logP(M = m)
on the left and the expression in (19) on the right:

HM) 2 - I ] P(E = e)xle,mP(S = D(e,m))n(m]e,D(e,m))
men eeg
(19)

x [log v, + logP(s = D(e,m)) + log n{m[e, D(e,m))] .

I

Since log v. 1s a constant it can be moved through the double summation to give

I

log v [ I P(E = e)x(e,m)P(S = D(e,m) )x{m|e,D(e,m))
meM ecl
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Using (12), the summand can be replaced by P(M = m)

L PM=m) =1logyv
mem

log vI

I

so that (19) becomes

H(M) 2 -log v; = [ ] P(E = e)x(e,m)P(S = D(e,m))
melh eel
(20)

x t{m|e,D(e,m))}{10gP{S = D(e,m)) + Logr(m|e,D(e,m)]}
It has already been noted that
x(e,m)n(m|e,s) = 0O
unless D(e,m) = s, therefore (20) can be rewritten in the form

H(M) 2 -log v, - ) ) P(E = e)P{S = s)n(m]e,s)
ecf 38 meM

D(e,m)=s

(21)

x {logP(5 = 3) + log m(m|e,s)}
or

=-log vy = I I P(E = e)P(S =~ 3)logP(8S = s)
ecl 3¢ 3

(22)

-3 JI1PE=¢eP(S=3) n({m]e,s)logr(m]e,s)

ecl se8 me M

D(e,m)=s

since

1 n(mle,s) = 1
me M
D(e,m)=3

Moving the summation over § through P(E = e), we obtain

(23) H(M) 2 -log v  + Y P(E =e)H(S) + § I P(E=e)P(S = s)H(M|ES)
el eel se8
(24) = -log v + H(S) + H(M|ES)

I

Using the entropy identity
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H(A|B) = H(AB) ~ H(B)
(16) becomes

(25) log v, 2 H(S) + H(MES) - H(ES) - H(M) .

I
But
H(ES) = H(E[S) + H(S) = H(E) + H(S)

since E and S are independent. Therefore

log v, 2 H(MES) - H(E) - H(M) .

I
The conclusion of the theorem follows from the earlier result that

P, =V

2
d G 2 max(vI,vs), so that

(26) log P, = log v, 2 log v 2 H(MES) - H(E) - H(M)

G

as was to be shown. I

The hard work is now completed. A variety of useful equivalent expressions can
be derived from (26) using simple identities from infermation theory, for the cases
of authentication either with or without secrecy. We illustrate the technique in
Theorem (U4) for the case of authentication with secrecy: {i.e., the opponent does
not know the state of the source observed by the transmitter. This, of course, only
matters when the opponent elects to substitute messages rather than to impersonate
the transmitter.

Theorem 4.
H(MES) - H(E) - H(M) is equivalent to any of the following eight entropy

expressions.
X Equivalent Form
(27} ES H(M|ES) + H(S) - H(M)
(28) H(E|MS) - H(E) + H(MS) - H(M)
MS or
(29) H(E[MS) - H(E) + H(S[M)
(30} H(E|M) - H(E)
ME or
(31) H(M|E) - H(M)
(32) s H(ME[S) + H(3) - H(E) - H(M)
(33} E H(MS{E) ~ H(M)

(38) M H(ES|M) - H(E)
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Proof :

The proof in each case proceeds by splitting the argument in the entropy H(MES)
through conditioning the joint probability on X and then using simple identities to
reduce the resulting expressions. The derivation of (27) is typical.

H(MES) = H(M|ES) + H(ES)
-~ H(M|ES) + H(E|S) + H(S)
= H(M[ES) + H(E) + H(S8)
since E and S are independent random variables. Hence
H{MES) - H(E) = H(M) = H(M|ES) + H(S) = H(M)
as was to be shown, ete. |

Using the results of Theorem Y4 it is possible to derive some (generally) weaker
but enlightening channel bounds. We first note that the total effective equivoca-
tion to the opponent playing the substitution game but without knowledge of the
source state, i.e., authentiction with secrecy is no greater than H(E|M) and as
remarked earlier, the opponent's total effective equivocation if he knows the source

state, 1.e.,, authentication without secrecy, is at most H(E|MS).

Theorem 5.

For authentication with secrecy

1
(35) log vy 2 - 3 H(E}
while for authentication without secrecy
(36) log v, 2 - % {H(E) - H(MS) + H(M)} = - % [H(E) - H(s|M)}

Proof:
For authentication with secrecy

(37) log v, 2 min{log v ,-H(E|M)}

G

while for authentication without secrecy

(38) log v, 2 min{log vI,-H(EIMS)}

G
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In either (37) or (38) the bounds derived in Theorems 3 and 4 on the value of the
impersonation game can be substituted, since the opponent's impersonation strategy
is independent of whether he plays substitution with or without secrecy. Replacing
the minimum on the right-hand side of the inequality by the average of the two
bracketed terms either weakens the inequality if the ‘terms are not identical or
leaves it unaffected if they are. Therefore for authentication with secrecy,

replacing v_. with the bound (30) in (37) we get

I

1 1
log v, 2 5 {H(E[M) - H(E) - HE|W] = - 3 H(E)

and similarly by replacing v_ with the bounds (28) or (29) in (38) we get

I
log v, 2 3 [H(E[MS) - H(E) + H(MS) - H(W) - H(E|MS) |
- - 2 {HE) - HMS) + HOD} |
or
log v, 2z 3 [H(E|MS) - H(E) + H(s|M) - H(E|uS)}
- % {H(E) - H(S|™}
as was to be shown. |
Corollary:
:
(39) Py =vg 2 yfgf
Proof :
T H(E) 2 log|e|

with equality if and only if the transmitter/receiver's optimal strategy E is the
uniform probability distribution on €. The conclusion follows by substituting (39)
into (35). |

Bound (35) was first found by Gilbert, McWilliams and Sloan [7] under slightly
more restrictive conditions and derived directly in the same generality used here by
Simmons and Brickell in [6]. (35) is the bound based on H(E) promised earlier when

the trivial bound in {(7) was given.
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FOR EXAMPLE

In this section, in order to show the effects of secrecy on both the strategies
of the participants and on the game values as well as to illustrate parameters such
as splitting, etc., we discuss two small examples. Earlier we described on authen-
tication system for which |&| = |m| = 4, |8| = 2 and for which the payoff matrix X

was:
11 0 0
1 01 ¢
(4o} X=1g 1 0 1
0 0 1 1

X could also be the payoff matrix for many different authenticati&n systems, one of

which was exhibited beFfore

Sl 32 o 0
3 0 s 0
(41) T I
2 1
0] Q 32 sl
One other such system is
sl 52 0 o]
3 0 s 0
2 1
(42) A* =
o] sl 0 32 .
0 52 31

In either case vy 1/2 with an optimal strategy for either player being the uniform
probability strategy on rows (transmitter) and on columns (opponent), If we con-
sider only substitution with secrecy, then it makes no difference to the opponent
whether the transmitter/receiver are using the authentication system (8, S, A) or
(8, S, A*¥), since in either case when he sees a message he is faced with two possi-
ble encoding rules and hence with a choice between two equilikely messages to sub-
stitute -— one of which will be accepted and are rejected. His probability of suc-
cess in either case is 1/2, which is precisely what hils chances of success in imper-
sonating the transmitter would have been had he not waited to observe a message.

Hence for authentication with secrecy P, = 1/2. The situation is different however

d
for authentication without secrecy. In this case for the system (8, S, A) the same
arguments given for the authentication with secrecy case hold and Pd = VG - vI = vs
= 1/2. For the system (3, S, A*) however, if the opponent waits to observe a

message he will know with certainty which encoding rule the transmitter/receiver
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have chosen and hence can substitute another message with certainty that not only
will it be accepted as authentic by the receiver but that the receiver will be

misinformed as a result. Therefore in this case

1
Pd VG = vs =1 > vI =3 .
Incidentally the system (8, S, A) is perfect and is also an instance in which
equality holds in (39):

We conclude by showing another example in which equality holds in (39) and in
which, in addition, splitting is essential (for the transmitter/réceiver) to hold
the opponent to the game value Py = 1//Te] . In order to have a concise description
of (8, S, A) we introduce a notation for A. M is partitioned into disjoint parts —-
three in the example -- and the elements in each part indexed. The encoding rules
will be of a speecial type (Cartesian) that encode a state of the source only into
the messages in a particular part. In the example [8| = 3, [n] = 12 and || = 16.
The partition of M is into 4, 4 and 8 elements, indexed 1, 2, 3, 4; 1, 2, 3, 4 and
1,2, 3, 4, 5, 6, 7, 8, respectively. The states of the source are assumed to be
equiprobable,

8, 8, 33
1 1 1,2
1 2 3,4
1 3 5,6
1 4 7,8
2|1 3,8
2 2 1,7
2 3 2,4
A= 2 4 5,6
3 1 5,7
3 2 2,6
3 3 (1,8
514} 3,
411 b,6
y121¢s5,8
4 3 3,7
Y P 1,2
Encoding rule el says that source state sl will be encoded into message 1 of part 1,
state s, into message 1 of part 2 and state s_ into either message 1 or message 2 of

2 3
part 3, ete. The unique optimal strategy, E, for the transmitter/receiver is the

uniform probability distribution p(E = ei) = 1/16 with uniform splitting; i.e., if

e. is being used and state s

1 ocecurs, then a fair coin would be tossed to decide

3
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whether message 1 or 2 of part 3 was to be sent, etc. Against strategies S and I,

the value of the game is

and the game is perfect. Although it isn't quite obvious, it is easy to show that
it doesn't matter to thé opponent whether he chooses to impersonate the transmitter
or to wait and observe a message and then substitute another message; in either case
if he plays optimally his chance of success will be 1/4. Note that in this example
while the opponent is faced with two bits of equivocation irrespective of whether he

impersonates or substitutes, i.e., v, = vs = 1/4, that the equivocation about the

source state is only 1032 3 = 1.585 iits, or P(S = s) = 1/3 for any s ¢ 8. Thus
while the opponent could guess the state of the source with a probability of success
of 1/3 he could only guess at a message to communicate a state with probability 1/4.
If one considers what the channel bound theorem says, this is no paradox and Pd can
be made as small as desired, even for a one-bit source in which P(S = 8) = 1/2.

This example, incidentally, is one of the smallest illustrating an infinite class of

perfect authentication systems [S] with essential splitting.

CONCLUSION

In this paper we have proven that the bounds on the authentication channel are
precisely what one would intuitively expect (and hope for), namely that the dif-
ference between the amount of information transmitted through the channel and that
needed by the receiver to resolve his equivocation about the source state can be
used to authenticate the message, and conversely that no better result can be
achieved. We also exhibited small examples demonstrating that it is possible to use
all of this residual information to confound the opponent, i.e., that the channel
bounds are sharp.
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