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Abstract. Shift registers are frequently used in generators of psewdo randcm
sequences (see [1]). We will examine how cascade connections of clock controlled
shift registers perform when used as generators of pseudo randam sequences.

We will derive results for the period, for the linear recursion and for the
pseudo-randamess of their output sequences.

1.Introduction.

Cascade connections of clock controlled shift registers are a generalization of
the idea of a "clock controlled autcmaton". Clock controlled autamata were examined
by P.Nyffeler {4]. A clock controlled shift register switches to its next state
when input "cne" is sent to its clock and remains unchanged when input "zero" is
applied. We connect these clock controlled shift registers to a cascade connection
as follows. The input to the cascade connection is sent to the clock of the first
register. The input to the clock of the i-th register, i22, is the sum (modulo 2)
of the input to the clock of the (i-1)-th register and the output of the (i-1)-th
register. Likewise the output of the cascade comnection is the sum of the input

to the clock of the last register and of the output of the last register (see

also [2]}.
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Fig.1. A cascade connection of clock controlled shift registers.
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A1l shift registers in the cascade connection shall be of the same length p,
p>2 prime. Furthermore we exclude shift registers with the initial states
“all zero" or "all one". We will examine output sequences generated by the
input sequence 111... .

2.Results.
2.1. Pericds of the output sequences.

Regard a cascade connection of n clock controlled shift registers of length p.
Cbviously any state trajectory - and therefore any output sequence - of this
cascade connection has at most perioed pn. We are able to prove

Theorem 1: Any output sequence of any cascade connection of n clock controlled
shift registers of length p, p>2 prime, has period pn.

Proof: Let ki denote the number of ones in the output sequence of a cascade
connection of i shift registers during the period pl.

First we prove that any state trajectory of any cascade connection of n shift
registers has period pn.

This is cbviously true for n=1 as the initial state of the shift register is
non—trivial. With the same argument we get god(ky,p)=1.

Now assume that any state trajectory of any cascade connection of n shift
registers has period p" and that god (k_,p)=1.

The period of a state trajectory of a cascade connecticon of nt+1 shift registers
has to be a multiple of pn and the number of ones sent to the last register
during this period has to be a multiple of p. So we have mokl_l =n.p for
sare natural numbers m,n. Fram god(kn,p)=1 we get nme=p, the period of amy
state trajectory of any cascade connection of nt+1 shift registers is pn+1.
Let d denote the number of ones stored in the last register. We have

_ n_ _ n-1 -
kn+1 = d(p kn) + (p—d)krl = pl(p d+kn) 2dkn

and gci(kn+1,p)=1 follows fram god(kn,p)=gcd(d,p)=1 and p>2,
Finally the period of any cutput sequence of any cascade connection of n shift
registers has to divide the period of the corresponding state trajectory. As

god(k ,p)=1 this period has to be p'.
g.e.d.
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2.2. Linear recursion.

We introduce same further notations.

Let (qi'1,..,qi'p) denote the initjal state of the i-th register of same
cascade connection of clock controlled shift registers.

Tet fi,ki.\ denote the characteristical polynamial of the sequence qi,1 “‘mkj_,j’
lsmsp , where the indices 1+mk, are computed modulo p.

Then the property "p2 does not divide 29—1-1" is sufficient to prove that
the characteristical polynamial £ of the output sequence generated by the
given initial state can be camputed by

n ( i—1)
Theorem 2: £(x) = (1-x) I £, xP Ny .
- i=1  1rRie

For the proof of this theorem see [3].

It is important to note that the linear recursion depends on the initial
states of the shift registers in the cascade connection.

"p2 does not divide qu-T" is no severe restriction as p=1093 is the first
prime number to violate this condition.

Theorem 2 generalizes P.Nyffeler's result for the linear recursion of clock

controlled autamata [4].
Pl .
For prime numbers p with Cp(x) = [ x' irreducible over GF(2) we can deduce
i=0
n
Theorem 3: £(x) = 1_x(p ).

2.3. Pseudo-randcmmess.

Consider a sequence R:= { (Ri,qi)) N of registers R, with initial states q;.
The kazk-matrioes T(k;1):= (t(k;l)ij) give the relative frequencies of the
transformations of the sequences of length k caused by the cascade connection
of the registers R(l—1)k+1 P ’le‘

Lemma 1: For any natural number k any cascade connection of k shift registers
can transform any input sequence Xqeo ¥ to any given output sequence y,- Yy -

. k . 1
Corollary: vk,1EN,¥i,3=1,..,2° (t0s1); 25 ).
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Proof of Lemma 1: This lemma is true for k=1 as the initial states of all

shift registers are non-trivial.

We now assume that the lemma holds for same given number k.

Consider an arbitrary input sequence X5 ¥ ¢+ an arbitrary output sequence

Yo+ -Yx and an arbitrary cascade comnection of k+1 shift registers,

yo=0: We set register k+1 to the initial state 1..0 (the zeroc is at the
output of the register). This initial state transforms sare sequence
y1‘..y}‘( to ¥q--¥y -
let g be the state of the first k registers that transforms XXy
to y}..y, . Furthermore there exists a state 57 (q,%,) that is trans-
formed by X5 to g. »
If input X4 and initial state § (q,xo) yield output zero the initial
state of the last register shall be 1..0, otherwise ..01 .
Now XO"xk is transformed to Yor ¥y -

y0=1: We start with the last register in the initial state 0..1 and proceed
as above.
If input x, and initial state s (q.,%;) vield output zero the initial
state of the last register shall be 0..1, otherwise ..10 .

The corollary follows from the fact that pk is the period of any state tra-
jectory of any cascade connection of k shift registers of length p.

q.e.d.

T(k;1l) is a primitive stochastic matrix for all k,¥N. We can make use of
the following lemma.

lemma 2: Let T be a stochastic matrix of dimension nxn with A:= minpi. >0.

; J
n i,]
let @ be a n~vector with &0 , Edi=0. We define
i=1
* n n *
d':=Td, 8= z [dll ) Bqz= E ldi] .

j=1 i=1

We get: 4,3 (1 -m)ao .

The proof of Lemma 2 is similiar to the proof of Lemma 4.1. in [5].



97
Theorem 4: With ILemma 1 and Lemma 2 we get for the matrices T(k;1)

n 2,k\n
Hln Tk;Dal s (1- & 8]l for all reN.
=1

A gives the difference between the 1n.1t.1al distribution of the
input sequences of length k and the vector (2~ ,..,Z-k
equal distributicn of the sequences of length k).

) (i.e.

Let rfn(y1..yk) denote the relative frequency of the sequence Yq--¥y in the
output sequence of same cascade connection of n shift registers during the
period pn. From Theorem 4 we get

. =k
I11_1:;\rfn(yT..yk)—2 .

We extend this result to the information entropy

(1.
1"k 0T

lim Hk(n) =
n-»m

¥hen we increase the length of a cascade connection the relative frequencies
of the word of length k converge towards equal distribution for any number k,
the entropy converges towards its maximm.

Remark. The sequence of matrices (T(k;l) )IEN mnstitutes an inhamogenous
Markov chain where the matrices T(k;1l) can be taken only from a finite set.
Markov chains of this kind have been studied by J.Wolfowitz already in 1963
(see [6]).

The rate of convergence (1 - (%)k) given in Theorem 4 cannot be improved for
k=1. If a shift register of length p contains only a single one we get

1P
T(1;1) = =
(1;1) p(

d _p2,4d
D ) @ TN =B .
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3. Conclusion.

We build a cascade connection fram clock ocontrolled shift registers of equal
length p, p>2 prime, where no shift register is in a trivial initial state.
Any output sequence of such a cascade connection has pericd pn (i.e. madmal
period), the linear recursion of any output sequence can be camputed directly
fram the initial states of the shift registers (except for the case "p2 divides
2p_1—1“) . For suitable prime mubers p we have linear recursion of length pn
independent of the initial states.

The sequences of length k occur in the output sequence of a cascade connection
with relative frequencies converging towards equal distribution when we in—
crease the length of the cascade connection. This holds for all numbers k.
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