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Abstract. Shift registers are frequently used in generatDrs of psedo randan 

shift registers perform when used as qensatms of pseudo randan sequewe~.  

we w i l l  derive results for the period, for the linear recursion and for the 
pseudo-randmess of their output sqences. 

sequences (see [ l ] ) .  W e w i l l  examinebcascade cmnecta '0n.s of clock controlled 

- 

1 . Intrcduction . 

1 1 0  - 

/li 

cascade connections of clock contmlled shift registers are a generalizatim of 
the idea of a " c l d  controlled a u m t o n " .  Clcck controlled autunata were examined 
by P.Nyffeler [ 41. A clmk controlled shift  register switches to  its next state 

w h a  hput "one" is sent to its clock and remains tmchanged when input "zero" is 
applied. W e  connect these clock controlled shift  registers to a cascade CCBlIlectian 

a s  follaws. The inplt to the cascade m n n e c t i o n  is sent to the c l d c  of ++e first 
register. The input to the clock of the i-th register, ir2 , is the sum (mdulo 2 )  

of the input to the clock of the (i-l)-th register ard the output of the (i-ll-th 
register. Likewise the output of the cascade 
to the clock of the last register and of the output of the last register (,see 

'on is the sumof the irgxlt 

also [21). 
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All shift registers in the cascade connection shall ke  of the same length pf 
p>2 prime. F u r t h m r e  we exclude sh i f t  registers w i t h  the initial states 
"all zero" or "all one". We will examine output sequences generated by the 
input sequence 111. .. . 

2.Results. 

2.1 . Periods of the output sequences. 

ward a cascade mect i cm of n clock controlled shift registers of length p. 

Cbviously any state trajectory - and therefore any output sequence - of t h i s  

cascade connection  ha^ a t  mst p e r i d  p". we are able to prwe 

Theorem 1: Any output sequence of any cascade connection of n clock controlled 
shift registers of length p, p>2 prirre, has period p". 

Pnmf: Let ki denote the nws3eT of ones in the output sequence of a cascade 
connection of i sh i f t  registers during the period pi. 

F i r s t  we prove that any state trajectory of any cascade Connection of n sh i f t  

registers has period pn. 
This is obviously true for n=1 a s  the initial state of the shift  register is 
non-triviai. W i t h  the sarre argurrwt we get gcd(kl ,p)=l. 

l b ~  assume that any state trajectory of any cascade a m n e c h  'on of n shift 
registers has period pn arid that gcd(knfp)=l. 
The wid of a state trajectory of a cascade camect~ 'on of Ml shift  registers 

has to be a multiple of pn and the number of ones sent to the l a s t  register 
during this period has to be a multiple of p. So w e  have mk, = nap  
scrre natural nun-bers m,n. Fram g&(k ,p)=l we get rrr=p, the period of any n 
state trajectory of any cascade m e c t i o n  of ntl sh i f t  registers is p*'. 
Let d denote the n m h r  of ones stored i n  the last register. we have 

for 

and gcd(kMl,p)=l follufis f m  gd(k,,p)=gcd(d,p)=l and p>2. 

Finally the period of any output sequence of any cascade connection Of n shift 
registers has to divide the period of the Correspndhg state trajecto,?. 

gcd(knfp)=l this pericd has to be p". 
q.e.d. 
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2.2.  Linear recursion. 

We introduce sans fu r the r  notations. 

Let 
cascade c0nnect.1 'on of clock controlled s h i f t  registers. 

Let fi 
1-p , where the indices l+mki-,are ccmputed rrpdulo p. 

Then the proFerty "p does not divide 2p1-l" is sufficient to prove that 
the characteristical plynanial f of the output sequence generated by the 

given initial s t a t e  can be ccmputed by 

I . .  rqi& 1 denote the initial state of the i-th register of s a t e  

i, 'I+mki,,' denote the characteristical plynmal of the sequence q 
I i-! 

2 

Fcr the proof of this theorem see [ 31. 

It is i r rpr tan t  to note that the linear recursion depends on the i n i t i a l  

sta tes  of the s h i f t  registers in the cascade connection. 
"p does not divide 2P-1-1" is no severe restriction as ~ 1 0 9 3  is the f i r s t  
pr im n m b x  to violate t h i s  condition. 
Theorem 2 generalizes P-Nyffeler's result for the linear recursion of clock 
cuntrolled a u t m t a  [ 41 . 
For prim n- p With C (x) = C x irreducible over GF'(2) we can deduce 

2 

P l  1 

i=O P 
n 

Theclrem 3: f(x) = 1 -x (p  1. 

2.3. Pseudo-randmmess. 

Consider a s e q u e n e  R:= ( (Ri ,qi) ) IEN of registers Ri w i t h  initial states qi. 
The 2 k x Z k - m t r i C e s  T ( k ; l )  := ( t ( k ; l )  . ,) give the relative frequencies of the 

13  
transformations of LFe sequences of length k caused by the cascade mmnsct~ 'on 

of the registers R (1-7 k+l , . . . ,%. 

LemM 1: For any natilrdl n&r k any cascade connection of k s h i f t  registers 

can transform any input s m c e  xl..% t o  any given output sequence yl..yk . 
Gz~mllary: \dk,EN,Vi,j=l,.., 2 k 1 

( t (k : l I i j  2 $  1. 
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Proof of LemM 1: This l m  is true for k=l as the initial states of all 
s h i f t  registers are nm-trivial .  

Pk ncw assum that the l m  holds for s m  given n m k r  k. 
Consider an arbitrary input sequence %..$ , an axbitrary output sequene 

yo..yk and an arbi t rary cascade connection of k+l shift  registers. 
yo*: We set  register k+l to the initial state 1..0 (the zero is a t  the 

output of the register). This initial state transfonrs s m  sequence 

Y ; - - Y i  to Y i * - Y k  
kt q be the state of the f i r s t  k registers that transforms xl. .% 
to y;. . y i  . -emre there exists  a state 6-l (q,%) that is trans- 
fom-ed by “0 to q. 
If  input “0 and initial state 6-l (qI%) yield output zero the initial 

s t a t e  of the last register shall be 1..0, otherwise ..01 . 
N m  ”0. .x is transformed to yo. .yk . 

y =1: We start with the last register in the initial state 0. .1 and proceed 

as above. 
I f  input ~0 and initial state 6-’ Cq,%) yield output zero  the initial 

state of the last register shall be O..lI othemise ..lo . 

0 

k ?he corollary follows frcm the fact that p is the period of any s t a t e  tra- 
jectory of any cascade m e c t i o n  of k shift registers of length p. 

q.e.d. 

T(k;l) is a primitive stochastic matrix  for  all k,lEN. Ke can make use  of 
the follming l a m a .  

LemM 2: L e t  T be a stochastic mtrix of diremion nxn w i t h  A:= e p i j  >O. 
n lr7 . -  

Let d be a n-vector w i t h  d#O I C d. = 0. We define 
1 i= 1 

Tfie p m f  of krmm 2 is similiar to the proof of LemM 4.1. in [5]. 
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'lkeorem 4: With L a m i  1 and Lemm 2 we get for the matrices T ( k ; l )  

A gives the difference between the initial distribution of the 
input sequences of length k and the &I. (2-k,..,2 (i.e. 

equal distribution of the sequences of length k) . 
-k t 

) 

k t  rfn(yl. .yk) denote the relative frequency of the sapme yl..yk in the 
output sequence of sare cascade cunnection of n shift  registers during the 
perid p".  ram m e ~ r e m  4 we get 

lim r fn(yl .  .Yk) = 2-k . 
n- 

W s  extend this result to the information entropy 

b xe increase the length of a cascade wnnectian the relative frequencies 
of the word of length k converge tcwards equal distr ibut im for any nm&r k, 
the entropy converges tman3.s its xmximum. 

Renark. The sequence of matrices (T(k;l))lEN mnstitutes an imhmrqenm 

Markov chain where the m a t r i c e s  T ( k ; l )  can be taken only f r o m  a f in i te  s e t .  

Markov chains of this kind have been studied by J.hblfowitz air- in 1963 

(see [61).  

2 k  me rate of converqence (1 - (-) ) given in Theorem 4 cannot be impnxred for 
P 

k=l. If  a shift reqister of length p contains only a single one we get  



3. Conclusion. 

V k  build a cascade umnection fran clock controlled shift registers of equdL 
length p, p>2 prime, where no shift register is in a t r i v i a l  initial sta te .  

~ n y  output sequence of such a cascade ccmection has .perid p" (i.e. m;~dmdl 

p.ncd), the linear recursion of any output sequene can be q u t d  directl Y 
2 frcm the initial states of the s h i f t  registers (except for the case "p divides 

n 2p1-1~1). For suitable prime n-s p we have linear recursion of length p 
indepndent of the initial states. 

The sequences of length k cccur in the output sequence of a cascade 
w i t h  relative frequencies converging tmards equal distribution when we in- 
crease the length of the cascade m e c t i o n .  l%is b l d s  for all n- k. 

'on 
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