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Abstract
We consider the following problem: Let s be a n-bit string with m ones and n~m
zeros. Denote by CEy(s) the number of pairs, of equal bits which are within distance
t apart, in the string s. What is the minimum value of CEy(-), when the minimum is
taken over all n-bit strings which consists of m ones and n — m zeros?

We prove a (reasonably) tight lower bound for this combinatorial problem.

Implications, on the cryptographic security of the least significant bit of a message
encrypted by the RSA scheme, follow. E.g. under the assumption that the RSA is
unbreakable; there exist no probabilistic polynomial-time algorithm which guesses the
least significant bit of a message (correctly) with probability at least 0.725 , when
given the encryption of the message using the RSA. This is the best result known
concerning the security of RSA’s least significant bit.
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1. Introduction

This paper combines a combinatorial study with the application of its results to
the analysis of a cryptological question. (The combinatorial problem is fully defined
and solved in Sec. 2.)

1.1. Cryptological Background

The importance of the notion of “partial information” to cryptographic research
has gained wide recognition through the pionecring works of Blum and Micali [BM] and
Goldwasser and Micali [GM]. In this paper we consider a much more specific question:
the cryptographical security of the least significant bit of a message encrypled by the
RSA scheme (hereafter referred to as RSA’s Ls.b) .

The RSA encryption scheme was presented by Rivest, Shamir and Adleman [RSA].
It is the best known implementation of the notion of a Public Key Cryptosystem,
which was suggested by Diffie and Hellman [DH]. Encryption using the RSA is done by
raizing the message to a known exponent, €, and reducing the result modulo a known
composite number, N, the factorization! of which is kept secret. The inverse of e in
the multiplicative group Z ; ) is used for decryption and is kept secret. It is widely
believed that the RSA is hard to break. This means that an adversary who does not
know the secret (e} mod ©(NN)) will not be able to compute the message from its
encryption (i.e. to invert the encryption function).

However, even under this unbreakability assumption; it might be the case that
the RSA leaks some “valuable” partial information. le. it might be that given the
ciphertext, one can compute some function of half of the bits of the plaintext. Proving
that, under the unbreakability assumption, this is infeasible will make the RSA much
more attractive. This seems to be a high tool. Research attempts are meanwhile focused
at the feasibility of guessing correctly the least significant bit of the plaintext (i.e.
RSA’s Ls.b.)2.

By saying that RSA’s l.s.b is p-secure we mean that guessing it correctly with
probability at least p is as hard as inverting the RSA. Consider an oracle that when
given the encryption (using the RSA) of a message guesses the least significant bit of
the message correctly with probability p. Such an oracle will be called a p-oracle for
RSA’s l.s.b . Clearly, the existence of a polynomial time algorithm that inverts the
RSA using a p-oracle for RSA’s 1.s.b implies that RSA’s L.s.b is p-secure.

It is believed that RSA’s Ls.b is (§ + €)-secure , for arbitrary small constant e.
Proving this statement might be a major breakthrough on the way to proving that any
“valuable” partial information about the message encrypted by the RSA is as hard to
get as inverting the RSA. Progress towards this goal has been slow but consistant, in
the recent years.

! To be exact, N is the produce of two large primes, p and g. o(-) is the Euler’s totient function,
thus ¢(pg) = (p— 1)(g — 1).

2 Nevertheless, results have been achieved also w.r.t. other kinds of partial information. For details
consult [BCS] and [VV2L.
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The first step was taken by Goldwasser Micali and Tong [GMT] who proved that

RSA'’s Ls.b is (1 — l7:,-!)-secure, where [N| is the size of the RSA’s modulus.

Ben-Or, Chor and Shamir greatly improved this result by proving that RSA’s l.s.b
is (3 + ¢)-secure, where ¢ is fixed and arbitrary small. Their paper [BCS] contains an
algorithm which inverts the RSA function. Their algorithm uses a (§ + ¢)-oracle for
RSA’s L.s.b (in order) to determine the parities of certain multiples of the original
message. For further details consult [BCS] or [VV2].

Vazirani and Vazirani [VV1] have presented a very sophisticated modification of
the algorithmic procedure used by Ben-Or, Chor and Shamir. The theme of their
modification is a much betler use of the oracle answers. They showed that their
modification is guaranteed lo succeed when given access to a 0.741-oracle for RSA’s
l.s.b. Recently, they have improved their analysis by showing that their modification
is guaranteed to succeed even if it uses a 0.732-oracle.

Using the combinatorial results obtained in this paper, we show that the Vazirani
and Vazirani algorithm is guaranteed to succeed when it uses a 0.725-oracle for RSA's
l.s.b. Other observations w.r.t the Vazirani and Vazirani algorithm as well as w.r.t
other inverting algorithms are also implied.

1.2. Our Results

The following problem occured to us when trying to improve Ben-Or, Chor and
Shamir’s result [BCS}:

Let s be a n-bit string with m ones and n — m zeros. Two bits in the string s
are said to be t-close if they are within distance ¢ apart. Denote by CE(s) the
number of pairs of equal t-close bits in the string s . What is the minimum
value of CEy(-), over all n-bit strings which consists of m ones and n — m zeros?

In Sec.2 we prove a (reasonably) tight lower bound on this combinatorial problem.
With respect to proving the “amount” of security of the least significant bit of the
RSA, this is a double-edged-sword:

(1) It provides a powerful tool for analyzing certain algorithms for inverting the
RSA using an (} + 6)-oracle for RSA’s Ls.b .

For example the algorithm proposed by Vazirani and Vazirani [VV1] is shown
to work when it uses any 0.725-oracle for RSA’s Ls.b (i.e. §=0.225). This
establishes the best result known conserning the security of RSA’s l.s.b .

(2) It points out the weakness of various proof techniques for determining the
cryptographic security of RSA’s L.s.b .
For example the Vazirani and Vazirani algorithm [VV1] may fail to invert if it uses a
Z.oracle for RSA’s ls.b .

These implications will be discussed in Sec. 3 . We believe that the combinatorial
result has also other implications.
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2. The Combinatorial Results

In this section we give a formal definition of the combinatorial problem; discussed
in the introduction, and prove a (reasonably) tight lower bound on it.

2.1. Dcfinitions

Let s = (sq, 51, 82, .- - 8|s|—1) be a binary string of length |s]. We denote by sh;(s)
the string which result from s by the application of ¢ left cyclic shifts. Le:

Shi(s) = (Sia Si41,5{42; - si+|si—l) 3

where indices are considered modulo |s].

Define the i-overlap of a string, s, to be the number of positions which agree in s and
shi{s). The i-overlap of s will be denoted by over,(s) , ie.

over;(s) = Hamming(s = shi(s)),
where = denotes the bit by bit equal operation and Hamming(s) denotes the number
of ones in s . Note that over;(s) = {{7:0 < 7 < |s| A 5; = s34} -
Denote by AverOver(s,t) the average over the z-overlaps of s for ¢ € {1,2,..,t}. Le.

AverQuver(s,t) Z overy(s

l=l
We remind the reader that CEy(s) was used to denote the number of pairs, of equal
bits which are within distance ¢ apart, in the string s . Le.
CE(s)={(#,7):0<i<j<nAsi=s;Aj-i < t},

wheren ==| s |.
Clearly, CEy(s)=X!_1|{7: 0 < j < n A s; = s;4:}|- Thus,
CEys) = t-AverOver(s,t) .
When evaluating CEy(s) consider “lines” which connect equal t-close bits in s (i.e.
positions that contain equal values and are less than ¢ bits apart in the string s). These

lines are hereafter called overlines. Note that CEy(s) is nothing but the number of
overlines in the string s.

Let n and m be integers such that 0.5n < m < n. Let § = m_f?'sn. We denote
by S the set of n-bit binary strings with m=(0.5 + §)n ones (and n — m zeros).

Denote by Aver(n,é,t) the minimum value of AverOver(.t) divided by n, when
minimized over all strings in 55 ILe.

Aver(n,8,t)= min,cgs { I - AverOver(st) }.
It is straightforward to see that for every s € S5, AverOver(s,n)=(0.5 + 26%)n.

In this section we study Aver(n,8,t) for arbitrary t, t<n. We obtain non-trivial
n

results, as the surprising fact that Aver(n,0,t) converges to V2 -1~ 0.414 , when 2
and t are large enough.



131

2.2. Proposilions

We will assume throughout this section that ¢ < 1(n—2) . We will analyze Aver(n,8,t)
as follows: first we will show that the minimum of CFy(-} is achicved by strings which
belong to a restricted subset of Sf‘; and next we will minimize CEy(-) over this subset.
This will establish a lower bound on Aver{n,§,t). The upper bound will be implied
by the proof of the lower bound, since this proof specifies a string s € S% for which
CE,y(s) = nt -Aver(n,é,t).

2.2.1. Reduction into a restricted subset
In this subsection we will show that when analysing Aver(n,$,t) it is enough to consider
strings in S¢ which have the following property:

The string contains no “short 3-alternations substring”. A short 9-alternations
substring is a substring of the form o7"0*r and length less than ¢ + 2, where
o 7% r € {0,1}. (Here, and throughout this paper, 0¥ denotes a non-empty string
of o's.)
Proposition 1: over;(s) = over;(sh;(s))
Prop. 1 follows directly from the definitions which consider strings as if they were
cycles. From this point on, we also take the liberty of doing so.

The proofs of the following propositions are omitted; they can be found in the full
version of this paper ([G84]).

Proposition 2: Let o; € {0,1}, for 1 < 7 < 2t. Let & be a binary string. Let
Niryr, = CEy(0102- - 0471 7201410142 - -02ea) . Then nyg — ngy = 2(0} — o).

Note that switching r; and 2 in the string o090 - -0471 7204410442 - O results in
the string o0y - -0479T10¢410142- - -O9x. The latter string has more overlines (than the
former one) only if 0y = 7 7 71 = 02,. Note that the latter string has less overlines
if0'1=T1?£T2=02,,.

Proposition 3: Let o be a binary string and let z,y, z,« be integers such that
z+y > tbut y+ z < t. Then:

(i) CEer®0¥r*~lora) < CE,(or*0¥1%0q).
(ii) CEi(or®a¥r* oot ' Ysq) < CEfor*0Yr? o4 r %oa).
(iif) CEy(or®0¥or%a) < CEior*0¥r%0a).

Proposition 4: Let s € S¢ be a binary string such that CEy(s) = n-¢-Aver(n,5,t).
(Le. s is a string with minimum number of overlines among all strings in Sf, .} Then
there exist a string, s € S¢, such that :

(i) The string s' contains a substring of the form 107110 the length of which is
at least t + 2.3

(ii) CEy(s") < CEu(s) + 2.

¥ We remind the reader that o denotes a non-empty string of os.
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Proposition 5: Let s’ € $° be a string, with minimum number of overlines,
which satisfies Prop. 4 . Then with no loss of generality, the string s’ contains no
substring of the form 107110 the length of which is less than ¢ + 2. Furthermore, the
string s’ contains at most one substring of the form 011071 the length of which is
less than ¢t + 2.

We remind the reader that CFEi(s') < ntAver(n,§,t)+t* and that s’ € S%.

Proposition 6: Let s’ € §% be a string as in Prop. 5. Then there exist a string
s e Sf‘ such that:

(i) The string s” contains no substring of the form 10%1*0 the length of which
is less than ¢t + 2.

(i) The string s” contains no substring of the form 0170%1 the length of which
_is less than t + 2.
(iil) CE(s") < CEy(s") + t2.

We remind the reader that our objective is to given a good lower bound on
Aver(n,8,t)=min,c gs 7 CEy(s). Note that we have restricted our attention to strings
that donot have short 3-alternations substrings; i.e. substrings of the form 0170%1
or 1071%0 which have length less than t + 2. This is sufficient since there exist such
a string, namely s”, that has approximately the minimun number of overlines. Le. -
CE(s") < ntAver(n,6,t)+2t>. Formally we define R to be the set of strings which
belong to S and do not have short 3-alternating substrings. Averp(n,6,t) will denote
min, ¢ s 7 CEy(r). Clearly,

Proposition 7: Aver(n,5,t)<Averp(n,§,t)<Aver(n,§,t)+2.

Let us define even a more restricted subset of S%: The set MRS is the subset of
strings which belong to R? and do not have long homogenous substrings; i.e. substring of
the form o**!, where o € {0,1}. Also, Avery(n,6,t) will denote min,¢psps ZCEx(r).
Let us first give a tight lower bound on Averjsp(n,6,t) and only later prove that this
bound is approximately also a bound for Averp(n,é,t).

2.2.2. Lower bound for Averpz(n,é,t)
Recall that each of the strings in MRS C S? has the following properties:
(i) The string contains no short 3-alternating substrings.
(i) The string contains no long homogenous substrings.

We will relay on the above properties of the strings in MRf‘ in order to bound
Aver prp(n,6,t). Given a string r € MR’ we will introduce an expression, for CEy(r),
which depends only on the numbers of bits in each maximal substrings of consecutive
equal bits. In other words, we will introduce a localized counting of CE(r).

Definition: We say that b is a block {an all-o block) of the string r if it is a maximal
substring of equal bits. l.e. b = ot and r = rbra, where 7 54 0 and « is an arbitrary
string.



133

Denotations: Let g denote the number of all-zero [all-one] blocks in r. Beginning from
an arbitrary position between an all-one block and an all-zero block and going cyclically
from left to right; number the blocks of consecutive zeros [ones| by 0,1,2,...,(¢g — 1) .
Denote by z; the number of zeros in the ¢-ih all-zero-block and by y; the number of
ones in the :-th all-one-block. le., r = 070 %0031 [¥1072]¥2. . .0%a-1 | Ve- 1,

Proposition 8: Overlines occur (in r) only either within a block or between two
consecutive blocks (of the same bit).

Remark: Note that Prop. 8 holds even if 7 € R‘f‘.

This suggests to evaluate the number of overlines (in 7) by counting the
“contribution” of each (homogeneous) block to it. This counting is herealter referred
as the Block-Localized Counting (BLC) and proceeds as follows:

Block-Localized Counting (with respect to a block of length { in #):
(i) The number of overlines within the block, denoted I;.

(i1} The number of overlines between bits of the blocks neighbouring this block
(i.e the first block on its left and the first block on its right}, denoted Bj.

Note that I; and B; are easy to evaluate and can be used to express CEy(r). Namely,

Proposition 9:
() CEy(r) = TI0((Zy: + By) + (I, + B.,)), where r = 0701%00711¥1. . .0%-11¥s~1,

(ii) For | < t, I, = (}) and B, = £!Z} 1.

(iii) For L =, I; = (§) and By = 0.

Remark: Note that for | > ¢, I; = (;) + (I —t)t and B; = 0. {Note that for & > 0,

CEi(ott*) = CEy(ot**~!) + t = CE,(0*) + kt.) However such substrings donot exist

in a string which belongs to MRﬁ.

Evaluating I; + B; we get
Proposition 10: The contribution (to the BLC) of one I-bit long block (in r) is:

FO)=12—(t+1)l+ 5

Note that the contribution of all the all-zero blocks to the number of overlines (in 7)
only depends on the way the zeros are partitioned among the all-zero blocks. (Le. it
is independent of the way the ones are partitioned among the all-one blocks.) This
contribution amounts to:

g(ZOv 21y ey zq—l) = Eg;}) f(zi) 3

where r = 0%01%00%11¥1 ... 0%-1]1¥-1,

Note that g(-,-,--, -} is a quadratic form and therefore
Proposition 11: For fixed g, t and k, the minimum value of the function
g(zo, 21, .., Tg-1) subject to the constraint k = Z?;:, z;, is obtained at zo = z; =

...=zq_l=— .

q
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Thus, the minimum number of overlines is achieved if all the all-zero-blocks [all-one-
blocks] are of the same size. This yields

Proposition 12: Let @ = {g € Integers: & < g < n—m}. Then:

ntAveryp(n,é,t) > mingco{g - (f(F) + f('—'-;l'))} .
We remind the reader that m = (0.5 + 6)n .
Elaborating the r.h.s. expression of ’rop. 12 we get

Proposition 13: Avera(n,6,t)> mingeq{h(q)}, where

t+1 0.5+26*
hi(q) = T .g 4 LR L tn
Note that

Proposition 14: The minimum of the function hS(-) is obtained at:
2
9min == Ois(t+:21ﬁj L

and the minimum value, h%(gpm,n), is:

v = /(2 +862) . Bl
Thus, Aver pp(n,6,t)> ve. All that is left is to derive a lower bound for Averg(n,5,t).
2.2.3. Lower bound for Averp(n,6,t) and Aver(n,s,t)

In this subsection we show that a string, rg € RS, with minimum overlines can be
transformed into a string ) € MR%), such that n' &~ n, §' ~ & and CE(rp) =~ CEy(ro).
We conclude by using this fact and the lower bound for Averasg(n,6,t), to introduce a
lower bound for Averp(n,é,t).

Proposition 15: Let rg € R’ be a string with minimum number of overlines; i.e.
CE,(rg) = ntAverg(n,5,t). Then:

(i) For o € {0, 1}, either ry contains no substring of more than ¢ consecutive o’s
or rp contains no block of less than t consecutive o’s. Futhermore, w.l.o.g, ro
contains atmost one substring of more than ¢ consecutive o’s.

1
(i) Ift > i-—f% then 7y has no substring of the form o2,
2

1
(i) Ift < 4?:—2 then Aver(n,§,t)==26.

1 ’
(iv)Ift > E% then there exist a k < ¢, 2 6’ > 6 and a rj € MRS, such that
2
CEy(ro) > CEy(rp) — kt .

We conclude by using Prop. 15;,) and the lower bound for Aver ysp(n,6,t), to introduce
lower bounds for Averg(n,5,t) and Aver(n,§,t).
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Proposition 16: If ¢t > fg then

PR,

(i) There exist 0 < k& < ¢t and & > § such that
AVel’R(n,é,t)>}\VCI‘A1“(n + k,&’,t)—%

(ii) Averp(n,6,t)>v) — £ .
(iii) Aver(n,6,t)>v8 — ¥

2.3. The Main Results

Throughout this section we assume that jl—é <t<in-2).
Lower Bound Lemma: Aver(n,&,t)zls 2* least
(erse) - H -ty - &
The proof follows immediately from Prop. 14 and 16 -

Upper Bound Lemma: Aver(n,é,t) is at most

(V(2+867) - Bl-t1) + == 4 L.
The proof follows from observing that the proof of the lower bound specifies the
structure of a string which achieves minimum CE}(:) among all strings in MR?. The
only problem in constructing such a string is that non-integer numbers, of blocks and
block sizes, may appear. However, the overlap added by the round-up of the number
of blocks is less than £+—l, while the overline added by the round-up of the blocks’ sizes

is less than 2—3 For details see the full version of this paper.

Evaluating the expressions in the above lemmas we get

Corollary 1:
(i) V2—1—-0(}) < Aver(n,0,t) < \/§—1+O(ti2)+0(£).
(i) For t > 2500 and n > 300000 - t, Aver(n,0.177,t) > 1 + 0.0001 .
(iii) For t > 500 and » > 10000 - ¢, Aver(n,0.225,t) > 0.55 + 0.0001 .
(iv) For every 2500 < t < 55 and § < 0.176 , Aver(n,6,t) < }
(v) For every 500 < t < pgiqp and 6 < 0.224 , Aver(n,6,t) < 1—26 .

2.4. Additional Definitions and Results

In this section we define a different, yet related, combinatorial problem. Instead
of considering the average overlap over all “small”? shifts; we consider the maximum
overlap obtained by one of the “small” shifts.

Let us define an 7-overline to be a line which connects a pair of equal bits which
are (exactly) at distance 7 apart.

4 Here, “small” means not greater than t.
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Denote by MaxOver(s,t) the maximum over the i-overlaps of s for 7 € {1,2,..,t}. Le.
MaxOver(s,t)=maz,<;<; { overi(s) } .

Denote by Max(n,4,t) the minimum value of MaxOver(s,t) divided by n, when minimized
over all strings in S% . Le.

Max(n,8,t)= min,cq { + - MaxOver(s,t) }.
Clearly,
Proposition 17: Max(n,§,t) > Aver(n,6,t).

This establishes a trivial lower bound on Max(n,é,t). We donot beleive that this bound
is tight; however we failed to prove a better one. On the other hand the following
proposition yields an upper bound on Max(n,0,t).

Proposition 18: ((i) is folklore and (ii) appears in van Lint{L})
(i) For every De-Bruijn Sequence?, s, of length 2F and every 1,1 € {1,2,..,k—1}

over(s) = 4 - 2k .

(ii) For every k there exists a Shortened De-Bruijn Sequence®, s, of length 2% — 1
such that for every ¢, ¢ € {1,2,..,2F -2},
overy(s) = 2¥"1 1 ~ + - (2t —-1).
Using Prop. 18 we also obtain an upper bound on Max({n,§,t); i.e.
Proposition 19: [Here q is an integer.]
() Fort+1=1=2%—1n=gqland § = B! Max(nét) < J+6— gy + 1.
(i) Max(n,6,t) <Max(n,8,t + 1).
(iii) Max(n,6,t)< § + 6 + O(%).

The proof appears in the full version of this paper.

5 The 2*-bit long string (ag, 81, 82, .., 825 _;) is a De-Bruijn Sequence if (when considered in circular
order) it contain as substrings all possible bit-strings of length k.

8 A Shortened De-Bruijn Sequence, of length 28 ~ 1, is a 2*-long De-Bruijn Sequence in which a zero
has been omitted from the all-zero block of length &k .
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3. On the CryptographicSecurity of the RSA’sL.S.B

In this scction we apply the results of the privious section to the analysis of
algorithms which invert the RSA encryption function when given access to an oracle
for the least signilicant bit of the encrypted message. This implies results (concerning
the security of RSA’s Ls.b.) which fall into the following three categories:

(1) A 0.725-security result (for RSA’s Ls.b)

(ii) Conditional improvements of the above result. L.e. results which will hold if
some conjecture is proven.

(iii) Bounds on the possibility of improvements using current techniques.

3.1. Specific Background

Our 0.725-security result is based on Vazirani and Vazirani work [VV1], which is
an improvement of Ben-Or Chor and Shamir [BCS] work. In this subsection we sketch
some of the ideas used in these nice works.

3.1.1. A Sketch of Ben-Or Chor and Shamir Algorithmic Procedure
The essence of the Inverting Algorithm:

The plaintext is reconstructed , from its encryption, by running a g.c.d procedure
on two multiples’ of it. The values of these multiples {as well as the values of all
multiples discussed hereafter) are “small”®. A Modified Binary G.C.D algorithm
is used. To operate, this algorithm needs to know the parity of multiples of the
plaintext. Thus, it is provided with a subroutine that determines the parity of
these multiples.(see [BCS])

Determining Parity using an Oracle which may err:

The subroutine determines the parity of a multiple ,kz, of the plaintext ,z, by
using an (} + 6)-oracle for RSA’s ls.b as follows. It picks a random r and asks
the oracle for the parity (i.e. l.s.b) of both rz and rz + kz feeding it in turn with
E(rz) = E(r)E(z) and E((r + k)z) = E(r + k)E(z)® . The oracle’s answers are
processed according to the following observation. Since kz is “small” with very
high probability rz < rz + kz . Then, the parity of kz is equel to 0 if the parities
of rz and rz + kz are identical; and equal to 1 otherwise. This is repeated many
times; every repetition (instance) is called a kz-measurement (or a toss of the
kz-coin). Note that the outcome of a kz-measurement is correct if the oracle was
correct on both rz and rz + kz . The outcome is correct also if the oracle was
wrong on both queries (but this fact is not used in [BCS]).

7 All integers and operations are considered modulo ,N, the RSA’s modulus.
8 Here and throughout the rest of the paper “small” means bounded by a very small fraction of the

RSA’s modutus.
® E(M) denotes the RSA encryplion function. Recall that E(M) = M® {mod N), where N and ¢
are respectively the RSA’s modulus and exponent.
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(Trivial) Mcasurement Analysis:
A kz-coin toss is correct with probability at least 26 .
(This suffices if § = % + ¢, see [BCS])
3.1.2. A Sketch of Vazirani and Vazirani Modification of the BCS-Procedure

Distinguishing 2 Goeod Coin from a Bad one:

For 6 < }; if when running a Monte-Carlo experiment on a kz-coin toss, more
than a 1-26 fraction of the answers agree on some value, then this is the correct
value.(In such a case the coin is said to be distinguishably good. See [VV1])

Using Distinguishably Good Coins:

Let t be a fixed constant and K be a set of cardinality O(log N). If for everyk € K
there ezist a 1 < 7 < t such that the (7 - kz)-cotn is distinguishably good then one
can determine the parity of kz. (This is done by replacing every kz-measurement,
of the subroutine, by a set of O(log log V) measurements, see [VV1]). (The above
condition will be referred to as the Distinguishability Condition.)

Vazirani and Vazirani combined the above sketched ideas to an algorithm that inverts
the RSA using a (% + é)-oracle. It remained to be shown that when given certain
oracles for RSA’s L.s.b the Distinguishability Condition holds. In [VV1] Vazirani and
Vazirani proved that the Distinguishability Condition holds for any 0.741-oracle for
RSA’s ls.b.,; in [VV2] they improved their analysis and showed that this condition
holds for any 0.732-oracle.

3.2. Cryptographic Implications of our Combinatorial Results

It is easy to show that the Distinguishability Condition is equivalent to the
following condition, hereafter referred to as the Big-Advantage Condition : for some
fixed t, Max(N,6,t)>1—26 +¢.

(Use oracle transformation through multiplication by the inverse of kz mod N. Note

that if the inverse does not exist it is feasible to factor N and inverting the RSA
becomes easy.) This was also observed by Vazirani and Vazirani [VV2].

Thus, we can summerize Vazirani and Vazirani’s [VV1] work by the following

VV-Theorem: Let N be the RSA’s modulus and ¢ be a fixed constant. If
Max(N,6,t)>1 — 26 + € then any (} + 6)-oracle for RSA’s Ls.b can be used to
efficiently invert the RSA. (In other words: if the Big Advantage Condition holds
for 6 then RSA’s Ls.b is (4 + 6)-secure.)

By our results, the Big-Advantage Condition holds for § > 0.225 . Namely, using the
VV-Theorem, Prop. 17 and Corollary 1;) we get

Corollary 2: Any 0.725-oracle for the least significant bit of the RSA can be
efficiantly used to invert the RSA.
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In other words
Theorem: RSA’s Ls.b. is 0.725-secure.

Note that the result of corollary 1 is tight. Thus under the condition
Aver(n,6,t)>1 — 26 + ¢ , the result of Corollary 2 is optimal. However,
Aver(n,8,t)>1—26 + ¢ , is more than is nceded to satisly the Big-Advantage Condition.
(Recall that the Big-Advantage Condition requires only that Max(n,6,t)>1— 26 + ¢.)
Thus, any improvement of the current lower bound on Max(n,é,t) will yield an
improvement of the result of Corollary 2. We beleive that Max(n,8,t)> Aver(n,é,t) and
thus that such an improvement is possible. Furthermore we conjecture that

Conjecture 1: Max(n,é,t)= § + 6 .
Combined with the VV-Theorem this implies

Corollary 3: If Conjecture 1 is valid then RSA’s Ls.b. is (% + ¢)-secure, for
arbitrary small fixed ¢.

Note that under the Big-Advantage Condition the “result” of Corollary 3 is
optimal. This is due to Prop. 19;;) which states that Max(n,6,t)< }+6 . Thus,
using the VV-Theorem (or any proof technique which requires that the Big-Advantage
Condition holds) one cannot hope to prove that RSA’s Ls.b is 3-secure.

Let us conclude by pointing out that the full power of the results obtained in
section 2.3 was not used; however, we conjecture that it can be used. Namely,

Conjecture 2: Let IV be the RSA’s modulus and ¢t << N. If Aver(N,é,t)>% +e€
then any (} + §)-oracle for RSA’s Ls.b can be used to efficiently invert the RSA. (In
other words: if Aver(N,8,t)>1 + € then RSA’s L.s.b is (§ + 8)-secure.)

The condition of the statement of Conjecture 2 is hereafter referred to as the Average-
Advantage Condition. By Corollary 1) , the Average-Advantage Condition is satisfied
by § = 0.177; thus

Corollary 4: If Conjecture 2 is valid then the RSA’s 1.s.b is 0.677-secure.

Note that § = 0.177 is the minimum for which the Average-Advantage Condition
is satisfied. Thus no progress beyond the § = 0.177 point can be made through the
Average-Advantage Condition; i.e. when relying on it one cannot hope to prove that
RSA’s l.s.b is 0.676-secure.

Note that in Corollary 4 the missing part to reach the stated result is the
algorithm that will use the analysis. (The analysis of the question which oracles
satisfy the Avarage-Advantage Condition is complete!) However, in the case of the
Big-Advantage Condition improved results can still be achieved (just} by improving
the analysis of the combinatorial problem (see Corollary 3).
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4. Conclusion

We have solved a combinatorial problem and have shown how to use this solution
to improve knowledge on the security of RSA’s Ls.b . We have also pointed out possible
directions for further improvement of our result. Improved resuits can be obtained by
either conducting a better combinatorial analysis of Max(-,-,-) or by suggesting an
inverting algorithm based on the Average-Advantage Condition.

However such improvements will not suffice to show that RSA ls.b. is ;‘—f-secure.
We believe that any improvement in the results concerning the security of RSA’s L.s.b |
beyond the § point (which is still out of reach), must make use of additional properties
of the RSA.

5. Epilogue

Meanwhile, Schnorr and Alexi [SA84] proved that RSA Ls.b is (§ + €)-secure, for
every fixed €. Thus, the above coclusions are no longer of interest.

Schnorr and Alexi’s proof is based on guessing the parity of O(log log N) randomly
selected positions and using these positions in all measurements of Ben-Or, Chor and
Shamir’s algorithmic procedure. Thus, the oracle is queried only about one end-point
of each measurement and the analysis is w.r.t single positions rather than being w.r.t
pairs of close positions.

Further improvement was achieved by Chor and Goldreich [CG84], who proved
that RSA Ls.bis (§ + E‘?—ﬁ)-secure, for every fixed c.
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