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ABSTRACT 

The Matsumoto-Imai public key scheme was developed to provide very fast signatures. It is 

based on substitution polynomials over GF(2'"). This paper shows in two ways that the 

Matsumoto-Imai public key scheme is very easy to break. In the faster of the two attacks the time 

to cryptanalyze the scheme is about proportional to the binary length of the public key. This shows 

that Matsumoto and Imai greatly overestimated the security of their scheme. 
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1. INTRODUflION 

Several attempts have &en made to use the fields CF(2") 111 in cryptography. The motivation 

is that these fields allow very fast computation and are very easy to implement in hardware [Zl. 

However, many such attempts quickly yielded to cryptanalytic attacks. For example, an extension 

of the RSA scheme to the fields GF(2") [31 was immediately broken [4,101. The security of the 

fields GF(2") in public key distribution systems 151 was also overestimated (61. Cryptanalysis is 

possible there if the dimension rn of the field CF(2") is less than lo00 161. 

The Matsumoto-Imai public key scheme [71 also uses the fields GF(2m) .  It allows generation of 

signatures much faster than the RSA scheme. Moreover the scheme is very easy to implement. 

However, in this paper we give two efficient algorithms to cryptanalyze the Matsumoto-Imai public 

key scheme. 

First the details of the Matsumoto-Imai scheme are presented, based on our interpretation of 171. 

Then an overview of the first and second cryptanalytic attack are given. Both attacks use the public 

knowledge of the construction algorithm for public keys, and find secret parameters used in the 
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construction of the public key. These algorithms are then presented in detail. 

2. THE MATSUMOTO-IMAI PUBLIC KEY SCHEME 

The Matsumoto-Imai [71 enciphering is defined over GF(2"), the message space. The public 

key is a substitution polynomial 111: E ( X )  - Z: e iX i .  For a message Y, which belongs to 

GF(2'"), the ciphertext is E ( Y ) .  In order to have a "short" public key and to be able to encipher 

rapidly, most of the ei must be zero. To that end, E M )  is constructed as E ( X )  a(b+XQ)' 

modulo (X2'+X), where the Hamming weight [21 of @ is r .  One can then easily prove that only 2r 

coefficients ei will be non-zero. If r is small (e.g., 14, as suggested in 1711, the public key is not too 

long. E (X) in expanded form is made public, while a , b , a .  and ,6 are kept secret in order to be able 

to decipher fast. In order to specify E (XI, the field GF(2'") has to be made public also, and r can 

be deduced from the number of non-zero coefficients. Therefore we have: 

r - 2  

i - 0  

Remark: One can consider that m and r are given, so these values do not have to be deduced. 

3. MAIN PRINCIPLES FOR T€IE CRYPTANALYSIS OF THE MATSUMOTO-IMAI PUBLIC 

KEY SCHEME 

In order to allow a unique deciphering, the system designer has to chose 

g ~ d ( a , 2 ~ - 1 )  - gcd(8,2'"-1) = 1. and so from now on we will assume these conditions hold. The 

following theorems help to explain the cryptanalysis. 

Theorem I :  I/ the public key is constructed as mentioned above and ,6 is written as 

B = 2"', with 0 < u J < m ,  
j - I  

then the exponents of X with mn-zero coefficienfs can be expressed as 

a I: zJZUJ (mod 2"-1), with zJ = 0 or 1 ,  
1-1 

(1) 

(2) 

and their corresponding coeficients as 
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ab' with k (1-zj)2') (mod zm-1). 
j -1  

(3) 

Proof. Using the construction algorithm for public keys and (11, we have E ( X )  - 
(b+X")"'. Since the characteristic of GF(2m) is 2, E W ' =  a fi (b2' +A?''), and using 

X modulo Xr + X we obtain (2) and (3). m 

a 
j - 1  j-1 

X y  

Corollary 1: At Ieast m different (a ,  b ,a,j3) determine the same enciphering key. 

Proof. Choose a' E 2 h a  and j3' 3 2m-h@ (modulo 2"'-1) and use the proof of Theorem 1. 

It is sufficient to find any one of these equivalent (a,b,a,j3) in order to break the scheme. TO 

simplify the description, all these equivalent keys will be called the secret key. We will sometimes 

suppose in the paper that u 1  - 0, which by Corollary 1 entails no loss of generality. 

Corollary 2: If u 1  - 0 then b = (coeficient of X to the power O)/(coeficient of X to the power 

d and a - (coefficient of X to the power 0)lbB. 

Proof: Can be verified easily using Theorem 1. 

Theorem 2: r f  gcd(a,2'"-1) - 1 and gcd@,2'"-1) = 1, then the list of exponents of X in 

E m )  with nonzero coeficients contains a unique subset of size r of the form 

b"al , 2v1a~,...,2v'al] ( modulo P-1) .  Taking Corollary 1 into account one has a = OLI and 

,8 = 22'J. 

ProoJ In view of Theorem 1 this subset is actually present in the list of exponents. Let now y 

be any other element of the list, say y (2" + Z P 1 +  ... + P)a (modulo 2"-1), where 

bl,p 2,. . . .ps] is a subset of (uI ,u2 ,  ..., u,] with s >, 2. We shall prove that the list contains fewer 

than r elements of the form 2 k y  (modulo 2"-1). First it is clear there cannot be more than r such 

elements, because for each i ,  each sum pi+k (modulo m )  must coincide with one of the integers 

u l , u 2 ,  ..., u,. If there were exactly r elements, then one would necessariIy have pl+kj  u,(,) and 

p2+k, us(,) (modulo m ) ,  for j - 1,2 ,..., r ,  where x and u are two permutations on {1,2 ,..., r ) .  

Taking the binary exponential of these identities and adding the results together (for j = 1.2, ..., r )  
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one readily obtains j 3 ( 2 P ' - ' I  - 1) 

a n d p 2  f p , .  

0 (modulo 2"'-1), which is impossible since gcd@.2"'-1) - 1 

If one finds an a1 which satisfies the above property, then a will be chosen equal to al. The 

calculation of j3 is then trivial; it is in fact obtained at the same time as a. Once a and j3 have been 

found, a and b are calculated using Corollary 2. As a consequence of Theorem 2 and the remark at  

the beginning of this section, one does not need to check that the obtained a is correct! TWO 

algorithms will now be presented which find a and p. The first algorithm uses the calculation of the 

inverse of elements modulo 2"'-1. The second one is based on shift operations and sorting 

algorithms. 

4. CRYPTANALYSIS USING INVERSE CALCULATION 

4.1 The Principles Of The Algorithm 

Exponents of X with non-zero coefficients will be written as it, with 1 6 k 6 2'. For each 

k, l < k < 2 r ,  we test whether a - i k .  If gcd(ik,2"-1) is not equal to one, a wrong choice for a was 

made: If gcd(ik,2"-1) = 1 then several techniques can be used to find 8. In one of them the 

cryptanalyst first calculates 

f/ i/ik-' (mod ~ " ' - 1 ) .  I < c < z r .  (4) 

In view of Theorem 2, if r values o f f ,  are powers of 2, then ik is a, and B is the sum of these r 

values off,.  If no such r values are found, continue the exhaustive search. Because r is small this 

exhaustive search is fast. 

4.2 Speed Evaluation Of The Algorithm 

The number of elementary steps (such as additions and shifts) used in the above cryptanalytic 

algorithm will be analyzed. First the complexity of each step will be obtained; next this value will 

be multiplied by the number of times each step is executed. 

The calculation of the gcd(ik,2"-1) and the calculation of it-', if it exists, can be done a t  once. 

This requires O h )  steps (81 (subtractions or shifts). This means in total O(rn2') steps during the 
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exhaustive search for a. The calculation of (4) requires in practice O(m2)  [81 elementary steps 

(additions and small multiplications). For larger values of rn better algorithms (e.g., using the 

FFT) can be used [PI. This means for the exhaustive search that (4) is executed in worst case in 

O ( r n 2 2 9  steps, while on average it takesO(m22>/r) steps. The calculation of @ requires for each 

trial O(log2 rn) steps. We conclude that the cryptanalysis requires O ( n 1 ~ 2 ~ / r )  steps on average, 

and O(m22? in the worst case. The next algorithm has an improved speed performance. 

5. CRYPTANALYSIS USING SHKFT OPERATIONS 

5.1 The Principles Of The Algorithm 

In the second method of attack we partition the exponents of X with nonzero coefficients into 

sets S,. Two different exponents ik and il of X, with non-zero coefficients, will belong to the same 

set S, if and only if for some s, ik 2sil (mod 2"--1). In other words, ik and i, belong to the 

same set S,  if one can obtain ik from il by a suitable rotation of its binary representation. The 

cryptanalysis consists of determining all different sets S,, for all exponents of X with non-zero 

coefficients. Using Theorem 2 exactly one S,,, which we call S,, will contain r elements. Using 

Corollary 2, any element of S,  can be chosen as a. Identifying the required rotation operations for 

going from a to obtain the other elements of S,, we obtain ,3. We now describe how the above ideas 

can be carried out. The speed of the algorithm will be discussed later. 

First we define a unique representative for each set S,. A value vp is the representative of the 

set S, if it is the smallest of the m values obtained by rotating 0,1,2, ..., m-1 times an element of 

the set S,,. Note that v,, can be viewed as the value of a function v ( i )  defined over the set 

(0,1,...,2m-21 and satisfying v ( i J  - v ( i J  if and only if i, 2*i2 (mod 2"'-l), for a certain S.  

This function v ( i )  will now be used to find a. We calculate v (ik) for all 2' exponents ik of X with 

non-zero coefficients. The v( ik)  and ik together are written in lists A and B of 2' elements, in 

which each element contains rn bits. There is a unique element w that appears r times in list A, 

and then a ca,n be chosen as any of the corresponding elements in list B. This search for w and a 

can easily be performed by sorting [9, pp. 21 the list A while simultaneously permuting the list B in 
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the same way. 

5.2 Speed Evaluation Of The Algorithm 

The calculation of v ( i )  requires m steps. Doing this for all the exponents of X that appear in 

E U )  takes m2' steps. The sorting of list A, together with the permutation of list B, requires 

U(t-2') steps in practice [9, pp. 181-198, p. 3811. 

In total this algorithm requires U(rn2') steps even in the worst case! 

6. CONCLUSIONS 

The Matsumoto-Imai public key scheme seems attractive from speed considerations, but is 

totally insecure! Matsumoto and Imai estimated the cryptanalysis of their scheme would require 

about 10'' steps if rn - 127 and r - 14. However using our cryptanalytic attack using inverse 

calculation, on the same example, one needs only about 3*10" steps. which is performable even on a 

small computer. If one step requires 10 psec on a small computer, then the attack requires 36 days. 

If one step asks 100 qsec on a fast computer, the attack can be performed in only 8 hours. Using 

the cryptanalysis based on shift operations, one needs only 2*106 steps. Using the same small and 

fast computer, this requires 20 sec and 0.2 sec, respectively. On a fast computer, the cryptanalytic 

attack suggested by Matsumoto and Imai would require 3x10' years. 

Remark: The second cryptanalytic attack requires about as many steps as the binary length of 

the public key! 

One could increase the security of the Matsumoto-Imai scheme by increasing rn and r .  

However, even disregarding the fact that this might entail impractically large storage requirements, 

this would not produce an acceptable system. Evaluation of the publicly known function E (X) 

takes at least 2' multiplications in GF(2"'), and each such multiplication might be expected to take 

about m operation such as the shifts we utilize in our second attack. Hence the time needed to 

cryptanalyze the Matsumoto-Imai system is essentially the same as the time needed to use it once! 
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