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I. Review of the RSA C r y p t o s y s t e m  
The “RSA cryptosystem” [RSA78] was the Erst published solution to the problem of im- 

plementing a public-key cryptosystem {DH76] - a concept invented by DifEe and Hellman. I t  
remains today as the  preeminent proposal for practical use. In this paper we review some of the 
considerations involved in implementing the RSA cryptosystem with special-purpose VLSI chips. 

We begin by reviewing the RSA cryptosystcm itself. The reader who wishes a more detailed 
review of public-key cryptography might consult [De82), [DH76], [DH79], or [RSA78]. 

A user A of the RSA cryptosystem creates his keys as follows: 
He first chooses at random two large (e.g. 100 decimal digit) prime numbers p and q- 

He then multiplies them together to  get his public modulus n = p . q. 
*He then chooses at random a large integer d which has no divisors in common with either 

He then computes e aa the  multiplicative inverse of d, modulo (p - 1) . (q  - 1). 
Me publishes as his secret key the pair (e, n), and keeps as his secret key the pair (d ,  n). (He 

Anyone else can then encrypt a message M for A using A’s public key, resulting in ciphertext 

p - 1  or 4 - 1 .  

may also wish to keep as par t  of his secret key the primes p and q.) 

C, using the equation: 
C = M e  (mod n). 

Similarly, A can decrypt the ciphertext C using the equation: 

M = Cd (mod n). 

As an example, if we choose p = 47 and q = 59, we have n = 2773. If we then choose 
d = 157 we can compute e = 17 using the technique given in [RSA78]. The public key is then 
(e ,n)  = (17,2773) and the secret key is ( d , n )  = (157,2773). The message M = 31 can be 
encrypted using the public key t o  obtain the ciphertext C = 3117 = 587 (mod 2773); decrypting 
yields the original message back: 31 = 58715’ = 31 (mod 2773). 

II. Security of the RSA Cryptosystem 
The securikj of the RSA cryptosystem depends on the difEculty for the enemy of factoring 

the published modulus n. If the enemy can fador the number n, he can compute the secret key 
(d ,  n) and read all of A’s private mail (or forge A’s digital signatures). 

The security of the RSA cryptosystem is not known to be equivalent to the problem of 
factoring; it may be possible to  break the RSA cryptosystem without factoring n. However, 
the most efficient attacks found to date  are all provably equivalent to factoring. One can prove 
that  computing the secret key is equivalent to factoring, and some variations on the basic RSA 
scheme are provably equivalent to factoring for some attacks (see [12a79, WiSO]). 

One interesting result, due to Andy Yao, is that  the RSA system is “uniformly secure” 
in the sense that  there can be no large sets of ‘‘weak messages”: if an enemy can decrypt a 
significant fraction of messages cncryptcd with the RSA cryptosystem, then he could effectively 
decrypt all messages. Put t ing it another way, if the RSA cryptosystem oifers security for the 
encrypted messages, then i t  ofrcrs uniformly high security for all messages. This follows from the 
multiplicative nature of the RSA scheme. 
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Even stronger resul,ts along this line have been proven by a number researchers (see [ACGS84] 
and its extensive l is t  of references). T h e  essence of these results is that  if the RSA cryptosystem 
is secure, then the enemy will not even be able to get various kinds of partiat information about  
the message from the ciphertext. (If he could, he would be able to get the whole message.) 
Iw. How Hard is  F a c t o r i n g ?  

The best available algorithms for factoring large composite :integers have a running time which 
is proportional to: 

e,/ln(n).in(~n(n)) 

for factoring a k-bit number n. A very crude approximation to this, in the range we are interested 
in, is: 

5.10"+(&). 

In the range of interest, the difficulty of factoring seems to  grow roughly one order of magnitude 
more difficult with each extra 50 bits (15 decimal digits) of modulus. 

At  the moment, using available supercomputers, numbers with 71 digits can be factored in a 
reasonable length of time. Numbers with up to 100 decimal digits are plausibly factorable in the 
future using the best available algorithms and special-purpose hardware. 

If we take as a bench-mark da ta  point that  a 75-digit number can be factored in about  one 
day with today's technology, and using the above formulas, we can derive the following table: 

75 digits - 9 10l2 operations - 1 day 
100 digits - 2 .  10'' operations - 255 days 
125 digits - 3 . lo" operations - 103 years 
150 digits - 3 .  10'' operations - 9,755 years 
175 digits - 2 10" operations - 70 thousand years 
200 digits - 1 . loz3 operations - 36 million years 
225 digits - 5 . lo2* operations - 1 billion years 
250 digits - 2 . loz6 operations - 60 billion years 
300 digits - 1 .lo2" operations - 5 . l o i 3  years 
In our original paper [RSA78] we proposed that  200 decimal digits (around 664 bits) would be 

a reasonable modulus size; we still feel that  this is a reasonable choice. 
III. I m p l e m e n t a t i o n  Bas ics  and the Need for Special-Purpose VLsI 
IEA.  I m p l e m e n t a t i o n  Bas ics  

Multiplication of two k-bit integers takes time: 
O(k') on a microcomputer using a standard algorithm, 

0 O(k)  with special-purpose serial/parallel multiplication hardware (O(k)  gates), 
0 O(log k) with special-purpose parallel-parallel multiplication hardware (O(k2)  gates). 
Using today's technology, the serial-parallel approach seems the best trade-off point. 
Modular multiplication of two k-bit integers modulo a third k-bit integer takes time: 
O(kZ)  on a microcomputer using standard algorithms, 
O(k) with special-purpose hardware (O(k) gates), 
O((10g k)'+€) with special-purpose hardware (O(k') gates). 

Again, with today's technolobT, the O(k)-time, O(k)-hardware approach seems best. 
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Modrilar exponentiation is an interesting computational problem in that it seems intrinsically 
‘sequential”: using extra hardware or extra parallelism doesn’t seem to help beyond the amount  
it helps to speed up the underlying modular multiplications. To raisc a k-bit number t o  a k-bit 
power modulo a k-bit modulus thus seems to require O(k)  multiplications. We have the available 
time/hardware tradeoff choices: 

O(k3) time on a microcomputer (e.g. 2 minutes for 200 digits), 
O(k2) time using O(k) gates (c.g. 0.5 seconds for 200 digits), 
O(k . logk) using O(k2) gates (e.g. 7 milliseconds for 200 digits). 

The corresponding data rates would then be 
5 bits/second on a microcomputer, 
1330 bits/second with O(k) gates, and 

0 95K bits/second with O( k 2 )  gates. 

Key generation has two parts: Ending large primes and computing e from d.  The first par t  
is the most expensive; i t  requires approximately O(k)  primality tests to locate a k-bit prime, and 
each primality test requires one modular exponentiation. We thus have that  the expected time to 
find t w o  large prime numbers is: 

O(k4) on a microcomputer (e.g. 20 minutes for 100-digit primes), 
O(k3) using O(k)  gates (e.g. 5 seconds for 100-digit primes), 

s O(k2 log k) usicg O(k2) gates (;.a. 70 milliseconds for 100-digit prima). 
We note that  so-called %.trong” primes are not intrinsically more.difficult to find t h a t  random 

The second step of generating a n  RSA key-set, finding e from d,  is not harder than modular 
primes. (See the paper by J. Gordon in this proceedings.) 

exponentiation, since we have the relation: 

e = &($(”))-’ (mod n). 

Another approach, using the extended Euclidean algorithm for finding greatest common 
divisors, can also be used (see [RSA78] for details). The algorithm chosen here doesn’t mat ter  
much since the bulk of work for key-generation will be in finding the large prime numbers. 
ID. B. Implementation ideas for speed. 

outlined above. 
The following ideas may help speed up a n  implementation, over and above the basic approach 

A fast d o c k  rate may of course be very helpful. 
Using a short encrypt ion  ezponent  (e.g. e = 3, as suggested by Knuth [Kn81, p. S G ] )  gives 

a 300-fold or so improvement in the speed of encryption and signature vcriGcations (operations 
which use the public key), but does not help with decryption or signing (operations which use the 
secret key). This trick can not be used on d as well, since the length of e plus the the lcngth of 
d should be approximately the length of n. Furthermore, if d is short i t  could be guessed, so a 
short d provides little security. 

Using the Chinese Remainder Theorem - working modulo p and modulo q separately - can 
help speed up decryption and signing by a factor of 4 on a microcomputer and a factor of 2 to 4 
using.O(k) hardware. 
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There are two basically different ezponentiation algorithms one may use: the left-to-right 
algorithm and the righl-to-le/t algorithm. These algorithms examine the bits of the exponent in 
different orders. suppose the exponent e has a binary representation of e k - l e k - 2 . .  .eleo. Then 
the algorithms for computing a ciphertext C from a message M both begin by setting C to 1, 
and then proceed as follows: 

0 The Lejt-to-Right Algorithm: for i from k - 1 down to 0, this algorithm first sets C to C2 

The Right-to-left Algorithm: for i from 0 up to k - 1, this algorithm first sets C to  C M 

If the left-to-right algorithm is used, then the number of modular multiplications required in 
the worst case can be reduced from 2 . k to k + (4)  by precomputing a table of M ’ ,  . . ., M2’-’ 
(i.e. by modifying the  left-to-right algorithm to consider the exponent e in radix 2* instead of 
radix 2). 

If the Tight-to-left algorithm is used, then by using twice as much hardware one can obtain a 
two-fold speed-up, since each squaring modular multiplication can be performed in parallel with 
the “accumulation” modular multiplication. 

We note tha t  the above two optimization techniques are incompatible, since they require 
different underlying exponentiation algorithms. 

An elegant approach for speeding up  the computation is to perform modular multiplication 
directly, rather than first performing an integer multiplication and then reducing the result modulo 
n as a separate step. This can yield a six-fold (approximately) speed-up, since the modular 
multiplication of two k-bit numbers can now be performed in approximately k clock cycles instcad 
of approximately 6 . k. (see (Br821). 

(mod n) and then, if ei = I, sets C to  C . M (mod n). 

(mod n) if e i  = 1, and then (in any case) sets M to iM2 (mod 71). 

IV. Overview of E x i s t i n g / P l a n n e d  Chips 
In this section we review briefly six designs for RSA chips. These reviews are brief, and only - 

itended to  give the reader a feel for the kinds of chips possible with today’s technology. For more 
details the reader should consult the references. Also, there are other chips in the design stage 
for which no references exist; these chips are not listed here. 
W.A. The “first” RSA chip 

This chip was designed by Rivest, Shamir, and Adleman, and is described in [RiSO]. 
It was a single-chip nMOS design; using 4-micron design rules, the chip occupied 42 mm2. It 

contained a 512-bit ALU in bit-slice design with eight 512-bit registers for storage of intermediate 
results, carry-save adder logic, and up-down shiftcr logic. The 224-word microcode RObf con- 
tained control routines for cncryption, decryption, finding large primes, gcd, ctc. It used a 5v 
supply, and drew approximately 1 wat t  of power. I t  contained approximately 40,000 transistors. 
It communicated with a host microproccssor using an &bit 1/0 port. The encryption rate  was 
designed to be slightly in excess of 1200 bits/second. Due to an as yet undiagnosed error in the 
memory cell design, this chip never worked rcliably. 

W.D. The N E C / M i y a g u c h i  Design 
This chip ctcsign was dcscribcd in [Mi82]; I do not know if it was ever fabricated. 
The design was for a cascadable chip set, with each chip having a 2-bit slice. (So 333 chips 

would be needed for a 200 decimal digit modulus.) Each chip would contain a 2 by 8 multiplier; 
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multiplication would be done bytc-wise (8 by n). h encryption rate of 50,000 bits/second 
was claimed possible for a 512-bit modulus using this design, or 29,000 bits/second using a 200 
decimal-digit modulus. 
W . C .  The F i r s t  Sandia Design 

This chip, described in [RSW382], used a two-chip set to work with numbers up to 336 bits 
in length. Each of the two chips is identical and could perf0r.m a modular multiplication of 
336-bit numbers. Using the  right-to-left exponentiation algorithm, one chip repeatcdly squared 
the message while the  other chip accumulated the product of the desired powers. 

The chip was fabricated using 3-micron CMOS technology; the total area of the chip is 41 
mm’. With a 2OMhz clock rate  the  chip can encrypt one block in 0.8 second - a rate of 420 
bits/second. The chip works correctly. 
W.D. The Second Sandia Design 

This design is still in progress. T h e  mathematics involved are described in [Br82]; the chip - .  

performs modular multiplications directly. 

(For 512-bit moduli, four chips would be needed.) 
The chip will be cascadable; t h e  first chips made are likely to be a 128-bit slice of t h e  set. 

N.E. The “RSA S e c u r i t y ”  Design 
RSA Security, Inc., a new start-up in the data-encryption area, is designing an RSA chip for 

commeicial use [RSA84]. Currently in the design stage, the chip should be available in sample 
quantities in mid-1985. 

Using 3-micron CMOS design rules, the  chip should be approximately 47 mm2 in size. 
I t  will be able to  handle numbers u p  to  200 decimal digits (664 bits) in length, and should be 

able to  do one encryption in under 65 milliseconds (i.e. the data  rate should be in excess of 9600 
bits/second for a full-size modulus). 

V. The F u t u r e  ... 
It is interesting to  observe that seven years ago, when the RSA cryptosystem was invented, 

the task of implementing the RSA scheme in a reasonably secure manncr was quite expensive. 
(For example, we built a $3000 TTL implementation tha t  could only handle numbers slightly 
over 300 bits in length.) Today, a very secure implementation (664 bits) tits nicely on one chip. 
Seven years from now we may move from a 3-micron technology to a submicron (say 0.3 micron) 
technology, giving a 100-fold reduction in area. In this case the same RSA implementation will 
take only 1% of a typical chip. T h e  steady progess of technology will clearly make cryptography 
SO cost-effective tha t  no information system tha t  handles data  that  is at all sensitive or t h a t  needs 
to be authenticated can d o r d  t o  d o  without it. 

REFERENCES 
(ACGS841 Alexi, W., B. Chor, 0. Goldreich, and C. P. Schnor, “RSA/Rabin Bits are l/2 + 

po,y(:c,g N) Securc,” Proc .  25th Annual  LEEE Symposium o n  Foundations of Computer 
Science, (Singer Island, 1984). 

(Br821 Urickcll, E. F., “A Fast iModular Multiplication Algorithm with Applications to T w e K e y  
Cryptography,” Advances in Cryptology - Proceedings of CRYPT0 82, (ed. by Chaum et. 
al) (Plenum 1983), 51-60. 



165 

[De82] Denning, D. CRYPTOGRAPHY AND DATA SECURITY, (Addison- Wesley, Reading, 
Mass., 1982). 

[DI176] Diffie, W. and M. E. Hellman, “New Directions in Cryptography”, B E E  Trans. Info. 
Theory IT-22 (Nov. 1976), 644-654. 

[DH79] Diffie, W. and M. E. IIellman, “Privacy and Authentication: A n  Introduction to  Cryp- 
tography, Proc. of the IEEE 67,3 (March 1979), 397-427. 

[Knsl] Knuth, Donald E., SEMINUMERICAL ALGORITHMS - The Art of Computer Pro- 
gramming (Vol. 2 - Second Edition), (Addison-Wesley 1981). 

[Mi821 Miyaguchi, S., “Fast Encryption Algorithm for the RSA Cryptographic System,” Proceed- 
ings COMPCON 82. 

[Ra7S] Rabin, Michael. “Digitalized Signatures as Intractable as Factorization,’’ MIT Laboratory 
for Computer Science Technical Report MITILCSITR-PI:! (Jan. 1979). 

pi801 Rivest, R. L., “A Description of a Single-Chip Implementation of the RSA Cipher,” 
Lambda 1 (Fourth Quarter 1980), 14-18. 

[RSA78] Rivest, R., A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures 
and Public-Key Cryptosystems,” Comm. of the ACM (Feb. 1978), 120-126. 

[RSASI] RSA Security, Inc. (1717 Karameos Drive, Sunnyvale, CA 94087) ‘Trelirninary Data 
Sheet for the RSA Cryptochip,” (1984). 

[RSWB82] Rieden, R. F., J. B. Snyder, R. J. Widman, and W. J. Barnard, “A Two-Chip 
Implementation of the RSA Public-Kcy Encryption Algorithm,” Digest of Papers for the 
1982 Government Ncrociruit Applications Conference (November 1952), 24-27. 

[Wi80] Williams, H. C., “A Modfication of the RSA Public-Key Cryptosystem,” BEE Truns. 
Info. Theory IT-26 (Nov. 19SO), 726-729. 

[Wi84] Williams, H. C., “Some Public-Key Crypto-Functions as Intractable a3 Factorization,” 
Proceedings of CRYPT0 84 (Springer 1984). 


