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ABSTRACT 

In many sing1 e-key, symnetric or conventional cryptosystems the 
elements of a f i n i t e  f i e l d  can be regarded a s  the characters of  a p la in tex t  
and ciphertext a1 phabet. 
functions on f i n i t e  f i e l d s  can be used for  constructing cryptosystems. 
T h i s  note demonstrates by way of examples tha t  great care has to  be taken 
i n  choosing polynomials f o r  enciphering and deciphering. 
looking polynomial functions induce very simple permutations of the 
elements of a f i n i t e  f i e l d  and therefore a re  not suitable for  the 
construction of cryptosystems. 
further areas of research i n  algebraic cryptography. 

1. BINOMIALS 

Some properties of polynomials or  polynomial 

Often complex 

Also an indication i s  given of some 

There a re  several examples o f  cryptosystems that involve polynomials 
We have t o  confine our and f i n i t e  f i e lds ;  

choice of polynomials t o  a re la t ive ly  small c lass  of polynomials because 
of two reasons: 
elements of a f i n i t e  f i e l d  F t ha t  is  f :  F -+ F a -+ f ( a )  should be a 
permutation. Polynomials f ( x )  w i t h  t h i s  property a re  called permutation 
potynomiats. Second, the inverse of f should be easy to compute f o r  

deciphering purposes by the authorized receiver. 

of f considerably narrow the choice of polynomials. 

see e.g. [l], [4], [6], [a]. 

the polynomial f ( x )  should induce a pennutation o f  the 

9; q q' 

These two requirements 

k 

In pub1 ic-key ( a s m e t r i c )  cryptosystems the RSA scheme 
Monomials x have been studied repeatedly as t o  their  su i t ab i l i t y  f o r  

cryptography. 
uses the corresponding polynomial functions a s  enciphering and deciphering 
functions modulo an integer n .  Some conventional exponentiation ciphers 
use the d i f f i cu l ty  of calculating discrete logarithms for f i n i t e  f i e lds .  

We consider birDmicrZs f o r  conventional cryptosystems and show tha t  
the i r  usefulness i s  very l imited.  

(1) f ( x )  = ax t bx 

Let 

k 

where k > 2 i s  f ixed independently of a prime power q. 

Robinson [13] showed t h a t  no binomial of t h i s  form i s  a permutation 
polynomial of F f o r  su f f i c i en t ly  large q. In detail :  

Niederreiter and 

q 
T. Beth, N. Cot, and I. Ingemarsson (Eds.): Advances in Cryptology - EUROCRYPT '84, LNCS 209, pp. 10-15, 1985. 
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THEOREM 1 [13 ] ,  p.2091. Let k > 2. Then: 
( i l  i f  k i s  not a prime power, then f o r  a12 f i m t e  f ie lds  P 

2 v i t k  q t 1k2-4k+61 

F of the form (I! over F w i t h  ab 0, 

4 
there i s  no pamutation polyMmial of 

9 4 
l i i l  i f  k is a power of the prime p, then f o r  all f i n i t e  f ie lds  

2 F with q t ( k  -4k+6I2 and chamcteristic not equal to p 
there is no permutation polynomial of F of  the form ( 1 J  

over P with ab f 0.  

4 
4 

4 

This r e s u l t  can be general ized t o  polynomials o f  the form axk + b x j  E F,[x], 
ab * 0, 1 s j < k, see [13, p.2111. 
none o f  these binomials i s  a permutation polynomial o f  F 

Again, f o r  su f f i c i en t l y  la rge  q 

q' 
Since the above r e s u l t s  hold f o r  k being independent o f  q. l e t  us 

consider the s i t u a t i o n  where k i s  of the form (q+1)/2, q odd. 
fami ly  o f  polynomial func t ions  i n  F [x] o f  the form 

Then the  

q 
f ( x )  = ax (q+1)/2 + bx (2) 

i s  closed under canposi t ion.  
f i (x) = aix (q+1)'2 + bix, i = 1,2, we have 

It i s  eas i l y  ver i f ied  that  f o r  two polynomials 

(fl 0 f2)(x)  = fl(f2(x)) -= (alc+blaZ)x (q+1)/2 + (ald+blb2)x (mod (xq-x)), 

where c + d = (a2+b2)(q+1)/2 and c - d = (b 2 2  -a ) (q+1)/2. Thus i t  i s  poss ib le  
t o  eas i l y  f i n d  the  inverse q ( x )  o f  a given polynomial f ( x )  o f  the form (2) 
from f ( x )  o ( x )  = x, g (x )  o f (x )  = x. I n  [13] it i s  shown tha t  a polynomial 

f ( x )  = x ( ~ + ~ ~ / ~  + bx E F [x] i s  a permutation polynomial o f  F i f  and o n l y  i f  
b2 - I i s  a nonzero square i n  F 

q-  
form (2) may be s u i t a b l e  candidates f o r  enciphering functions i n  a 
cryptosystem. 
are induced by permutation polynomials (2) are very simple, since 
f ( s )  = (a+b)s f o r  a square s E F and f ( t )  = (b-a)t  f o r  a non-square t E Fq. 
Therefore the mapping f i s  l i n e a r  on the squares o r  non-squares o f  F 

q 9 
So it appears that polynomials of the 

We note, however, t ha t  the mappings of F in to  i t s e l f  which 
9 

q 
q '  

It may be f r u i t f u l  t o  study binomials on the integers mod n and use them 
k i n  RSA type cryptosystems instead o f  monomials x . 
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2. CHEBYSHEV POLYNOMIALS OF THE SECOND KIND 

Several generalizations of the RSA cryptosystem have been suggested 
based on different enciphering functions; see [l], [91 and c121. 
In some of these papers Chebyshev polynomials of the f i r s t  kind (or Dickson 
polynomials, as  they a re  called i n  an algebraic/numb& theoretic context) 
and their  multivariate generalization play a central role. Here we 
consider Chebyshev polynomials of the second kind as t o  their sui tabi l i ty  
for constructing cryptosystems over F 
of the second kind is  defined by 

The Chebyshsv poZynomiat fk(x)  4' 

We note that fk (x )  i s  a polynomial of degree k with integer coefficients. 
Alternative ways of defining the polynomials fk(x)  are by recursive 
equations 

o r  by the functional equation 

fk (x )  = ($+I - u - ( k + l )  I /  t u - u - l  1 

where x = u + u-' and u t 21, 

k fk(2) = k + 1 and fk(-2) = (-1) ( k + l ) .  

The following resul t  gives sufficient conditions t o  ensure that fk(x) 
induces a permutation of F 

THEOREM (Matthews [ l l ] ) .  

of P 

(3 )  

Let q = pe, p an  odd prime. 
q '  

7% poZynomia1 fk(x) is a p e m t u t i o n  poZynomiat 
i f  k satisfies the congruences 

k + 1 z 22 (mod p ) ,  k + 1 2 f2 (mod k ( q - l ) ) ,  k + 1 z +2 (mod $(q+l)). 

4 

Proofidea. Let S be the subset of F consisting of a l l  solutions of 
q equations of the form x2 - ax + 1 = 0, a E F 
The integer k must be odd, since ei ther  

Then 
q' 

= Eu E F 21uq-1 = 1 o r  uq+I = 1). 
q +,(q-1) o r  +(q+l) i s  even. Thus Let u 6 F and 

u 2  - xu + 1 = 0. If u q - l  = 1, then u Now, i f9  "+,(q-') = 1, 
then u k + l  = u2  o r  uk+l  = 
Therefore fk(x)  = (u ' -u -~ ) / (u -u -~ )  = u t u - l  = x,  or fk(x)  = -(U+U-') = -x. 
The remaining cases u L2(q-1) = -1, uq+' = 1 and u = +I are treated similarly.  

since k + 1 : k2 (mod $(q-1)). 
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I t  follows t h a t  f k  i s  i t s  own inverse: 

( f k  o f k ) ( x )  = f k ( f k ( x ) )  = x, whenever k s a t i s f i e s  (3) .  

Here the composite f k ( f k ( x ) )  i s  reduced modulo xq - x .  
suitable property f o r  a symnetric cryptosystem w i t h  secret  key k.  
The above proof, however, shows tha t  the mapping of F into i t s e l f  
induced by a permutation polynomial f k ( x )  i s  not very complex a t  a l l ,  
since fk ( - a )  = - fk (a )  and f k ( a )  = a or -a fo r  each a E F 
complicated enciphering function f k  induces a simple permutation of F 

3. COMMUTING POLYNOMIAL VECTORS 

This would be a 

9 

So the 4' 
q '  

In order t o  implement d ig i ta l  signatures i t  i s  useful i f  the 
enciphering function E and the  deciphering function D comnute w i t h  respect 
t o  substi tution; 
function and deciphering function,respectively, of person i t h e n  these 
functions a r e  easy t o  handle i f  we require 

that i s  E o D = D o E. If Ei and Di a re  the enciphering 

T h i s  leads t o  studying conrnuting or pemtab le  poZymmiats. 
possible c l a s ses  of c m t i n g  polynomials i n  one variable were determined 
according t o  t h e i r  s u i t a b i l i t y  i n  RSA-type cryptosystms. 
following r e s u l t ,  the c lass ica l  Chebyshev polynomials Tn(x)  of the f i r s t  
k ind  a r e  o f  special  interest. 
t ha t  over an in tegra l  domain R of characterist ic zero. if n z 2 and t h e  
polynomial f ( x )  of degree k t 1 c m u t e s  under subs t i tu t ion  w i t h  Tn(x), 
t h e n  f ( x )  = Tk(x)  i f  n is  even and f ( x )  = kTk(x) i f  n i s  odd. 
r e su l t  holds if char R = p) .  A two-dimensional generalization of t h i s  
theorem was derived i n  [9l .  We say that two polynomial vectors ( f l y f 2 )  
and (g1,g2) i n  R[x,y] c o m t e  i f  

In [9] a l l  

Because o f  t h e  

Bertram showed (see e.g. R i v l i n  [ lS ,  p.1611) 

(A similar 

2 

(f1(91.92) Y f2(91*92)) = (9&fl.f*).  92 ( fy f2 ) )  * 

( f lS f2 )  0 ( g y g * )  = (91.92) 0 ( f y f 2 ) .  

In short 

In [8], [9] o r  [lo] a two-dimensional generalization of the Chebyshev 
polynomials Tn(x) i s  presented in terms of a plynomial vector 
(gk(x,y)$ yk(xvy)) or  (gk,&) fo r  short. 
charac te r i s t ic  t h a t  does not divide n z 2. 
Bertram's r e su l t :  

Let R be an integral domain of a 
Then the following generalizes 
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TEEOREM ( [ 7 ] 1 .  

with lg,,,gn) if and only i f f  is of the form 
If f P fi?[z,c~y]1~ is of degree k 2 1, then f c o m t e s  

where a = 2 if n f I (mod 3) 

In the one-variable case a l l  classes of comnuting polynomials (so-called 
permutable chains) have been determined ( s e e  e.g. Lausch and Nijbauer 151 and [S]) .  
The corresponding classif icat ion in the case of polynomial vectors in two 
variables i s  s t i l l  a n  open problem. 
this direction. 
signatures analogous t o  the one-dimensional situation described in [9]. 

4 .  FURTHER PROBLEM AREAS 

or a3 = I if n : 1 Imod'3). 

The Theorem above i s  a f i r s t  result  i n  
Conmuting polynomial vectors can be used for digital 

Brawley, Carli tz and Levine [2] have determined the polynomials 
f (x)  E F [x i  which permute the se t  F nxn of nxn matrices with entries 
in F under substitution, that  i s  f q 
of matrices. 

9 
nxn + F nxn , A - f(A) i s  a permutation 

9 F9 9 

TEEOREM ([Z]). 
o f  F~~~~ if mtd onZy if 

(il 

(iil 

Such permutation polynomials could be used for enciphering plaintext 
messages which are  arranged i n  matrix form. 
determine specific polynomials f (x)  which are suitable as enciphering 
functions of such cryptosystems. 

The polynOmia2 fCx) E F [z] is a permutation poZywnriu2 
4 

f(zJ $8 a pemrrttahkn of F 2u 

f '1x1 does rut vanish on any of the fields F@..,,P 

1 S r 5 n; mzd 
Q 

ln/zl. 4 

A f i r s t  step would be to  

A different problem area i s  concerned with the study of i terative 

roots of functions over f in i t e  f ie lds .  The i terates  of a function 

g : Fq -+ F are defined inductively by g ( x )  = x and g n ( x )  = g(g"'(x)), n > 0. 

If f i s  another function on F 

called an i t e ra t i ve  mo t  of order n o f  f o r  an n t h  iterative root of f .  

In [3] the existence of i terat ive roots o f  f are investigated fo r  special 

types of functions, such as l inear functions, power function xk and 

Chebyshev polynomials of the f i r s t  k i n d .  

0 
9 

with the property g n  = f ,  n 2 2,  then g i s  
9'  

Apart from theoretical existence 
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theorems (developed i n  [3]) i t  could be potentially useful i n  cryptography 

to expl ic i t ly  determine i t e r a t i v e  roots of given functions. Our i n t e re s t  

i n  this topic arose from the  question: 

a l l  complex numbers z ? "  

answer is: never. 
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