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ABSTRACT

In many single-key, syrmmetric or conventional cryptosystems the
elements of a finite field can be regarded as the characters of a plaintext
and ciphertext alphabet. Some properties of polynomials or polynomial
functions on finite fields can be used for constructing cryptosystems.

This note demonstrates by way of examples that great care has to be taken
in choosing polynomials for enciphering and deciphering. Often complex
looking polynomial functions induce very simple permutations of the
elements of a finite field and therefore are not suitablie for the
construction of cryptosystems. Also an indication is given of some
further areas of research in algebraic cryptography.

1. BINOMIALS

There are several examples of cryptosystems that involve polynomials
and finite fields; see e.g. [1], [4], [6], [8]. We have to confine our
choice of polynomials to a relatively small class of polynomials because
of two reasons: the polynomial f(x) should induce a permutation of the
elements of a finite field Fq; that is f; F_ -~ Fq, a = f{a) should be a
permutation. Polynomials f(x) with this property are called permutation
polynomials.  Second, the inverse of f should be easy to compute for

deciphering purposes by the authorized receiver. These two requirements

of f considerably narrow the choice of polynomials.

Monomials xk have been studied repeatedly as to their suitability for
cryptography. In public-key {asymmetric) cryptosystems the RSA scheme
uses the corresponding polynomial functions as enciphering and deciphering
functions modulo an integer n. Some conventional exponentiation ciphers
use the difficulty of calculating discrete logarithms for finite fields.

We consider binomiale for conventicnal cryptosystems and show that
their usefulness is very limited. Let

(1) £(x) = ax + bx
where k > 2 is fixed independently of a prime power q. Niederreiter and
Robinson [13] showed that no binomial of this form is a permutation

polynomial of F_ for sufficiently large q. In detail:

q
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THEOREM ([13], p.209). Let k > 2. Then:
(i) if k is not a prime power, then for all finite fields F
with q 2 (K2-dk#6)% theve is no permitation polynomial of
E’q of the form (1) over Fq with ab # 0,

(72) ©f k is a power of the prime p, then for all finite fields
Fq with q 2 (k2—4k+6)2 and characteristic not equal to p
there is no permutation polynomial of Fq of the form (1)
over Pq with ab = 0.

This result can be generalized to polynomials of the form axk + bx? e Fq[x],

ab=0,1sj <k, see [13, p.211]. Again, for sufficiently large q

none of these binomials is a permutation polynomial of Fq.
Since the above results hold for k being independent of q, let us

consider the situation where k is of the form {q+1)/2, q add. Then the

family of polynomial functions in Fq[x] of the form
(2) f(x) = ax(9H1)/2 4y

is closed under compasition. It is easily verified that for two polynomials
fi(x) = aix(qﬂ)/2 *bix, 1=1,2, we have

(£, 0 £)(x) = F1(F,(x)) = (agetbyap)x{ T2 s (2 asm by)x (mod (x3-x)),

where ¢ + d = (a,+b,) (312 and ¢ < d = (by-ap) (T2 hus it is possible
to easily find the inverse g(x) of a given polynomial f{x)} of the form (2)
from f(x) o g(x) = x, g(x) o f{x) = x. In [13] it is shown that a polynomial
f(x) = x(““?/2 + bx e F [x] is a permutation polynomial of Fq 1f and only if
b2 - 1 is a nonzero squage in F_. So it appears that polynomials of the
form (2) may be suitable candidates for enciphering functions in a
cryptosystem. We note, however, that the mappings of Fq into itself which
are induced by permutation polynomials (2) are very simple, since

f(s) = {(a+b)s for a square s ¢ Fq and f(t) = (b-a)t for a non-square t e Fq.

Therefore the mapping f is linear on the squares or non-squares of Fq.

It may be fruitful to study binomials on the integers mod n and use them
in RSA type cryptosystems instead of monomials xk.
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2. CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

Several generalizations of the RSA cryptosystem have been suggested
based on different enciphering functions; see [1], [9] and [12].
In some of these papers Chebyshev polynomials of the first kind (or Dickson
polynomials, as they are called in an algebraic/number theoretic context)
and their multivariate generalization play a central role. Here we
consider Chebyshev polynomials of the second kind as to their suitability
for constructing cryptosystems over Fq. The Chebyshev polynomial fk(x)
of the second kind is defined by

k/2 R . .
fk(x) =L‘zoj(k;1)(_1)1 xk-Z'l
1:

We note that fk(x) is a polynomial of degree k with integer coefficients.
Alternative ways of defining the polynomials fk(x) are by recursive
equations

fk+2(x) - xfk+l(x) + fk(x) = 0 with fo(x) =1, fl(x) =X 3
or by the functional equation
fi {x) = TR L YT

where x = u + u'l and y = =1,

£ (2) = k + 1 and £, (-2) = (-1 (k+1).

The following result gives sufficient conditions to ensure that f {x)

induces a permutation of Fq. Let g = pe, p an odd prime.

THEOREM (Matthews {11]).  The polynomial fi(x) is a permutation polynomial
of Fq if k satisfies the congruences

(3) k+1=22(mod p), k +1 = +2 (mod %(g-1)), k + 1 = £2 (mod %(q+1))}.

Proofidea. Let S be the subset of F , consisting of all solutions of
equations of the form xz ~ax +1-= O? a e F . Then

={uefF zluq'1 =1or u9 =1} The integer k must be odd, since either
k(q-1) orq%(q+1) is even. Thus fk(-x) = fi{x). LetucefF o and
wWoxu+l=0. 1fy9l = 1, then uli(q'1§ = 1. Now, i3 u%(q‘l) =1,
then uk*l o u2 or uk+1 = u'z, since k + 1 = +2 {mod %(q-1)}.
Therefore fk(x) = (u2-u'2)/(u-u'1) su+ul= X, OF fk(x) = —(u+u'1) = X,
The remaining cases u%(q—l) = -1, uq+1 =1 and u = £l are treated similarly.

5]
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It follows that f is its own inverse:
(fk o fk)(x) = fk(fk(x)) = x, whenever k satisfies (3).

Here the composite fk(fk(x)) is reduced modulo x¥ - x. This would be a
suitable property for a symmetric cryptosystem with secret key k.

The above proof, however, shows that the mapping of F_ into itself
induced by a permutation polynomial fk(x) is not very complex at all,
since fk(-a) = -fk(a) and fk(a) = a or -a for each a ¢ Fq. So the
complicated enciphering function fk induces a simple permutation of Fq.

3. COMMUTING POLYNOMIAL VECTORS

In order to implement digital signatures it is useful if the
enciphering function E and the deciphering function D commute with respect
to substitution; that is EoD=Dc E. If E; and Di are the enciphering
function and deciphering function,respectively, of person i then these
functions are easy to handle if we require

Ej o Ej = Ej °okEys Bjo Dj = Dj ©E Dy o Dj = Dj o Di'

This leads to studying commuting or permutable polynomials. In [9] all
possible classes of commuting polynomials in one variable were determined
according to their suitability in RSA-type cryptosystems. Because of the
following result, the classical Chebyshev polynomials Tn(x) of the first
kind are of special interest. Bertram showed (see e.g. Rivlin [15, p.161])
that over an integral domain R of characteristic zers, if n =z 2 and the
polynomial f(x) of degree k > 1 commutes under substitution with Tn(x),
then f(x) = Tk(x) if n is even and f(x) = :Tk(x) if n is odd. (A similar
result holds if char R = p). A two-dimensional generalization of this
theorem was derived in [9]. We say that two polynomial vectors (fl’fz)
and (g),g,) in R[x,yJ°commute if

In short
(fl’fz) o (91,92) = (91:92) o <f1’f2)'

In [8], [9] or [10] a two-dimensional generalization of the Chebyshev
polynomials Tn(x) is presented in terms of a polynomial vector

(gk(x,y), Ek(x,y)) or (gk’ak) for short. Let R be an integral domain of a
characteristic that does not divide n 2 2. Then the following generalizes
Bertram's resuit:
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THEOREM ([7)). If f e (Rlz,y))? is of degree k 2 1, then f commites
with (g,,9,) if and only if f is of the form

p - -
f = tag,a’g) or f = (ag,a%g).

where o = 1 if n ¥ 1 (mod 3) ara3=1ifn51 {mod 3).

In the one-variable case all classes of commuting polynomials (so-called
permutable chains) have been determined (see e.g. Lausch and Nobauer [5] and [9]).
The corresponding classification in the case of polynomial vectors in two
variables is still an open problem. The Theorem above is a first result in

this direction. Commuting polynomial vectors can be used for digital

signatures analogous to the one-dimensional situation described in [9].

4. FURTHER PROBLEM AREAS

Brawlex, Carlitz and Levine [2] have determined the polynomials
f(x) ¢ F_[x] which permute the set F ™M of nxn matrices with entries
in F, under substitution, that is f : F I

q A — f(A) is a permutation
of matrices.

THEOREM ([2]). The polynomial f(z) « E’q[::] is a permutation polymomial
of Fann if and only if

(i)  f(z) is a permutation of F ,,, 1 s s n; and
q

.. ' . .
(21}  f'(z) does not vanish on any of the fields Fq’"”Fan/Zl.

Such permutation polynomials could be used for enciphering plaintext
messages which are arranged in matrix form. A first step would be to
determine specific polynomials f(x) which are suitable as enciphering
functions of such cryptosystems.

A different problem area is concerned with the study of iterative
roots of functions over finite fields. The {terates of a function
g: Fq > Fq are defined inductively by go(x) = x and g"(x) = g(gn'l(x)), n > 0.
If f is another function on Fq, with the property g" =f, nz2, then g is
called an {terative root of order »n of f or an nth iterative root of f.
In [3] the existence of iterative roots of f are investigated for special

k

types of functions, such as linear functions, power function x~ and

Chebyshev polynomials of the first kind. Apart from theoretical existence
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theorems (developed in [3]) it could be potentially useful in ¢ryptography

to explicitly determine iterative roots of given functions. OQur interest

in this topic arcse from the question: "When is f(f(z)) = az2 + bz + ¢ for

all complex numbers z ?" Rice, Schweizer and Sklar. [14] showed that the
answer is: never.
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