User FPunctions for the Generation and Distribution of
Encipherment Keys

R.¥. Jones

International Computers Ltd.
Lovelace Road,

Bracknell, Berks,

U.K.

Abstract

It is generally accepted that data encipherment is needed for
secure distributed data processing systems. It is accepted,
moreover, that the enciphering algorithms are either published or
must be assumed to be known to those who wish to break the
security. Security then lies in the safe keeping of the
encipherment keys, which must be generated and stored securely
and distributed sgecurely to the intending users.

At an intermediate level of detail of a system it may be useful
to have functions which manipulate keys explicitly but which hide
some of the details of key generation and distribution, both for
convenience of use and so that new underlying techniques can be
developed. This paper offers a contribution to the discussion. It
proposes key manipulation functions which are simple from the
user's point of view. It seeks to justify them in terms of the
final secure applications and discusses how they may be
implemented by lower level techniques described elsewhere. The
relationship of the functions to telecommunication standards is
discussed and a standard form is proposed for encipherment key
information.

T. Beth, N. Cot, and I. Ingemarsson (Eds.): Advances in Cryptology - EUROCRYPT *84, LNCS 209, pp. 317-334, 1985.
© Springer-Verlag Berlin Heidelberg 1985

318

1. Introduction

It is generally accepted that data encipherment is needed for
secure distributed data processing systems. It is accepted,
moreover, that the enciphering algorithms are either published or
must be assumed to be known to those who wish to break the
security. Security then lies in the safe keeping of the
encipherment keys, which must be generated and stored securely
and distributed securely to the intending users. A number of
schemes have been proposed, and in some cases implemented, to
manipulate keys securely. For example refs. 1, 2 and 3 describe
different methods and offer different but overlapping sets of
facilities to the user. It is likely that new methods will Dbe
developed and that some part of these methods should be hidden
from the uger. Since the gubject has clearly not reached a
stable point it is very likely that any attempt at present to
establish a standard user interface will soon need revision.
Nevertheless, this paper is written on the assumption that a
discussion of such an interface is useful, since it helps to
identify the common features of different schemes and to gain
some idea of which features will become generic and which become
part of the underlying mechanisms.

At some level the user does not concern himself with the
manipulation of keys or with explicit commands to encipher and
decipher data. He asks for a secure connection to another user
or for a securely stored file and can assume that such details
are thereby taken care of. At a lower level software and hardware
logic exists which deals with things such as how keys are
generated, how data encipherment keys and key encipherment keys
are kept distinct and the manner of transporting a data
encipherment key to a remote user.

At an intermediate level of detail it may be useful to have
functions which manipulate keys explicitly but which hide some of
the details, both for convenience of use and so that new
underlying techniques can be developed. This paper discusses this

319

intermediate level. In doing so it must make assumptions about
which functions are primitive at this level. For example, since a
digital signature may be achieved by enciphering a message
digest, using the secret member of a public key pair, one might
decide that it is an application to be programmed in terms of
encipherment primitives and does not give rise to specific
primitive operations. This view is invalidated by signature
techniques which do not depend upon encipherment. Similarly
there is implicit in such an interface a judgement of which of
the details which should be hidden. Ref. 4 describes a key
distribution centre. In an appropriate context software at some
level submits a request to a key distribution centre (KDC) for a
key which can be used to communicate securely with an intended
correspondent. We may wish to produce software which needs no
modification when moved from such an environment to one where the
system supporting the application user keeps records to enable it
to issue keys securely to all members of the community. If this
is so we should hide the use or non use of the KDC, but we judge
in doing so that the user at that level has not lost needed
flexibility. Such judgements as these are made in what follows

and the reasons for them are discussed.

2. The Functions

This section describes a set of functions to generate and
manipulate keys. The intention is that they appear simple to the
user. The user is somewhat ill defined, but well enough, it is
hoped, for the benefit of the discussion. One candidate is
certainly an application process which makes use of an
application service as defined in the Open Systems
Interconnection model (see ref. 8) and which wishes to perform
explicit data encipherment. Another candidate is the logic of a
transport layer entity in the Open Systems Interconnection model
which offers a secure service to users of the transport service
and which, therefore, sends a data enciphering key to a remote
transport entity. The functions are as follows.

320

i) Generate key(t,s) meaning generate for me a key or a

pair of keys of type + and return to me, as the result
of this function, the local name of the item containing
the key or keys. The type shows, among other things,
whether a symmetric or asymmetric algorithm is
involved. In the former case a single key is generated
and returned as the result of the function. In the
latter case the enciphering and deciphering pair is
generated and returned. The local name is subsequently
used subscripted by 1 or 2 to indicate an individual
member of a key pair thus generated or unsubscripted to
mean the single key generated or the complete item
containing the key pair. s is a 64 bit string,
supplied by the caller, which is to be used by the key
generation function. The caller does not know the
cleartext value of the key generated but is assured
that the same t and s values in a subsequent call
generate the same key or keys. s may be omitted, in
which case the values generated, as far as the caller
is concerned, are random. His chance of generating
them again is random. The type t is an integer.
Possible meanings assigned to its values are:

a key enciphering key (KEK) for DEAt,

a data enciphering key (DEK) for DEA1.

an RSA key pair to be used for enciphering keys.

Other meanings, to which values might be assigned, are
discussed in section 3.

N.B. this function and the next two have a result. The
assumption is that the user has a notation which
enables him to write something like

x := generate key (y, z).
The variable which is to hold the result could be
written as another parameter. This is a matter of
taste.

ii) Give key(k,q) meaning send my key whose local name is k
securely to the user known to me as gq. Assign to the

key a common reference number which we may use in
messages to each other and in communicating with our
local encipherment services (of which this function
forms a part). Make the reference number available t0 g

321

and return it to me as the result of this function.
N.B. the exact manner of making it known to g that the
key is available for him is not considered here. In an
implementation it would not be a trivial issue.
Similarly although we may assume that the services at
the users' locations acknowledge receipt to each other
there is need to consider whether the end user should
do so as well. The assumption here is that if this is
done it is separate from the basic functions needed for
key distribution.

iii) Mutual key(t,q,s) meaning generate a mutual key for me

and user q. Use seed s and give the key type t. + and
s are as in "generate key". s may be omitted to obtain
a random key. Assign to the key a common reference
number and make it available to q and return it to me
as the result of this function.

iv) Take key(r,q) meaning make the key whose reference

number is r unavailable to user q.

v) Destroy key(K) meaning destroy the key identified by K.

K may be a local name of a key, created by "generate
key" or a reference number created by "give key" or
"mutual key"

3. Use of the Functions

This section considers the functions of section 2 in the light of
applications of encryption and related techniques.

3.1 Connection Establishment and User Authentication

When establishing a connection between two users so that they may
exchange messages protected by encryption (for example if they
use an insecure telecommunication link) both users {(or their
local services) must be provided with a key and the users must be
authenticated %o each other's satisfaction. "Give key" and
"mutual key" may both be used to send a key to a remote user (the

322

reason why both exist is discussed in section 4). A reasonable
requirement of either of these functions is that it delivers the
key, guarantees to the initiator that the recipient is the user
requested, tells the recipient from whom the key came and
guarantees that he, in his turn, is who he claims to be, 1i.e. not
just a legitimate user of the service. This is illustrated in
figure 1., where A is one of a number of users of the A service
and B is one of a number of users of the B service. The A
service is ugsed by A in a controlled environment in which the
ijdentity of A is assured (for example the process which
represents him has been initiated after the submission of =a
password to a control program which controls access to resources,
one of which is the A service). B has the same relationship to
the B service. The route between the A service and the B service
is assumed to be insecure in the absence of encipherment.

A B
A service B Service
Fig. 1

After receiving a request from A to deliver a key to B the A
service, having discovered the route, sends it to the B service,
suitably enciphered by a KEK. The A service and the B service
must authenticate each other. Their manner of doing this depends
upon a number of factors,including whether a KDC is involved and
whether the KEK is a public or secret key. Methods are
discussed, for example, in refs.4 and 7. For example, ref. 4
describes protocols for sending a DEA! key, first when it is
protected by DEA1 encryption and secondly when it is protected by
public key encryption. In both cases the protocol is described
in terms of a user A who wishes to send a key to another user B,
with the aid of a KDC (see fig. 2).

323

KDC

Fig.2

In the first case the protocol has three logical parts viz:

i) A obtains securely from KDC two copies of the key, one
enciphered by A's KEX and the other enciphered by B's KEK.

ii) A sends to B the copy enciphered by B's KEK.
iii) A and B use the key to exchange authentication protocol.
In the second case the protocol has four logical parts viz:

i) A obtains securely from KDC B's public key and the key to
be used.

ii) A sends to B the key enciphered by B's public key.
iii) B obtains securely from KDC A's public key.
iv) A and B exchange authentication protocol.

(For details of the values exchanged to cope with particular
security problems see ref. 4.)

Either of these methods may be hidden from the users at the level
proposed for them here. The appropriate interchanges are
initiated by the function 'mutual key'. A possible improvement
in underlying protocols to remove as yet unknown security flaws
is also hidden from them.

Once the two services have authenticated each other they may

324

trust each other to have authenticated the users they serve and
therefore to give A and B & service which authenticates the
remote user.

Having obtained a mutual key, the two users, if they are
particularly suspicious, may wish to exchange further messages to
convince themselves of each other's genuineness. This must
depend upon further secret information, which becomes vulnerable
if it is sent to the other,as yet untrusted, party, using the
newly established connection. They may, for example, exchange
passwords using the protection of the connection they do not
quite trust. If a correct reply password is not received within
the permitted number of attempts the first one is compromised and
there is a suspicion that the key distribution service is in
error. The users may, on the other hand, have private
encipherment keys, previocusly delivered, which they use only to
protect their private authentication protocol. If the protocol
reveals a doubt of correct identity no secret user information is
compromised but, as before, the trustworthiness of the key
distribution service is in doubt. This kind of consideration is
inevitable if there is a standard service which distributes keys
and attempts to guarantee that the sender and recipient are
genuine. An alternative is that the service does not use
encipherment to authenticate the users, but leaves it to them.
Another is that the identity of the recipient is guaranteed but
that he is only sure that the originator is an authorised user of
the key distribution service. Neither of these possibilities
seems as useful since one or both users mugt either risk
compromising secret information or must hecld a key personally.
They may well do so but they should not be forced to.

Another point to consider is that a user who wishes to connect to
a remote resource may not be directly identifiable by that
resource. For example, a database interrogation service may
contain no check of its user's authority, assuming that his
identity was established as part of the identification procedure
when he logged in and that the resources at his disposal,
including the interrogation service, were thereby decided. There
will then be an entity, at the same location as the user who
wishes to connect, which is concerned with resource allocation,
which knows which users are allowed to use which resources and
which checks permission before allowing the user's connection to

325

be made. This entity has a privileged position in remote user
authentication in that it is trusted by remote parts of the
service {(entities of the same kind as itself) to guarantee that
the users it serves are only given authorised connections. It is
useful to build into the service some mechanism to guarantee %o
such privileged entities that they are comﬁunicating with their
own kind. The simplest way of doing this is to design the
control software so that all connections to remote processes are
handled by such entities and that they check access permission at
one or both of the sites involved. If we assume that this is not
the case and that there is a need to make connections between
processes which will do their own checking of authorisation then
a possible way of identifying the entities which are to be given
more trust is to allocate exclusively for their use a special
type of key. The encipherment service guarantees to the remote
encipherment service that such a key may only be used
successfully by such an entity. Ref. 2 introduces the idea of
type values which it is useful to bind securely to keys (e.g- DEK
or KEK). A useful type value which is not mentioned there is one
which guarantees that the key may be used only by an entity
authorised to check access rights.

There are applications where it is useful to be able to generate
the same key at two remote sites rather than sending the key from
one to the other and without sending values used to generate it
via the telecommunication link. For example, 2 customer is
supplied with a plastic card which is used to help identify him.
The card contains a value which is to help generate the key to be
used in sending information to a central installation. In
addition he is required to type in a PIN value which also
contributes. Another contributory value comes from the terminal
into which he inserts his card (the terminal value may be changed
periodically for greater security). The central installation
holds these values. When it is told in clear who the customer and
the terminal claim to be it generates az key using the stored
values, knowing that the genuine terminal can generate the sanme
on behalf of the genuine user. For this and similar cases the key
generation functions in section 2 contain a seed value, with the
agsurance tha®t the same seed will generate the same key. When an
unrepeatable key is wanted the seed is omitted. There is, of
course, a danger in this facility and it may well be that i%
should be denied to some users.

326

In making a request for a transport connection, as described in
the Open Systems Interconnection model, it is envisaged that a
user may ask that it be secure. The details of what this means
are not yet spelled out but it certainly implies encipherment. A
connection request message may contain 'security parameters' (see
ref. 9) and we may suppose that they will indicate the key to be
used, either as the actual key (suitably enciphered) or as a
reference to a key already known to both parties. We may then
consider the applicability of the functions described here. First
if the two parties have an established mutual KEK used to
encipher keys they wish to send each other the functions are not
applicable. The key to be used for the connection is enciphered
by a call on the sender's encipherment service. It may then
either be placed in the connection request message or it may be
sent beforehand (for example as one of a batch of keys to use
that day) and a reference to it may be placed in the connection
request message. If the two parties do not have such a mutual
KEX and do not have a supply of session keys to choose from then
the function 'mutual key' applies. However, it cannot be used to
encipher the key which is then placed in the connection request
because that is not its function. Its function is to deliver the
key. Neither is it reasonable to suppose that a key should be
extracted from the connection request as it passes from one KEK
domain to another (and there may be such separate domains for
gecurity purposes). The use of 'mutual key' in this case is to
establish a mutual key for the two end users so that they may use
it to encipher the keys to be used subsequently for transport
connection protection. It must be done as a separate previous
operation and, at least the first time, must be sent over an
'insecure' transport connection. This does not matter as the
function handles its own security.

3.2 Data Privacy & Data Authentication

Once keys have been successfully exchanged by the two end users
of a telecommunication link or by their local services on their
behalf data privacy may be achieved by data encipherment and
decipherment. Each local service must therefore provide
enciphering and deciphering functions. The user may also wish to
encipher and decipher keys using key enciphering keys to produce
and make use of key hierarchies. These topics are dealt with for

327

example in refs.1 and 2, which describe means of protecting keys
such that they never appear in clear outside a trusted
encipherment environment. They are relevant to this paper in
that the user of the key manipulation facility needs the ability
to operate explicitly upon keys of a chosen type, but should not
need to know how the types are indicated or need to be wary of
operations upon keys of a particular type which might prejudice
security. Data authentication and greater assurance of privacy
are obtained by using particular modes of operation of
encipherment (for example cipher block chaining or cipher feed
back when using block ciphers) and by the addition of checking
information (for example enciphered sum checks to reveal illicit
modification and various identifying values to reveal illicit
insertions and replays). These functions are not directly
concerned with key generation and distribution and are not dealt
with in this paper.

3.3 Digital Signatures

A digital signature depends upon a sender using a key that no one
else has and the receiver being able to demonstrate that the key
has been used. To do this the sender may use the secret key of a
public key cipher, such as RSA, and make the public key available
to the receiver (ref.5). Using the functions described here a
type value would be assigned to mean a public key pair. The
effect of a public key cipher may be achieved by adding type
information, meaning "encipher only" or "decipher only"” to a
aymmetric cipher key in a trusted environment, with the knowledge
that it can only be removed and acted upon in a trusted
environment (ref.2). Another possibility is to use an algorithm
which has an associated public and private key but which
transforms the text to be signed by some means other than
encipherment. Such keys can also be indicated by type
information in the functions described in section 2.

3.4 Stored Secure Piles

The key generation function may be used to generate a key which
enciphers a file Btored locally or whose medium is to be
physically removed from the computer environment. If a file is
stored for a long time or is transferred to a separate site it
will be necessary to re-encipher. Ref.! points out that a

328

hierarchy of keys is needed in such a case. Refs. 1 end 2
discuss how this may be achieved securely. The exact method is
hidden at a lower level and visible in the functions described
here only in the fact that keys are generated with an explicit
type which indicates Key Enciphering Key or Data Enciphering Key.

3.5 Protection of Software Copyright

Ref.2 points out that type information securely attached to a key
may be used, given a secure execution environment, to safeguard
copyright. Software to be protected would be enciphered by the
key and the key would be supplied to the user enciphered by a KEK
which was available only inside the secure execution environment.
When the software was used it would be deciphered as an implicit
part of the loading operation. This idea anticipates the
commercial availability of such an execution environment.
However, when appropriate, a type value could be assigned in the
functions of section 2.

4. Relationship to Detailed Key Manipulation Schemes

This section discusses how the functions described in section 2
can be implemented using a number of technigues described
elsewhere. The functions are dealt with in furn.

4.1 Generate key

Let us assume we are using one of the key management schemes
described in refs.!, 2, and 3. Each of them, when it generates a
key and makes it available outside the trusted encipherment
facility protects it by enciphering it. The schemes differ in
how they do this and in how they ensure that the keys may not be
misused (for example that a DEK may not be deciphered and made
available outside the encipherment facility in clear form). They
differ in the amount of protection they give the keys. The Key
Notarization Scheme guarantees that a key can only be used
successfully by the intended users by making the encipherment and
decipherment of the key a function of the identities of the users

329

for 'whom the key is intended. Since a user must establish his
identity in a way which satisfies security criteria (for example
by supplying a password) he cannot successfully use someone
else's key. The IBM scheme protects the key from exposure and
ensures that gsome different types of key cannot be confused. To
do this different master keys at an instalation are used to
encipher KEKs, session keys and keys used to encipher files. The
operating system is relied upon to ensure that the keys are uged
by the intended users. The ICL scheme enciphers a key, together
with type information indicating how it may be used, by a KEK (in
some cases by an instalation master key). It can, therefore,
potentially restrict keys in ways which may be defined and could
include the equivalent of the Key Notarization scheme. The
functions supplied in terms of key type therefore overlap and
where they coincide they are not implemented in the same way. The
functions described in section 2 may be mapped on to any of the
three, with the proviso that some of the key types envisaged are
not present in some cases.

The local name produced by "generate key" is then in the context
of ref.1 the form enciphered by KMO, KM! or KM2 according to its
type. In the context of ref.2 it is the key and concatenated type
enciphered by the master key. In the context of ref.3 it is the
form supplied by the Key Notarisation PFacility.

If a key is to be associated securely with its users as in ref.3
then extra associated software is needed if the basic
encipherment facility does not provide it. Whether it is always
degirable to tie a generated key immediately to particular users
is a debatable point.

4.2 Give key

Assume that the user to whom the key is to be given is at a site
which uses a similar system in terms of refs.1, 2 and 3. If the
first site has the necessary KEK it can re-encrypt the generated
key and send it directly to the second site. There the service
re—encrypts it for the second user if the key used to protect it
in transit is not the one which protects it when it is stored
there. There may, on the other hand be a series of re-
encipherments en route because of the need to cross different key
domains. The user of the "give key" function may remain unaware

330
of this.

As in ref.4., a Key Distribution Centre may be used to generate
the key in a form suitable for transmission to another site. This
also may be hidden from the user of the "give key" function.

If the sender and recipient are encipherment services which
differ in the way they encode keys for protection (as in refs. 1,
2, and 3) more manipulation is needed to effect the transfer.
There must be 2 transformation function, which operates in an
environment as secure as the one used to encipher the data in the
first place, which deciphers and re-enciphers, reformatting as
necessary. This also can be hidden from the user of "give key",
although a standard way of formatting keys and their associated
information is clearly desirable.

4.3 Mutual key

In some cases this may be only a shorthand way of writing
"generate key", followed by "give key". However consider the
following cases.

a) When a KDC is used to generate the key it may be necessary
to tell it the identity of the other partner in the connection so
that it may encipher it appropriately (see, for example, ref.4).

b) The generation of the key may need the involvement of the
encipherment services at both ends of the connection (for
example when using the Diffie/Hellman algorithm (ref. 6).

For such reasons"mutual key" is needed as a primitive function
at this level.

4.4 Take key and Destroy key

If the underlying implementations are those of refs. 1, 2 or 3
these functions are barely necessary. If a generated key is
stored by the encipherment service and a reference to it passed
back to the user then an explicit destruction of keys is needed.
"Take key" may also be used to inform the service that a
particular user is no longer entitled to use a key.

5.

331

Relationship to Communication Standards

We may expect the emerging Open Systems Interconnection standards
to provide secure services. For example, as already mentioned,
an enhancement of the transport serviée is likely to provide
authentication of users, data privacy and data authentication.
The two entities which communicate to provide this service must
establish jointly agreed keys and initialisation variables and
would make use of functions such as those described in this
paper. The form of the transmitted key and its accompanying
information is an obvious candidate for standardisation and would
avoid the need to transform the key en route, other than to
change its key encryption key. In seeking a standard form we have
to consider:

i) the length of the key,
ii) the permitted users (if this is to be declared explicitly),
iii) information about the type of use permitted.

The methods referred to in this paper do not all allow the same
restrictions of key use to be described. Moreover, in some
cases, the restriction is implied in the manner of enciphering
the key (e.g. the Key Notarization scheme). A standard which
explicitly stated the users could therefore be considered
redundant in this case. However, if the basic key manipulation
method does not involve the user's identity (as in ref.1 and in
ref.2 in its simplest form) the addition gives added security.

The basic encipherment algorithm affects both the length of the
key and the type information which is relevant. PFor example, an
indication of "encipherment" or "decipherment" is irrelevant to
an RSA key.

Ref. 2 has suggested that the "parity" bits in the DES key could
be used to indicate typing information. This may be unacceptable
as an international standard. The $yping information must then
be held separately from the 64 bit key variable.

332

Bearing these points in mind the following is a tentative
suggestion for a standard form for a key and associated
information. First, the clear form. It has the format:

key length, key, key type, users

where "key length” is an integer which gives the length of the
following key;

where "key" is the key as a binary string:;

where "key type" is a binary string whose bits have the following

significance:
1st Dbit DEK or KEX,
2nd bit enciphering key or not,
3rd bit deciphering key or not,
4th bit software protection key or not,
5th bit key usable by any process or only by one

authorised to check access rights,
{meanings for other bits are likely to prove useful);

and where "users" consists of either one or two alphanumeric
strings which identify the permitted user or users.

If such a composite item is to be transmitted over an insecure
telecommunication line it must be enciphered. The form this
takes depends upon the enciphering method. TUsing a 64 bit block
cipher, for example, one must use some method of ensuring that
the separate blocks which form the item cannot be changed
unnoticed. One might, for example, form an enciphered sum check
of the whole item and send it with it. A method which enciphered
a block as long as the composite item could dispense with this.

6.

Conclusions

This paper has discussed a number of issues related to the
standerdisation of the interface to an enciphering service at a
particular level.

Several ways of providing basic key manipulation features have
been considered. It would be logically possible to evolve a
standard way which made use of the best features of those
congidered. This would make standardisation of the form of the
key and associated information easier.

An enciphering service may or may not make use of a separate Key
Distribution Centre, depending on the number of communicating
locations and the complexity possible in each. This design option
is likely to survive. The functions suggested here deliberately
hide this choice, taking the view that it is a part of the
gervice implementation which the user should be able to ignore.

When a key is sent to a remote user it may need to be transformed
because a different way of protecting it is needed. It may need
to be enciphered by the remote user's location master key.
During its journey it may need to be enciphered by a2 KEK used
only for transportation. It may need to be re-enciphered by
several such keys in the course of its journey-. Such
transformations should be hidden from the user at as low a level
as possible so0 that logic can be written irrespective of the
context created by the way the network of users is organised.

New methods of enciphering are likely to be developed. We should
attempt to protect users from the need to know the underlying
changes they bdring. This is, of course, an aim which cannot
necessarily be fulfilled. At the level chosen for the functions
of this paper we reveal the essential difference between
symmetric and asymmetric ciphers. New methods may bring their
own characteristics which should not be hidden.

New applications of encipherment and related techniques are
likely. Two mentioned here are digital signatures which do not
use encipherment of a form which can be used for data privacy and

a new key type dedicated to controlling resource use.

334

For’ such reasons the subject is one which will continue to
develop and the points made in thig paper are offered as part of
the discussion needed to find functions and technigques which may
develop as our knowledge of the subject grows.

References

1. Ehrsam W.F., Matyas S.M., Meyer C.D. and Tuchman W.L. : "A
cryptographic key management scheme for implementing the data
encryption standard." IBM Systems Journal, vol.17, no.2.

2. Jones R.W. : "Some techniques for handling encipherment
keys." ICL Technical Journal, vol.3, no.2.

3. Smid M.E. : "A key notarization system for computer networks.
"NBS Special Publication 500-54, US Dept. of Commerce.

4. Price W.L. & Davies D.W. : "Issues in the design of a key
distribution centre." NPL Report DNACS 43/81, National Physical
Laboratory, Teddington, Middlesex, UK

5. Rivest R.L., Shamir A and Addleman L. "A method of obtaining
digital signatures and public key cryptosystems." Communications
of the ACM, February 1978.

6. Diffie W and Hellman M.E. "New directions in Cryptography.”
IEEE Transactions on Information Theory, vol.IT-22, no.6.

7. Needham R.M. & Schroeder M.D. "Using encryption for
authentication in large networks of computers." Communications
of the ACM, December 1378.

8. International standard ISO/IS 7498. Information processing
systems -Open systems interconnection - Basic reference model.

9. Draft International Standard ISO/DIS 8073. Information
processing systems -0Open systems interconnection - Connection

oriented transport protocol specification.

