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Abstract

Selecting permutations for speech scrambling with t.d.m.
means to define a suitable weight-function or metric on

Sn (the full symmetric group). This can be done in a lot
of different ways. We study some of that weight-functions
and point out which one should be preferred. An algorithm
is given to generate permutations with a prescribed weight.
Some hints are given how to compute approximately the dis-
tribution function of some weight-functions. Finally rank

correlation methods are recommended for testing a t.d.m.-
system.
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Introduction

We are mainly concerned with some open guestions from [2]
(see also Chap. 9 of the book [1]). Selecting permutations
for speech scrambling with t.d.m. means to define a suitable
weight-function or metric on Sn (the full symmetric group) .
This can be done in a lot of different ways (see [12] p.84).
In speech scrambling Houghtons shift factor

4]
m (&) = > ey =i (8eS,  n>1)
1 =4
may be taken as a weight function. We tried to use the genera-
lized weight~-functions Moy Mysee. etc.

m (&) = Zlé(a)-ilk (ky )
1=

They are of independent interest from a combinatorial, number-
theoretical and probabilistic point of view (see [5, 6],
[101). A thorough study reveals that m, should be preferred.

An algorithm is given to generate permutations with a prescribed

weight. The distribution functions of m approach a normal dis-

tribution (mean and variance for k = 1,§ are known) for large n.
This approximation is good, even if n is small (n 25). To com-
pute the distribution function by combinatorial methods seems
to be extremely difficult, only a small number of values are
known exactly. m, is related to the problem of representing

an integer number as a sum of sqguares.

Compared with other crypto-systems speech scramblers have the
capability for testing. The approach taken in [2] for testing
a t.d.m.-system is unsatisfactory because no statistical methods
are used. We recommend rank correlation methods (see [10] and



401

that means for example to use Spearman's ? based on m, .

It should be noticed that we used the book [2] in its original
form as a report (Arbeitsberichte des Instituts f. Mathematische
Maschinen u. Datenverarbeitung (Informatik). Bd. 14,9;.Erlangen,
Mdrz 1982). All citations, page numbers etc. are given with

respect to that original version of [2].

2. Weights on groups

Let G denote a (multiplicative written) finite group with unit

element id and N the natural numbers (zero included).
A mapping
p: G - N

will be called a weight-function on G, if

(1) pla) 0 <=> a = 1id (a ¢G).

(2) pl(a) p(a_1) for all aeG.
(3) p(a“b) p(a) + p(b) for all a,bcG.

By means of d (a,b) = p(a-b-1) we can associate a metric on G

to each weight-function on G. This metric has the property:
dp(a,b) =d _(a.c, b.c) for any c ¢ G; such a metric is called
right-invariant. Conversely if there is a right-invariant metric
d on G, a weight-function pd(a) = d(a, id) on G is associated

to d. We are only interested in G = Sn' where Sn is to be under-
stood as the full symmetric group on- {1,2,..., n}. There are
many ways to define a metric on Sn (see for example [4]). Five
common examples are given below, where ﬂaﬂP is written instead

of p(a) to emphasize the relationship to some well-known norm-

functions.
Examples é‘Tg’e Sn (n=2a)
a. i . Lk
lléukzé___lécl)- vl (k= 1,2,...)
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b. Né\lI = number of inversions in & (if k <1 and &(k)>4(1)
we call this an inversion of & ).

dI(é,T‘) = the minimum number of pairwise adjacent transpo-

sitions needed to bring{é,"1 (1} ,... ,é;_.1 {n)} into the order

(7 "V, ..., Y(n)}. Here &7 and 71 are the permuta-

tions inverse to é and T .

e ”T = the minimum number of transpositions required to
bring {4 (1),..., & (1)} into the order {1,2,...,n}.

dT(é,ﬁ') = the minimum number of transpositions required to
bring { &¢{(1),...,4& (n)} into the order {W(V),..., W(n)}.

a. ¢l = Max | &(1)-1 |

oo
i=1,...,n

d o, (¢, = Max | & (1)~ T (1)
i=1,...,n
e. It é“H =] {11 &)=+ ik (Hamming-Norm)

a0, T) =l{i | 6(0)#Mi)}| (Hamming metric)

We have the following inegualities

lell, = flel, cial s - £0el,
for all 4 ¢ 5,

For a general review of metrics on discrete groups and semi-
groups see [3].

Combinatorics

We start our investigations on weight-functions on the Sn by

a combinatorial approach. We are especially interested in

u-\‘1ami - u , and use the notation m(6) = “é“k(éésa
given by J.L. Davison [5,6]. Let g esn be the reverse
permutation € (i) = n+1-i (1% 1<£n). Throughout the paper we

n

will write ¢ =(n, n~1,..., 1) and more general if ¢ =(;&41&ﬂ”éhﬂ/
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is any permutation, then we will write & = {&{1), &(2),..., & (D)) .
Multiplication & W { 4,7 S_) of permutations goes from right
to left, e.g. if & = (2,3,4,1), ® = (4,1,3,2) then 6T = (1,2,4,3).

Lemma 3.1 If & sSn, then mk( 6) < mk(g) and mk(é) is an even

integer for any k2>1.

Lemma 3.2 The maximal values attained by m, and m, are

2 .
%—, if n is an even number 2

2
[t}
=
—
N
[}
i}
mws
L

nz—l, if n is an odd number

My o= mylg) = % n(n-1)

(We use the shorthand notations M1, M2).

In table 3.1 we have listed the maximal values for the different
weight~functions considered in section 2. Instead of - “T’
“.“I ... etc., we use the shorthand notations T, I... and

so on., As can be seen from table 3.1 the domain of the functions
H, », T is very small related to the number n! of permutations.

That means it is impossible to make strong distinctions between

different permutations.

weight-function { maximal value
1,2
m, in(n -1)
1.2
m, [En ]
1
I j n(n-T)
H n
i n-1
T n-1
Tab. 3.1
A useful result due to Cayley states that T(g) = n -C{é),

where C(4) is the number of cycles in & . If a permutation
has an inversion at (k,7), 1%k<l<n, that means é (k) > &(7)
then 6(k)-4(1) is called the weight of that inversion-
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Lemma 3.3 Let V({¢) denote the sum of weights taken over all
inversions that & has, then

my(¢) = 2V(é).

Lemma 3.4 If & €S, _,(n23) we can construct a ¢¢S_ with

m (5) = 2(n-1 K m, (2) .

Theorem 3.1 For k = 1,2; mk(sn)C[O, Mk] = Ik and

if n24, let w be an even integer, we Ik' Then, there exists
a éesn with mk(é) = w.

Remérks The proof of theorem 3.1 goes through even if k23,
see Davison [6], Theorem 1. p. 72. It should be noted that
Davisons proof together with some corollaries are only true
if k23. As can be seen from the proof of theorem 3.1 the value
M2 is attained by m, only if &= § and this remains true for
k23 and Mk. What concerns m, it can be seen by examples that
; and & #¢ . In the case
k23 we have Mk-4 ¢nm}sn) for nz3 and that means not all even
values in [O, Mk] will be attained by my - Let k=3 and n210
then all even numbers in [O, M3—112] are in the range of m,.
Kk’ Dy for all k=1 that
have the properties: m. attains on Sn all even numbers in

it is possible to have m1(6) =M

There exists indeed always numbers o n
[o, M—ak] for nznk. An optimal selection for k=1,2 will be
n1=2, a1=0 and n2=4, a2=0. In case k>3 there are no nontrivial

values of Dy oy known (see Davison [6] 3.p.74).

Definition 3.1 Let r be a real number, r20.

St W-U,r nyx) = {&1 &es_, llélla =T} (am1,2, ..., 1,7, H)
B( ||+ Il , nyr) = {éiéssn, Nell, =r)
| st«,+, «)) or |B(-,-,3} denotes the number of elements in
that sets.

Theorem 3.2 We have

(E.)Z if n is an even number.
5!

S =
\ (m1’n’M1)‘ n -(—7—1)2 if n is an odd number.
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Theorem 3.3 We have for éesn(nZZ),
m, (&) +m, (&-g) len
and mz(g-é) =m2(6'3)-

Corollary 3.3.1 Let n24, and let w be an even integer,

W e[O,%n(nz—H]. Then, there exists a éesn with mz(é) = .

Lemma 3.5 Let n25, then n(n2—1)/6 < (n-1) ((n-1)2-1)/3 and equality
holds if and only if n=5.

Lemma 3.6 Let n=5 and w an 1nteger number w e[g n(n -1) ,—n(n =-1))-
——n(n -1)-w 5—1— 44 —-1) or there exists a least

integer number n, 5sn<n and we (—n(n2—1) —n( —1))

Then, either w

. , 1 2 1 2
Lemma 3.7 Let n>5 and w an even integer with zn(n“-1}sw<zn{(n"-1).
Then exists a pexrmutation ée S-— with n<n and “ & g i 2 T W,
where é is an extension of & from S+ to S,

3 is defined byd(i)=i for i = m+1,...,n.

This gives us a constructive method for finding for any given
even number w, OSWS%H(H2—1) a permutation éesn with & “2 = wW.
We have thus proved any given integer w may be (constructive!)
represented as a sum of sguares (see Davison [5] Th.1.).

Example & Sg: il 5 = 128 we are looking for such a permutation.

(1) w = 128, %-8‘3 = 84<128<168 =-13-»8-35, n=8
(2) W = 40, %-6-35 = 35<40<70 = %~6135, =6
(3) ¥ = 30, %-5-24 = 20<30<40 = %-5~24, =5
4) &= (3,5,2,4,1) ¢ 5., ll & b, =30

~ ~
(5) &= (3,5,2,4,1,6) S, H e I, = 30

2 = (3,5,2,4,1,6) + (6,5,4,3,2,1), = (6,1,4,2,5,3)

—_—

2= 40 S
(6) ¢ = (6,1,4,2,5,3,7,8) <5z, | Tll,= 40

& = (8,7,3,5,2,4,1,6) = "g.g
It dll= 128 = 7245%4024+12432422,62452
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It is possible to generate immediately a second permutation

of mz—weight 128. We note that by theorem 3.3 it is admissible
to multiply by g from the left side in steps (5) and (6) above.
This gives:

¢, = (5,7,4,6,3,8,2,1)

128 = 42+52+1 2+22+22+22~1~52+72

Taking into consideration all possible combinations of left and
right multiplication by ¢ gives four permutations at all.

6~
(¥
|

(8,7,1,6,3,5,2,4)

2 2 2

128 = 7%45%42 2

+22+2 +12+52+4
&6, = (31'8,517'4!612!1)

2 2,2

+6242%243%241240%+5%47°2

128 = 2

In Figure 3.1 another approach for generating permutations of
mz-weight 128 is seen. We will not go into the details of an
algorithm that generates a lot of different permutations. Our
description is only an informal one a more formal treatment will

be given elsewhere.

There are important relations between the various weight-
functions which generally take the form of inegqualities.

Theorem 3.4 Let & gSn, then

(ut) 2I(é) < mz(é) < 2(n-1)-I(e6) 1
(U2)  my(3)/n-1 < m, (&) <Min (my(¢), (n'm,(e))?)
(U3) m,(6) > Max {4/31(&) C(1+I(&)/n), 2I(&)}

(Durbin-Stuart inequality)

(U4) I(e) + T(&) =m, (&) £2I(e)

(Diaconis~-Graham inequality)

The Diaconis—Graham inequality suggests that the difference be-
tween I and m, is not very great. The results in Table 3.1
suggest that H,= and T are unsuitable for use, having a very

small range. There remains only m., that has the largest range

2
and indeed as Lemma 3.3 shows is of a kind essentially different

from I and m, .
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Lrg *bTd

VZp'e's'e’s’e) == (L'eo’p’L’c'2’8) (Z's’e'9’'v 1L%8) (L'Z'a’'c’9’p'L’S) = L5 carsy @rvesels

3787’ Lv T LA AN A D A A A (S P9 e ) Ly ot sy @vaseil (8rale’sTeiL) [CHAAAUAE

+
< A ~ 9

+ ~
(zs ‘L ‘v ‘9 9 g g 77) (v 9 ¢ "z L) (¢t "¢ " 'z v "L '9)
< + ~
v 79 't ¢ 'z (€ s 7z v 1 '9)
AN e 7g "9 Ty i (971 7y 'z 's 'e)

+ o~
(“s39)
(batg’ N2 YY) = 4 7% ¢ ’5 ')
(veu'(uig' - 0PI = ~0



Definition 3.2 Let N “a(a =1,2,...,I,T,«,H) be a weight=-

function on Sn(n21). Then, the map

fa'n . lo,M] - [O,n!]
where M = Max{ || & | aI A €S} and

£, 00 =ls Cuitino |, reron
is called the distribution-function of - ll_.

a

From theorems 3.1, 3.2 we know f1’n(M1), f2,n(M2) = 1 and
fi'n(O) =1, fi,n(r) = 0 if r is an even integer (i = 1,2).

The distribution-function £,  is symmetric about %n(n2-1).
[4

(M

Lemma 3.8 f2,n(r) = f2,n 2,n

-r), r ¢ [O'MZ] an integer

number.
£ (r) 2n~3 for nz4 and r#O,M,.
2,n 2

In Table 3.2 we have computed some values of f2 n(n24).
14

b len(r) r

0 1 M2

2 n~1 M2-2
1

4 3 +5n(n-5) M2—4

6 I (n%+59) -2n3-114 M.-6

6 2

Tab. 3.2

To compute the distribution-functions of m, and m, by combina-

torial methods until now nobody succeeded.
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4, Statistics

An example from Kendall [10] p.3 will clarify the discussion.
Consider a number of boys (or girls) ranked according to their
ability in mathematics and in musics:

Boy A B C D E F G H I J
Mathematics (&) 7 4 3 10 6 2 9
Music (W) 5 7 3 10 1 9 6 2 8 4

We are interested in whether there is any relationship between
ability in mathematics and music. In statistics widely used
non-parametric measures of asscociations such as Kendall's T
and Spearman's ¢ lead to natural metrics or weight-functions
on Sn‘ Statisticians most often normalize metrics so that they
have the properties of a correlation coefficient., The transla-
tion is the following one: if d is a metric on Sn and its maxi-
mal value is M, define a rank correlation coefficient by:

K(T oY= 4 — 2T ¢)
M

Most of the metrics that we mentioned in section 2. were known

for a long time in statistics as measures of disarray.

. T
TTé) = 1 — 2-L(Te") (Kendall, 1938)

T n(n-1)
— =1
g(Wlé) = /; — G - Ml(u.é ) (Spearman, 1904}
n3—n

D Ve g o 2 (747)
R(T,E)= 4 7-[;141

Most of the combinatorial results given in section 3. are there-

(Spearman's footrule, 190¢

fore known in statistics, e.g. nearly all results of Davison
[516].
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We look at weight-functions now from the point of view of
probability theory. Then Sn is the sample space and a weight-~
function is a random variable on that sample space. We assign
the probability 1/n! to each event (permutation) in Sn. As can
be seen from a graphical representation the distribution of the
weight-functions corresponds with the normal curve. A limit
theorem for ll-ilI and “'“T. was given by Feller [8], p. 256,
what concerns -l -1, the limiting normality was proved by
Kendall [10] Chap. 5.8, p. 72 by computation of higher moments
or one can use Hoeffding's [9] Th. 3, p.560 combinatorial cen-
tral limit theorem. In Table 4.1 mean and variance of m,,m,,T
and T are given. Its now very easy to calculate approximately
the number of permutations éesn with r,< &l <, (a=I,T,m,,m,) .
Let

_ v~ (ECrig)ed) o . Ti- (E (Ii-1ia)=1)
’ ( Var (#-0,)"2 ' 2 (Var (1)) %

then we have approximatively

A L

X2
b A -3 X _ (1)
n. (.‘L_ﬁ.)‘l/1 j 6 (Lx
R4

permutations & €S with r, < Il & l{a’ sr,.

weight-function mean variance

1, 2 2 _3 2

I‘l'l.I 3(1’1 -1) 71—5-1'1 + 0(n")
3

1 2_ n~-n,2 1
my gn(n™-1) )" 5
T n-log n logn

1.2 1 3
I 41'1 ?6—1'1

Tab. 4.1

In Table 4.1 for T, I only the leading terms of the mean and

variance are indicated. The results in Table 4.1 suggest again

that ™y should be preferred. 0Of the four metrics m, has the
greatest variability.
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From the report of Beth et al. [2] we have taken the distri-
bution of m, on Sg and listed in Table 4.2. In Table 4.3 we
have calculated that distribution by formula (1) by means of
a HP25 pocket-caluclator. In comparison with Table 4.2 it be-
comes quite clear that for all practical purposes such an ap-

proximation is good enough.

L1—weight score m1—weight score
o 20 5708
2 7 22 5892
4 33 24 5452
6 115 26 4212
8 327 28 2844

10 765 30 1764
12 1523 32 576
14 2553
16 3696
i8 4852

Tab. 4.2 Distribution of m, on S8

m1—weight approximate score true score error in %
22 6551 5892 + 11
22 - 24 12006 11344 + 6
22 - 26 15957 15556 + 2,5
22 - 28 18274 18400 - 0,7
22 - 30 19433 20164 - 3,6
22 - 32 19920 20740 - 4
32 487 576 - 15

Tab. 4.3 Normal approximation to the distribution

of m1 on SB'
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The distribution of m, on Sn is known for n = 4-13 from tables
given by Kendall [10] (Appendix Table 2, pp. 174-177), if
n 2 14 then the normal approximation is good enough.

Testing a t.d.m.-system.

We lock at an example given by Beth et al. [2], pp. 136, 140.
Six different texts together with their intelligibility

and the permutation used for scrambling are listed in Table 5.7.
This gives the following ranking.

ties
—————

1 2 3 4 5 1/2 51/2
1 3 4 5 2 6

where equal weights of the last two permutations give rise to
ties. We then have

§=1-1—=O.56

3

(54}

where the rank correlation coefficient ¢ is modified because
of the tied ranks (see Kendall [10] Chap. 3). The standard

error of g is %3 = 0.45, Thus the observed value is

0.56/0.45 = 1.24 times the standard error. This is barely
significant.

I
text mo. permutation intelligibility m1—weight
1 (1,2,3,4,8,6,5,7) 1 6
2 (7,v,3,4,5,2,6,8) 3 12
3 (7,2,6,3,4,5,8,1) 4 20
4 (6,4,8,1,2,7,3,5) 5 26
S (5,6,7,8,1,2,3,4) 2 32
6 (6,5,8,7,2,1,4,3) 6 32

Tab. 5.1
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Rank order statistics are thus well-suited for use in testing
a t.d.m.-system. What concerns refinements and further possi-
bilities we refer to Kendall [10]. We emphasize that a thorough
testing of a t.d.m.-system should improve its security.
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