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ABSTRACT

Consider the fdlowing situation. K data bits are to be encoded into N > K bits and
transmitted over a noiseless channel. An intruder can cbserve a subset of his chdce f size p < N.
The encder is to be designed to maximize the intruder’s uncertainty about the data given his N
intercepted channel bits, subject to the condition that the intended receiver can recover the X data
bits perfectly from the N channel bits. The optimal traddffs between the parameters X, N, p and
the intruder’s uncertainty H (H is the “conditional entropy” of the data given the p intercepted
chamel bits) were found. In particular, it was shown that for p=N —K, a system exists with
H = K —1. Thus, for example, when N = 2K and p. =K, it is possible to encode the X data bits
into 2K charmmel bits, so that by looking at any X channd bits, the intruder obtains essentially
no information abcut the data.
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1. Introduction

In this paper we study a communication system in which an unauthorized intruder is able to
intercept a subset o the transmitted symbadls, and it is desired to maximize the intruder’s

uncertainty about the data without the use of an encryption key (either “public” ar “private”).

Spedifically, the encoder assodiates with the K-bit binary data sequence S* an N-btit binary
“transmitted” sequence XV, where N > K. It is required that a decoder can correctly obtain SF
with high probability by examining X¥. The intruder can examine a subset of his chace of size B
o the N positions in XY, and the system designer’s. task is to make the intruder's equivocation
(uncertainty) about the data as large as passible. The encoder is allowed to introduce randommess
into the transformation S¥ - X", but we make the assumption that the decoder and the intruder
must share any information about the encoding and the randomness. This assumption precludes the

use of “key” cryptography, where the decoder has the exclusive posession of certain information.

As an example, suppcse that K =1, N =2, p=1. let the data hit be §,and let £ be a
uniform binary random variable which is independent of §. Let X2 =(§, £ D S), where “&”
denctes modulo 2 addition. If the intruder looks at either coardinate of X? he gains no information
about §, so that the system has perfect secrecy. The decoder, however, can obtain § by adding
{maodulo two) the two components of X2,

Our problem is to replicate this type of performance with large X, ¥, i In fact we assume that
K = RN, p= oV, where R, a are held fixed and N becames large. Roughly speaking, we show
that perfect secrecy is attainable provided that u is ot too large, specifically p<s N-X o
a s I-R. In Section 2 we give a precise statement and discussion of our protlem and results,

leaving the prodfs for Sections 3-5.

This problem is similar to the wire-tap chanmel problem studied in Reference 1. A spedial case
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o the problem studied there allows an intruder to examine a subset of the encoder symbds which is
chosen at random by nature. In the present problem, the system designer must make his system

secure against a mare powerful intruder who can select which subset to examine.

2. Formal Statement of the Problem and Results
In this section we give a precise statement of our problem and state the results.

First a ward about notation. Let U be an arbitrary finite set. Dencte its cardinality by [U].

Caonsider U" | the set of N -vectors with companents in U . The members of U” will be written as
“H =(ll1, Uggeeey uN) ’

where subscripted letters dencte compmnents and boldface superscripted letters denote vectors. A
similar convention applies to random vectars which are dencted by upper-case letters. When the
dimension of a vectar is clear from the context, we amit the superscript. Finally, for random
variables X, Y, Z etc., the notaton H(X), H(X|Y), I(X;Y), etc. denctes the standard

infarmation thearetic quantities as defined, for example, in Gallager [2].
We now turn to the description o the communication systan.

(i) The source autput is a sequence {S, }r, where the §, are independent, identically distributed

binary randam variables.

(i) The encoder with parameters (X, N) is a channd with input alphabet {0, 1}f and cutput
alphabet {0, 1}¥ and transition probability gs(x” |s*). Let S¥ and X¥ be the input and

output respectively o the encoder.
(iii) The decoder is a mapping
fD: {0: l}N - {05 1}‘ .

Lt 8§ =(S,,$2. Sz) =f5(X"). The error-rate is

N -
P.= zPr{Sg$sk}.

L
K k=1
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(iv) An intruder with parameter p= N picks a subset S C {1,2,.., N}, such that |S | = , and
is allowed to cbserve X,,n € S. Let Z¥ =(Z,,..., Zx ), defined by
{X., ne€s,
Z. = 2, neS,

dencte the intruder’s information. The system designer seeks to maximize the equivocation

A& min H(S*|ZV).
S5: 1S |

Thus, the designer is assured that no matter what subset S the intruder chooses, the intruder’s
remaining uncertainty about the source vectar is at least A. When A =K, the intruder cbtains no

infarmation about the source, and the system has attained perfect secrecy.

In this paper we study the tradecffs between K, N, A, and P,. As we shall see, it will be useful
to consider the normalized qualities X/N , WN, A/K. Thus K/N is the “rate” of the encoder = the
number of data bits per encaded bit, WN is the fraction of the encaded bits which the intruder is

able to dbserve, and A/X is the normalized entropy.

Let us remark that the intruder which observes Z¥ can reconstruct the data sequence ST with a
per bit errar probability of say P,. It follows from Fand's inequality that A (P,) = A/K, where (")
is the binary entropy function defined below Eq. (22). Thus AKX = 1 implies that P, = 1/2 which
is essentially perfect secrecy.

We will say that the triple (R, a, 8) is achievable if for all € > 0 and all integers Ny > 0, there
exists an encoder/decoder with parameters N 2 Ny, K =2 (R—€N, u2 (a—¢N, A= (€N,

and P, s ¢ We will show in the sequel that (R, o, 8) is achievable fde 0= R, @, 5 1, and

= (2.1)
(=) 4 rs<sas1.

A graph of the achievable (a, 8) pairs for fixed R is given in Figure 1.
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Figure 1. Achievable (c, 8) for fixed R .

The following thecrem, a proof of which is given in Section 3, is a “converse” result which gives
a necessary condition on achievable (K, N, A, P,).
Theorem 2.1: If (K,N, A, P,) is achievable, then

X, 0s ps N—K,
AS \N—ut+Kh(P,), N-K S us N . 22

where k(\) = —\ log A—(1-X) log (1-A) is the binary entropy function.

Now if (R,a,8) is achievable, for arbitrary €> 0, thers must be an encoder/decoder with
parameters N, K = (R N, p= (a—€N, A = (-¢N, P, s ¢ Applying Thearem 2.1 to this

code yields

1,
5
= %ﬁ-"l + 0@ +h(©®, 1Rsa+0(@s1,

which is (2.1) as e~ 0. Thus conditions (2.1) are necessary for a triple to be achievable. Thearem

22, which is also proved in Section 3, implies that (R , &, 8) is achievable if (2.1) is satisfed.

Theorem 22: Let 1-R < a< 1. Then, for all €> 0, Ng = 1, there exists an N = N, and an

encoder/ decoder with parameters XK =RN,p=aN , MK = [(1-a)/R] —¢and P, =0.
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The idea behind the proof of Thecrem 22 is the following. Partition the set {0, 1)¥ into 2F
subsets {4, }2* with equal cardinality — ie. |A.|=2¥-%. The 2f pcssible values of % can be
put in 1-1 correspondence with these subsets. When S correspands to A. (1 = m = 2F), the
encoder autput is uniformly distributed on A, . Since the {A, } are disjoint, the decoder can recover
S perfectly and P, =0. We show (by random coding) that there exists a partition satisfying
Thearem 22.

A convenient way to partition {0, 1}¥, is to let the sets {4} be the cosets of a graup code G
with ¥ —K infarmation symbds (so that G has 2F cosets). Thearem 2.3, which is proved in Section

4, asserts that in fact we can do quite well with codes of this type.
Theorem 23: If the triple (R, a, 8) satisfies (2.1), then it is achievable using an encodex/ decoder
derived from a group code.

The fdlowing simple lemma allows us to establish the achievability of all triples an the straight

line of Figure 1 cormecting paints A and B by proving anly the achievability of paint A .

Lenma 24: Suppose that we are given an encoder/decoder f,, f, With parameters N, K, P,.
Suppcse there are two intruders which have parameters p = 1y, 1y and A = Ay, A,, respectively.
Then, if pe = 4

b= B — () . (2.3

Remark: Inequality (23) can be rewritten as

/N —/N
(8/K) = (AJK) - [f'—;,';‘—] :

fram which we conclude that (R, oy, §) achievable implies that (R, ap, &) is achievable where

a; = oy, and
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In particular, if oy =1-R, § =1, then

8; = (1"0.2)/R .

Proof of Lenma 24: let S§,C S,C{1,2,.,N}, where [S;|=, |S;]=m. Let Z

carespond to S, (i =1,2),ie. Z; =(Z,,.,2Z,,) and

x/sjesl»
Zu=1, j€S,.

Then

H (8" |Z;)-H (8% |Z,) =H (S*|Z,, 2,)-H (8% [2,)
=-1(8°;Z,|2,) = ~H(LlZ) = ~(m—w) ,
where the first equality follows fram S; € S;. Thus

H(S"|Zy) = H(S" |Z))~(m—w)

z A - ().

(2.4)

fram the definition of A. Minimizing (24) over all S 5, with |S ;| = 4 yields (2.5) and the lemma.

Finally, we state a thecrem which is a rather surprising strengthening of Thearem 22. Its proof

is given in the full version of this paper.[:ﬂ

Theorem 2.5. For arbitrary X,N (1 <= K < N), and p =N X, there exists an encoder-decoder

with P, =0 and

Az K-1-7=.
W

3. Proof of Theorems 2.1 and 2.2

Assume that S5, X¥, Z¥, § correspond to a source/ encoder/ decader as defined in Section 2,
with parameters K, N, A, P,. Then, making repeated use o the identity

H(U,V) =H(U)+H (V |U), we cbtain
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A=H(S*|Z¥) =H(S, Z)-H (Z)
=H(S, X, Z)-H (XIS, Z)-H (Z)
=H(S|X,Z) +H(X,Z) -H(X|S,Z) -H(Z)
=H(S|X,Z) +H(X|Z) -H(X|S,Z). (3.1)

Now

H(SIX,Z) =H(SIX, Z,8) s H(SIS)

= Kn(P.),

where the last inequality follows from Fand's inequality (see [2]). Also, since H(X|Z) is the
entropy o those N —p coardinates of X not spedified by Z, we have H(X|Z) = N —. Finally,
noting that H (XS, Z) = 0, we have fram (3.1)

As N-u+Kkr(P,),
which is Thearem 2.1.

We now give a proof of Thearem 2.2 which proceeds along the lines suggested in Section 2. Let
K,N be given, and let {4}, 1 = m = 2%, be a partition of {0, 1}¥ imto subsets A, C {0,1}"
such that |[A, | = 2%, As in Section 2, the partition defines a code: to encode message m
(1sm = 2f), welet X¥ be a randomly chosen vectar in A, . Since the A, are disjdnt, P, =0
and H(S|X, Z) =0. Further, since the 2 messages are equally likely and |4, |= 2¥ % X is
wnifarmly distributed on {0, 1}V, so that its coxrdinates are independent identically distributed
uniform binary random variables. Thus H (X" [Z¥) =N —. We conclude fram (3.1) that far this

encoder

A =N —yu—H (X" |S5,2") . (3.2)

Now let z € {0,1, ?}” be a pcssible value for the intruder’s information, and fet x € {0, 1}V.
We say that z is “cansistent” with x, if z can be dbtained from x by changing a subset of the
coardinates of x to ?’s. Next, let L = 1 be an integer to be chasen later. We say that a partition

{An}is“good” if forallm (1 = m = 2f) andall 2 € {0, 1, ?}¥ with exactly N = *7’s,
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card {x € A.: zis consistent withx} < L .
If cur encoder correspands to a “goad™ partition far some L, then
H(XV|S*,Z¥) <lgl,
and (32) yields
A= N-u-legL . (3.3)
At the conclusion of this section we will prove the following proposition about the existence of
“good” partitions. This will lead us directly to Theorem 22.
Lenma 3.1: Let K, N, pbe such that
N—K <0. B4
Then, there exists a “good” parttion (with parameters X, N, i) provided

N+ R 1g e
L> X ) (3.5)

Now let R, &, ¢ N be given as in the hypotheds o Thearem 22. Then, using 2log ¢ < 3, we
vrite fa N 2 1,

N+K+2 log e 4R 43 a
KipN = aql-R) "2 <=

Thus there exists a “good” partition with L = B +1, and we conclude fram (3.3) that there exists a
code with AK = (1-a)/R --‘Eg’N—“)—. If we chaose N = No, & /log (B +1), the existence of
this code establishes Thearem 22. It remains to prove Lemma 3.1.

Proof of Lemma 3.1: Let {A.},1 = m = 25, be a partition f {0, 1}¥, where |4, | = 2" £, Lat

¥(A,,.,A;r) =0 a 1 accarding as {4, } is “pood”’ or not. We write

of
YA A0) S S T HAa), (3.6)

-=l g

where the inner sum is taken over all z € {0, 1,7} with exactly N~ *?’s,and {4 ,.,2) = 1if
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card {x € A, : zis consistent withx} = L ,
and &A,, z) = 0 otherwise.

We now choose the partition at random with unifam distribution on the set of partitions o

{0, 1¥¥ into 2F classes of equal size. The expectation E W, satisfies

E¥YsSSENAL,Z). 3.7
The expectation in the right member of (3.7) is taken, as indicated, with z held fixed. Let us define
the following quantities.

0@ ={x g {0,1}: x is consistent with z} ,

n=0@|=2"", (3.8)
n={0,1M|=2",
r=ALl=2T .

We now compute EQ{A,, z). The r members of A, are chosen at random fram {0, 1} (withaut
replacemment). The probability that exactly £ mermbers of A, belang to Q(z) is

1\ N
(DG
- a
()

To see this, observe that thcrearc('r') ways of choosing the set A,,. The € members of A,
which belong to Q(z) can be chosen in ("(1) ways, and the remaining (r —€) members of A, can be
chosen from the complement of Q(z) in ("r—_';l) ways.

Now

n
L2 DG GG
n n )

Also, using () = n{/e€!, and
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(r:f) - n! _ri{n-ry!
(1;) (n—r +£}!(r-£)! n!
r{r=D{r=2)..{r—€+1) r (/)

T () (nH—r-1).(nT+1) = (n=r)* ~ (1-rin)t’

we have

{n,rin)*
e(1—in)t

= (nyrin)t

zN-‘
ERAwD =3 %= 3 3y

Using (3.8), we have (n,r/n) =2¥ & (1-r/n) = 1/2, so that

Edhn,0)s 3 200l

(L2

= 2(
s QW W) 2 TH = N LU L2
=0 “°

Substituting into (3.7) we have
E¥ <33 2Wwix-iige

< 2(N —w—E)M +2 log ¢ +K +2N .

If L satisfies (35), then EY < 1. Since V¥ is integer valued, there must exist a particular partition,

say {A.} such that ¥(A§,..,A,;r) =0. This is cur “good” partition.

4. Group Codes and Theorem 2.3

In Sections 2 and 3, we discussed how to construct encader/ decoders based an a partition {A .}
o {0,1}¥. In this section we consider the special case where the partition {A.} is defined by a

graup code and its cosets.
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Let H be a K X N parity-check matrix, which we assume has rank K. Let the partition {A.},
1< m =< 2F, be the code defined by H and its cosets. Thus |4, |= 2¥% forl=m < 2. To
encode message 8 = (5q,..., 5 ), the encoder makes a random selection of ane of the 2¥ ¥ members
o the A, corresponding to s. This is equivalent to letting X¥ be a random chaice fram the 2¥ ¥
solutions of

HX =3, 4.1)

where t denctes matrix transpose. Nate that, since S is uniformly distributed on {0, 1}F, XV is
unifarmly distributed an {0, 1}, and its coordinates X, X,..., Xy are i.d. uniform hinary random

variables.

The decoder cbserves X¥ and computes H X', which is the message. Thus P, =0. We now

show how to compute A in terms of certain distance-like properties of the parity check matrix.

Definition: Let C;,'C,,..., Cy be the columns of H (C, is a K-vector). Let S € {1,2,...,N} and
defne D(S ) to be the dimension of the subspace spanned by {C,},n € S. For a given K XN

parity check matrix H, define fod 0 < p=s N,

D' () =I min D(5). 4.2)

[=N —

We now state

Lemma 4.J: Let D'(w) correspond to the K X N parity-check matrix . Let w,w’ be the
minimum weight of the code and dual code, respectively defined by H. Then (1) for

NwH s usN,D'(W =N Q) falspus w-1,D'() =K.

Proof: Assertion (1) fdlows immediately on cbserving that all sets of w—1 columms of H are
linearly independent. Thus D(S) =|S|, for |[S|sw-l. f N-w+l s us N, then

N - < w=], so that

D'(W = ]smin D(S)=N—,

[~ -
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which is assertion (1).

Now assertion (2) states that all submatrices # =(C,Cy-,C,) o H have rank K when
g = N-w'+1. To establish this assertion assume that rank & < K. Then there exists a set o
linear row manipulations which transfarm H into a matrix with;amwch's. These identical row
manipulations will transform H into a matrix for which a row as weght < N —. Since the dual

code is the row space S H,N — = w’'ar ¢ = N -/, establishing assertion (2).

We now give

Lemma 42: When an encoder/ decader is constructed to carrespond to the parity check matrix H,

then

A=D"() . (4.3)

Proof: Let S, X, Z correspond to an encoder/ decoder with parameters X, N, A (P, = 0), derived
as discussed above, fran a parity-check matrix H = (C,,...,Cy). Since P, =0, and X" is
unifarmly distributed m {0, 1}¥, Eq. (3.2) applies. Thus Lemma 42 will be established when we
show that

H(X"|S%,Z") =N—D"(i) . (44)

Now suppcse that S8f =3 and Z¥ =z, Withont loss o generality, assume that the last p
coardinates of z are copies of the correspanding coordinates o X Thus, given S¥ =3, 2" =1z, the
remaining unknown cocrdinates of X are precisely the solutions for xy,..., 1y , o

Nz_“ Cx, =8 + g‘, Cx 8ca. (4.5

A=l a=N —p+l
Since the number of sdutions is N —u-rank (C;...., Cy—,), and given § =3, Z = z all these sdlutions
are equally likely, (4.4) follows. Hence the lemma.

Befcre continuing with the proof of Thecrem 2.3, we digress to apply Lemma 42 in an example.

Let X =4, N =8, and construct an encoder/ decoder using the self-dual Hamming code with block
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length 8 and 4 information and 4 check digits. Then w =w' =4, 50 that

4=K, 0= pus 3,
A=D.(“’)= 3: IJ-=4,
N -, 5susx<8.

Thus the encoder/ decoder is optimal for all pexcept = 4, when A is but ane bit less than ideal.

We will establish Thearem 2.3 via a random code argument. Towards this end, we establish the

following lemmas.

Lenma 43: Let 1= m < n and let the m X n matrix A over GF(2) be chcsen at random with

unifarm distribution an the set of 2°* binary m X n matrices. Then, for 1 < L =< m,
Pri{rank A < m-L}= 2{L-Dixm)n

Progf: Let us chomse the n cohumms of A sequentially and independently. Let d(j) be the
dimension of the linear space spanned by the first j columms. Suppose that d(j) =k < m. With
probability 2t ™, d(j-+1) = k; and with probability (1-2*), d(j+1) =k +l. This sequential
chdce o the cdumms is modelled by the Markov chain of Figure 2.

1 g™ 1- 7'
m o ’m
Z.m ,zl-m 22-1‘”— Z_/L 1

Figmre 2

Begin at state 0. With each chdce o a column, advance ane state if and only if this chaice

increases the dimension of the space spanned by the columms chcsen so far. The rank of the matrix
A is d(n), and is equal to the state at which we find ourselves after all # columns are chcsen. Let

I'{k) dencte the set of paths 7 which start at state 0 and terminate at state k (0 < k < m). Then
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Pr{ramkA<m--l_}='§;_l S Prig. (4.6)
t= wCI(t)

- Now let the path =€ I'(k). This path contains exactly n— self-loops, each of which has
probability < 2=t Thus, for 7 € I'(k),

Pr {m} s 20m$Xab) |

Alsosince [[(k)| = (), eq. (4.6) yields
PrirankA < m-L}= --é-l (:)2‘("”("‘” .
k=0

Since the expanent is non-decreasing ink (k = m < n), we have

-l -
PrirankA <m-L}=< Y (:)2-(1-*1)0!—-#1.4»1)
&

< 2u 2-(1. +1){(a-m) R

which is Lemma 4.3.
Lenmad4: Let 1 = m =< n, and let the m Xn matrix A over GF(2) be chasen at randam with
unifarm distribution an the set of 2™ binary m X» matrices. Then

Prirank A =m} =-]'i1 Q-2
1=

2- -1=a 2- -1
= ep{ )= - 22,

Proof: Chocse the rows of A sequentially. As in the proof of Lemma 4.3, the probability that the
dimension of the space spanned by the first j rows is equal to§ is

(1=2)(1-2*1) (124 .

The rest of the lemma follows fram In(1—u) = —u/(1-u) and e™ = 1.

We now turn to Thearem 23. Let R > 0 be given and beld fixed We will show that § =1,
a =1-R is achievable, and the remainder of the thecrem will fdlow from Thearem 24. Let€> 0
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be arbitrary. We will show that there exists an encoder/ decoder with parameters N, K = RN,

p=(1-R =N, A = K-L, provided that
- L = 3fe. @7
We proceed as fdlows. Let H be a K X N parity-check matrix, and let L satisfy (4.7). Let
D' () correspond to A, and define

1, D'()<K-L a mk(@H)<K,
“’(H)={o, ah(:)wisc. k)

(4.8)
We must show that there exists an # with ®(H) =0. We can write
YH)s I «H,S)+RH), (492)
Scii,., N}
1Si=w
where
1, rank(H) < K ,
aen=fo; ) (455)
and
1, D(S)<k-L,
®H,S) = {0’ atherwise . (4.9¢)

If we choose H = (Ci,..., Cy) at random with unifarm distribution o the set of 2° ¥ binary

K X N matrices, (4.9) yields

EVYH)=s T ENH,S)+EQH). (4.10)
IS|=w

Let S, with |S| = be arbitrary, and let A =(CC,.Cy ) , where S ={i ., iy} Then
&H,S5)=1if and cnly if rankA < XL, and EQH,S) =Pr {rankA < K-L}. We can

apply Lemma 43 with n =N —u,m =K, to cbtain
EQH,S) = 27t hW 0w 411

Similarly we can apply Lemma 44 withA =H,n =N, m =K, to dbtain
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KzK—N—l K2K-N
1_2:-?1-1 = 1_2K-N :

EQH) s

(412)

Since there are no mare than 2¥ subsets S, (4.10)-(4.12) yields (using N ~u—X =eN,X =RN)

EW(H) s 2-¢-0v v w4 K2
125~

< gty 4 RNZU®

T (4.13)

Since L satisfies (4.7), the first term in the right member of (413} < /2. Furthemare, far N

sufficiently large, the second term in (4.13) is also < 1/2. Thus
EV(H)< 1.

Since ¥(-) is an intsger valued function, there must exist a X XN matrix H, such that
W(H,) =0; so that rank Hy = K and for the corresponding encoder/ decoder, A =D° () = K-L,
which is what we set cut to prove. Thus we have shown that for arbitrary R > 0, the triples

(R,q,8) where a = 1-R, 8 = 1, are achievable, completing the proof of Thearem 2.4,
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