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ABSTRACT

This ©paper presents a layered approach to the design of private key
cryptographic algorithms based on a few strategically chosen layers.
Each layer is a conceptually simple invertible transformation that may
be weak in isolation, ©but makes a necessary contribution to the
security of the algorithm. This is irn contrast tec algorithms such as
DES which wutilize many layers and depend on S-boxes that have no
simple mathematical interpretation. A property czlled transparency is
intrcduced to deal with the interacticn of layers and how they must be
selected to eliminate system weaknesses.

Utilizing this layered approach, a private key cryptographic algorithm
consisting of three layers is constructed to demonstrate the design
criteria. The algorithm has an adequate key space and valid keys can
be easily generated. The design is based on =2 symmetrical layered
cenfiguration, which allows encryption and decryption to be performed
using the same algorithm. The algorithm is suitable for VLSI imple-
mentation. Some statistical tests are applied tc¢ the algorithm in
order that its cryptographic performance can be evaluated. The test
results and attempts at cryptanalysis suggest that the three-layered
zlgorithm is secure.

1. HISTORY OF LAYERING

T"he concept of layering cryptographic transformations to produce
stronger ones was first suggested by Shannon [14] using substitution
and permutation teratiors as layers. Thie 1idea was introduced in
1949 as product ciphers, which made it ©possible to generate strong
cryptosystems by concatenating weak transforpations. The 'Lucifer’
cipher, developed 2t IBM by TFeistel [6] ectedies this approach by
alternately applying substitutions and permutations.

A well-known example of an existing private key cryptcgraphic algor-
ithm is +the Data Encryption Standard (DTS) [31. The DES algorithm
consists of many layers exemplifying the strength of a layering ‘tech-

nique. Although DES has been adopted as an encryption standard, it
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has been subjected to a great deal of criticism and suspicion [4, 7].
Some features of DES, such as the design of the S~boxes for example,
are not well understood and instead of trusting in a system which is
difficult to analyze, a user may choose a simpler system that can be
understood.

Layered encryption has also been explored in the broadcast environment
by Spencer ahd Tavares [15]. Only a few layere were employed in this
particular application, each of an zrithmetic nature. Thig 1is in

contrast to layers such as those used in the DEE algorithm.

2. OVERVIEW OF LAYERING

In order that the concepts of layered encryction systems can be
examined, the Dbasic characteristics of conventional systems =are
stated. The components necessary in all cryptographic systems are a
plaintext space P, ciphertext space C, key space K, a set of
enciphering trarsforrwations E, and a corresponding set of deciphering
transformations D.

Unlike conventional systems, a layered cryptosystem has several con-
catenated enciphering transformations for encryption and the sane
number of deciphering transformations concatenated together for
decryption. An m-layered cryptosystem is corpcsed of a plaintext
space P, ciphertext space C, a set of m key spaces K1,..., Km’ m sets
of enciphering transformations Ei""’ Em, and - corresponding sets of
deciphering transformatiors D1,..., Dm. Scheratic diagrams of these
two types of cryptosystems are given for comparison in Figure 1.

There are three basic assumptions imporfarnt +tc the functionality of
layered cryptosystems. The first is that the set of individual layer
keys k1,..., km used for encryption are kept secret from unauthorized
users. Secondly, each layer is a simple irvertible transformation
which may be weak cryptographically in isolation, but mnmakes a
necessary contribution to the security of the erntire systen. Lastly,
the interlayer results o2 the enciphering and deciphering transforma-
tions are not accessible to unauthorized usare. A11 discussions
dealing with layered encryption in this paper apply only to private
key cryptosysterxs.

It 1is impertan®t here to elarify that any layer by itself is not
secure, given access %to its input and outpus values. Nothing is
gained by layerirng if interlayer results an allowable resource 1o

2
a cryptanalyst. I% is a reascnable assumption to consider the inter-
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FIGURE 1: Comparison of Conventional and Layered Cryptosystems.

layer results as unattainatle resources. Unlike plaintext and
ciphertext, interlayer values are c¢nly transient results which are

never stored or accessed at any time >y legitimate users of the
system. The only manner in wkich they mar be obtained is if an in-
truder can tap and meoniter the hardware between the layers. Physical

security can always be employed 1if monitcring is a possible threat.

The remainder of this discussion assumes thabt interlayer results are

never accessible and are adequately protected.

%, THE LAYERED APPROACE

3.1 TLayer Selection Criteria

By adopting a few strategically chosen laysrs, a layered approach can
be utilized to design private key cryptosystems. DBefore a mathemati-
cal transformation may be classified as a layer, it must conform to
the following srecifications:

a) a layer rmust be well defined@ in = rsthematical sense while

remaining simple in concept
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b) it must have an adequate key space with eazsily generated keys
and inverse keys
c¢) be efficient in terms of time and space
d) be easy to program for software simulation and implementation
and
e) be suitable for VILSI design and implementation.

It is plausible that if each individual layer 1in a layered crypto-
system meets these requirements, them the synthesized layered
algorithm will conform to them as well.

3.2 Layer Interaction and Transparency

With the layer selecticn criteriz established, it becomes necessary to
develop additionzal guidelines for concatenation of layers. An
important consideration in concatenating 1layers to synthesize a
complete algorithm is the problem of layer interaction. There is an
obvious disadvantage to concatenate two 1layers which can each be
compromised on an individual basis by the same attack.

A concept is introduced here which helps +to deal with layer inter-
action and is defined as layer transparency. To define transparency,
consider the transformation T [ ] of Pigure 2 which maps X into Y,
where X and Y are n-tvit vectors. Let g(X) ©be the result of a simple
operation g(+) on the input X. If g(X) 1is mepped to n(¥) vy r [ 1,
where h(+) 1is also a simple operation, then it is said that T [ ] 1is
transparent to g(+), and that g{+) is a transvarency of 1 [ J. In
this discussion, is should be noted that g{*) and h{+) may be the sane
operation. As an example, g{(X) could be a cyclic shift of X by one
bit and h(Y) a eyclic shift of Y by t bits, where 1 < t < n-1. If

t = 1, then the two cperations g(+) and h{+) would te identical.

As a general rule, +two adjacent layers in a layered cryptographic
algorithm should not have common transparencies. In addition, 1t is
desirable that all layers in a cryptosysten do not share many of the
same transparencies.

%.3 Buffers

The problem of selecting various useful trarnsformations that strictly
follow the two transrarency rules may not be sinmple. VWhat is required
are simple operations to isolate the main layer transformations. As
an example, two ne=zrly compatible transformations may be suitable as
adjacent layers excert for 2 single common transparency. IT 2 sinple
cperation can be found that does not preserve this common transpar-

ency, then it can e inserted between the two layers. The resultant



231

g(X) == T[] > n(¥)

Il ] - invertible transformation
¥ - n-bit input vector
Y - n-bit output vector

g(+}, h{(+) - simple operations

FIGURE 2: Illustration of Transparency.

new transformatior of a2 simple layer sandwiched between twc main
layers is no longer hampered by the transparency. The simple opera-
tions in question are defined as 'buffers', and for simplicity they
can be considered as another layer in +the layered cryptosystem.
Eowever, buffers differ from the main layers in that they do not
possess a key space.

There are two types of buffers defined by their vyposition relative %o

the main transforrmations. The first type are ctesitioneé Dbefore the
first and after the last layers. This buffer +type is defined as an
'outer bduffer’'. In =a cryptosystem of only a few layers, it is

critical that a cryptanalys* not be allowed to probe the outer layers
using strategically selected inputs. Knowledge of the transparencies
of the first layer for example, can be utilized in such a manner as to
derive the result of this transforration withcu’ actual knowledge of
its key. Hence, Zor the given strategic input, the first layer 1is
effectively by-passed leaving a weakened algorithn <o compromise.

It is realized tha* a corstant operation is not suitable for an cuter
buffer. Since we assume that every feature of the cryptograrphic
algorithm will be ctublic knowledge, except for the key of course, a
cryptanalyst can derive the result of any constant operation and have
direct access to the outer layers as before. It is thus necessary

that ocuter buffers te computed from key-dependent operations so that
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the result of a given buffer operation cannot bte determined without
knowledge of the keys. For a given key set, this may be accomplished
by computing the buffers from a single one-way function of the layer
keys. Hence, actual inputs to the first main layer cannot be derived,
preventing effective chosen-plaintext attacks.

The second type of buffers are positioned Dbetween two main layers.
These buffers are defined as 'interlayer buffers' and their purpose is
to prevent the preservation of transparencies that exist in common

with two adjacent main transformations.

In contrast to an outer buffer, the input to any interlayer buffer is
never directly accessible, making it vunnecessary for interlayer
buffers to be key-dependent operations. Further, it is preferable if
the interlayer buffers are key-independent cperations as they would

not require any pre-computation for a given key set.
3.4 Additional Considerations

In a system where all main layers and buffers are linear, the systen
transformation may be represented equivalently by a simplified linear
operation. An attack based on the principle of superposition can be
utilized to compromise a linear cryptosystem. It is thus necessary to
ensure that +the overall system transformation for the layered
algorithm is nonlinear. This can be acconmplished by selecting c¢ne of

the main layers as a nonlinear transformation.

A second consideration when dealing with layer concatenation is sym-
metry. Carefully selecting the layers in a syrmrmetrical configuration
will allow +the encryption and decryption functions +to be performed
using the same =algorithm. A schematic diagram of a symmetrical
layered configuration is given 1in Figure 3. For this 3-layered
example illustrated in the figure, the essential nonlinear transforma-

tion can be either Layer A or Layer B.

In order to facilitate the symmetry in Figure *, several conditions
must be satisfied. First the two outside layers must be selected as
identical transformations. In practice, different keys would be used
for these two layers to keep the system key srace as large as pos-
sible. The next requirement for total syometry is that the two outer
buffers must bte identical operations. The interlayer bufferg nust
also meet this reguirement. The relative ©rpositions of these tuffers
are clearly illustrated in Figure 3. The last requirement is that the
outer buffers must be their own inverse oreraticns. The interlayer
buffers must also fulfill thkis requirement.
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FIGURE 3: Symmetrical Layered Configuratiom.

With these conditions included in a symmetrical layered configuration,
total algorithm symmetry is obtained. As showr in Figure 3, 1if the

ercryption key set is {KA s Ku» KA },  then the corresponding decryp-
1 - 2

tion key set is {K,-1, K”, ¥ _1}. In this notation, X -1 represents
AE B A1 A1

the mathematical inverse (decryption key) of X for the transforma-

tion of TLayer A. A benefit resulting fror Zesigning a symmetrical
algorithm is the refuction in the amount of chir area needed to incor-
porate beth encrypticn and decryption in a single chip VILSI implemen-
tation.

3.5 Summary of Approach

The important concepts pertinent to the layered design approach of
cryptographic algcrithms were presented. Selection criteria for
transformations were established and the concert of transparency was

introduced to resclive the problem of Iayered interaction. System
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transparencies can be eliminated by carefully selecting transforma-
tions with specified properties, and by utilizing specially designed
buffers. The presence of at least one nonlinear operation is essen-
tial to the security of the algorithm.' The essential nonlinearity can
be accommodated by selecting a nonlinear transformation as one of the
layers. A symmetrical layered configuraticrn has. several advantages,
but is not necessary for constructing a secure system. By selecting
certain transformations and concatenating them using the established
criteria in this section, 1t may te possitle to synthesize a secure
cryptosystem.

4. DESIGN OF A LAYERED CRYPTOGRAPHIC ALGORITEM

Before presenting the following discussion, i% is important to clarify
that the algerithm given here is not intended to represent an un-
breakable cryptosyster. It is simply giver here in order to illust-
rate the structured approach to designing cryptographic algorithms
given in the previous section.

Utilizing the layered approach given in Eection 3, =a private Kkey
cryptographic algorithm has been designed using the exact configura-
ion given in Figure 3. The Layer A transforrations have been selected

as linear transformations and ILayer P as the essential nonlinear
transformations.

4.1 Nonlinear Layer

There are a number of nonlinear transformaticns that have been used in

cryptographic applications. For reasons of deperndability and reputa-
tion as a streng algorithm, +the RSA algorithm [13] was examined for
possible foundations for a nonlinear transforzation. On that basis,

modular exponentiation was chosen to represent the nonlinear layer. A
modulus of 2n-1, for n-bit Yblock encryrtion, was chosen as an
appropriate modulus for this transformation. In this discussion, n is
a power of 2, for reasons which will becore evident. There are two
reasons for chocosing this particular medulus. Pirst, the integer 2m-1
is a product of r distinct prime numbers {a* leas*t as far as n = 64).
This is an extension of the two prime case used with the RSA modulus.
The second reason i1g an implementation feature of 2".1 in that actual
division is not required to perform module reduction by 2. This
will become clear in Section 5 where implermentation considerations are
discussed.

To summarize, the following nonlinear transfeormation is used as Layer
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B in the symmetrical layered configuration of Figure 3.

Y =21, if 1 = 2™
KB n .
=X med2 -1 , otherwise.

where

X is the n-bit input

Y 1is the n-bit output

KB is the key for Layer B
and

n=2"

Ordinarily © and 2"-1 are equivalent modulo 2“—1, and hence both of
these inputs would produce an all zero binary cutput. The conditional
equality in +the above definition 1is necessary +to resolve this
situation.

In order that we may decrypt correctly, an inverse K§1 must exist such
that

pod2”-1 = X.

This relation can te satisfied for any modulus that is a preduct of r
distinct primes, if the following relationship is true [2]

-1 n
* = _
KB KB = 1 mods{2°-1)

where ¢(*) is the ZTuler totient function. The above relation reduces

to the property that KB must be chosen relatively prime to ¢(2n—1).

Blakley and Borosh [2] recognized that transforrations of this type
always have a certain number of inputs that are rapped to themselves,
defined as unconcealed inputs. For this particular transformation,

this phenomenon may be rerresented mathematically as

K
B n_, .

X mod2 -1 = X.

To minimize the numter of unconcealed inputs, i* is required that KB

be chosen under the following additional constraint:
GCD[KB—1, lCpr1—1,..., pr—l)] =2

where GCD is the CGreatest Common Divisor
LCM is the Least Common Multiple

. . n
and (p1,..., t_) are the r unique prime factors of 2 -1.

B
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For exponentiation modZn—1, the actual minimum number of unconcealed
inputs is AER I This minimum number can only be achieved if KB
satisfies the above relation. TFor a block length of n = 64, there are
a nminimum of 2188 unconcealed inputs since 264-1 is a product of 7
distinet prime numbers. The number of key bits generated by exponen-
tiation modulo 2"-1, with n = 64, is estimated to be 29.

4.2 Linear Layers
By concatenating a simple linear transformation processing specified
properties with a nonlinear layer, it is plausible that a stronger

transformation will result from the concatenation. A particular

family of linear transformations used in cryptographic applicaticns is

modular multiplication. These transformations have been studied
previously by Leung and Tavares [12] for modulus values of 2" and
2.1, Multiplication modulo 2"-1 is a fundamental transformation in a

cryptographic algorithm proposed by Akl and Meijer [1].

Multiplication modulo 2" was chosen over 211 fer two reasons. First,
this modulus is different from the modulus of the nonlinear exponen-
tiation transformation. If each layer was some operation modulo of_1,
and ignoring the effect of any interlayer bhuffers, *hen it is possible
to simplify the overall mathematical representation of the 3-layered

concatenation by applying the principles of modular arithmetic [s].

The second reason 1is that multiplication modulo 2% is not transparent

to complements, whereas multiplication mod2™-1 is transparent to this

complement operation. To further clarify this operation, a bit-wise
complement of any input produces a bit-wise complement of its corres-
ponding output. It can be shown that %both mnmultiplication and

exponentiation mod2"-1 are transparent to complements. Thus selecting
multiplication mod2n—1 would tend %o violate +the layer interaction
criteria established in BSection 3.2. Proof of the complement trans-

- sk n . . . .
parency for exponentiaticn mecd2°-1 is given in Appendix A.

In summary, the linear transformations indicated by Layer A in Figure
3 may be represented analytically as:

T = X * K, mod of

where X is the n-vit input
Y is the n-%it output

and KA is the key for Layer A.

In order +%o estimate +the gize of the key svace for this transform-

ation, the number of keys KA that allow X to te recovered from 7 must
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be known. From elementary number theory, X has a unique inverse mod

2" if the integers KA and 2" are relatively prime. The number of

integers relatively prime to 2n is ¢(2n) = Zn_l. Hence for n = 64,

there are 263 keys KA that will allow successful decryption. Since

the GCD (KA, 2n) must equal 1, the KA must be an odd integer and thus
valid 64-~bit keys may be selected by simply setting the least signifi-
cant bit of KA to binary one.

4.3 Common Transparencies and Buffer Selection

The design of the buffers depends on the common transparencies that
exist between +the main transfeormations of +the algorithm. The
following is a summary cf the known transparencies and weaknesses that
are common to exponentiation mod 271 and rultiplication mod 2f,
i) The all-binary zeroc input maps to itself in both transformations.
ii) Both transformations are transparent +to shifting; although
nultiplication is transparent to logical shifts, and
exponentiation is transparent tc a variation of cyclic shifts.
i1i) Multiplication is preserved under modular exponentiation and
modular multiplication.

The transparencies and wesaknesses atove can be easily verified for
each transformation.

Recall +that +the purpose of outer buffers is to inhibit an intruder

from launching chosen-plaintext attacks. Outer buffers must also be
key-dependent operation. For simplicity and ease of implementation,
the exclusive - OR addition of a key-dependent n-bit sequence V is
suitable for the outer buffers. To determine a particular value of V
for a given key set, 1t is necessary that V te derived from a one-way
“unction of the three keys. Therefore, the sequence V cannot be
computed unless the three layer keys are Xknown. Exclusive - OR

addition is also its own inverse operation and thus satisfies the
conditions needed to maintain the symmetrical layered configuration
depicted in Figure 3. By coincidence, this %tuffer operation alsco
eliminates the zerc input mapping fo itself.

"he second and third common transparencies listed at the beginning of
this section are left to be resolved by +the interlayer Dbuffers. It
should be pointed cut that the third transparercy is true only when
the product of the inputs in question is less than 2", If the product
is greater than this value, then multiplication is not preserved
through the concatenation of the three layers. This result stems from

the fact that two different modulus values are used in the fransforma-
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tions.

An n-bit permutation p is a suitable interlayer buffer under the
following constraints:

i) p does not preserve shifts
ii) p does not preserve multiplication
and iii) p is its own inverse operation

The first two constraints rectify the second and third common trans-
parencies and the 1last constraint is necessary to satisfy the
symmetrical layered configuration conditions.

4.4 Summary of 3-Layered Algorithm

A block diagram summary of the 3-layered cryptographic algorithm is
shown in Figure 4. The layers indicated by TLayer A in Figure 3 are
multiplication modulc P transformations, and Layer B is the nonlinear
exponentiation modulo 2"-1  transformation. To easily distinguish
tetween the two multiplication layers, a notation change from letters
to numbers is done. The layers are labkelled as 1, 2 and 3 gecing from

left to right in Figure 4. The outer and interlayer buffers shown in
the figure are as defined in Section 4.3.

If we let T(+) represent the overall transforration depicted in Figure

4, then the eneryption operation nay be represented as
C = TK(P)

where P is the plaintext

C is the ciphertext
and K = {K1, K2, KB} is the encryption key set. Since the algorithm
is symmetrical, the decryption operation may also be rerresented in
terms of the same transformation as

P

0
3
—~
(@]
~

- -1 - -1
where K| = {K3 K i K, '} is the decryption key set. Thus, the

distinguishing fealure between encrypiion an decryption with this
algorithm is the key set used in each case. The decryption keys are
related to their encryption key counterparts by the following
equations:

1) K, % L1_1 mod 2™ = 1
1) K, * K,7 med (27-1) = 1
i11) ¥, * %7 mea 2% = 1
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Calculating the integer values of each decryption key can +thus be
accomplished by using Fuclid's algorithm [9].

K
V{K} 1 % ! V{K}
P MULT EXP MULT <
l» o w p
Mod 27 Mod 27-1 Mod 2"

P: n-bit plaintext
n-bit ciphertext

KZ’ K3: user selected keys for layers 1, 2, 3

K: {K K.}

1’ KZ’ 3
V: n-bit sequence derived from a one-way function of the keys
p: interlayer buffer operation

@: bit-wise exclusive~OR operation

FIGURE 4: Block Diagram of the 3-Layered Cryptographic Algorithm.

5. IMPLEMENTATION CONSIDERATIONS

The discussion inclufed in this section is in%tended to illusirate the
relatively simple algorithms +that are needed to implement +the main
transformations in the algorithm of Pigure 4. The primary considera-
tion of the design criteria was to facilitate a VLSI (very large scale
integration) applicaztion. Pseudo-code algorithme suitable for VLSI
implementztion of the main transformations are contained in Appendix
E. Simple shift-regissers and adders are the primary components

necessary to implercent these algorithms.

The first pseudo-ccde algorithm given in Appendix B is for modular

cd
exponentiation. I+ ucges repeated sguaring and multiplication to
implement exponentiztion. The algorithr scans the bits cf the binary
representation of the exponent, starting with the least significant
bit. For each bi* of the exponent, a sguaring operation is performed
if the bit is a tinary zero, squaring followed by multiplication if

the current exponent tit is a binary one. A1l squaring and multipli-
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cation operations are reduced modulo 2“-1, and can be implemented
using the second algorithm given in Appendix P.

The second and third algorithms of Appendix 2 are for multiplication

modulo 2%-1 and 2" respectively. Both utilize "shifting and adding"

techniques to implement multiplication. Thece algorithms are effici-

ent since actual division is not performed when modulo reducing by
R n n

either 2° or 27 -1.

For a modulus of 2”, all overflow bits resulting from the repeated

addition operations are simply truncated ir order to modulo reduce.
The overflow bits represent integer multiples of 2n, and hence
truncating these bits is equivalent to dividing by of, Tor 2n-1, the
overflow bits are not truncated, but are cyclicly shifted and added to
the least significant bit of the result. This is equivalent to sub-

tracting a value of 21,

To implement the outer Dbuffer operations in VISI, n two-input
exclusive - OR gates in parallel can be ugeé for each buffer. Since
interlayer buffers can be selecied as constant permutations, they can
be hard-wired in a VLSI implementation.

6. PERFORMANCE

Since the 3-layered algorithm cannot be proven secure, we must rely on

certain tests and analyses tc provide confidence in the algorithm. A
few statistical tests have been applied +tc¢ the algorithm in order to
evaluate its cryptographic performance. The tests listed below were

used in the evaluation:

i) Plaintex*/ciphertext Complexity Test
ii) Avalanche Complexity Test
iii) Bit Distribution Test
iv) Cycle Test

The above tests were performed on =a 32-bit scftware implementation of
the algorithm. Using a VAX 11/750 computing facility, assembly

language routines were writfen to simulate ezch layer.

The first two tests listed avove deperd on the concept of complexity.

The complexity criterion [12] was wused extensively for performing
these statistical tests, and a measure of ccmplexity developed by
Lempel and Ziv [11] was used to evaluate the randomness preperties of
the algorithm. In general, the difference between any plaintext and
its corresponding ciphertext shouléd have high complexity with a2 high

probability [12]. This complexity 1is referred to as plaintext/
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ciphertext complexity and is measured using the first test. In
addition, the difference between two ciphertexts whose corresponding
plaintexts differ by a predetermined bit must also have this high
complexity. Horst TFeistel [6] +termed this oproperty the Avananche

Effect, and 1t is measured using the avalanche complexity test.

An additional test is a bit distribution test which simply counts the
number of binary ones (or zeros) in the two variations of difference
sequences mentioned above. Cver a large sample of randomly selected
plaintext, the resulting bit distribution should resemble the binomial
distribution if the differences are indeed randern.

The last test that was applied to the algorithm is a cycle test [10].
The purpose of +this particular test is to determine 1F the set of
permutations for the overall algorithm transforration is closed under
functional composition. If the transformation is closed, then the set
of transformations may generate a smell group and hence contain a
weakness that is vulnerable to a known-plaintext attack [8]. The
eycle test that was implemented examines the orbits of plaintext
messages under fixed keys which are oproduced by the algorithm in
output-feedback ncde. Although this is not the rost efficient cleosure
test [8], it was felt that this particular versiocn of the test was the
simplest and best suited for the available resources.

The results of the first three statistical tesis listed at the begin-

ning of +this section indicate that the 3-layered algorithm perforns

well cryptographically. It appears that the algorithm in fact pos-
sesses good randomness properties. The cycle test results are 1in-
conclusive as only a few tests have been completed. Results thus far

indicate that the overall transformation of the 3-layered algorithm is

not closed under functional composition.

7. CLOSIEG REMARKS

We have presented a layered approach to designirg strong cryptographic
algorithms wusing concepiually simple mathematical transformations.
Although the layers themselves are weak in isclation, they make a

necessary contribution te the overall strergth of the algorithm. This
is a simplified apprcach which can reduce the complexity of designing

a cryptographic algorithm.

In addition, a three-layered cryptographic algorithm has been designed
using the layering technique. Although the algcrithm was presented Yo
illustrate +the design criteria, it in fac® appears strong and
possesses several attractive features. Naturally, it is possible that
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cryptanalysis could show that the algorithm is weak, or under certain
conditions, may be compromised completely. In either case, the
analysis would be 1interesting due to the simple concepts and
mathematical properties inherent in the design. The layered approach
would still be considered useful as it reduces the complexity of
algorithm design. It also allows a designer %o develop 1layered
algorithms reasonably fast, since previously studied transformations
can be chosen as layers.
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APPERDIX A
Proof of Complement Transparency for Exponentiation Mod 284

I+ 1is required to show that a bit-wise complement of any input pro-
duces a Dbit-wise conplement of its correspending output for
exponentiation mod 21,

Proof: More formally, it is required to show that if

K

X Y mod{(2"-1)

then

X - T moa(2”-1).

where X and ¥ are the bit-wise complemerts of X ard Y respectively and
K is odd.
We can write

X+ 3 =24

or X + % =0 moda(2™-1)
or X = =X mod(2"-1)
Squaring,
¥° = X% moa(2"-1)
and thus
xU = %Y mod (27-1), U even
and
' = -3V moa(2"o1), V cdd
Let XK = Y mod(Qn—1), K ocdd
then KK = —XK rod(27%-1)
: =Y mod(2"-1)
: ¥ moa(2™-1).
APPERDIX B

Pseudo—code Algorithms for Layer Transformations

In this appendix are pseudo-code algorithms fer the two transforma-
tions of the 3-layered algorithr. & total of *hree algorithms are
included as follows:
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i) Algorithm #1: Exponentiation mod 284
ii) Algorithm #2: Multiplication mod 2"-1
1ii) Algorithm #3: Multiplication mod 2°

Algorithm #1 requires +the use of Algeorithe #2 in the form of a
subroutine in order +to perform the full modular exponentiation trans-
formation. Algorithms #2 and #3 are shifting and adding based
routines which include the appropriate variations necessary to perform
modulo reduction.

The three algorithms are presented here purposely for a VISI
application. Each algorithm can be implemented almost entirely with
shift-registers, adders, end a carry-bit function. For these
algorithms, the value of 'n' 1is not considered variable, Dbut is in
fact a constant equal to the specified block length of the crypto-
system. Thus n will govern certain design parameters such as the size
of internal registers. For notation, all invput and output variables
(denoted as capital letters) are regarded as n~bit integers, and the
ith bit position of X is expressed as X(i) in these algorithms.

ALGORITHM #1
Exponentiation mod 2" 4

Returns: Y = XK med 2™-1

Input: X,X

i=20

if (K(1) = 1) then
Y =X

else

Y =1

end if

i=1

do while (i < n)
X =X * X nod 27-1
if (K{i) = 1) then

Y =X x ¥ mod 271

end if
i =1 +1

end do

Cutput: Y
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ALGORITHM #2
Multiplication mod 27-1

Returns: P = A * B mod 2"-1

Input: A,B
P=20
i =0

do while (i < n)
if (B(i) = 1) then
P =P + csl(i,r)
if (carry = 1) then

P =P +1
enéd if
end if
i=1+1
end do
Result: P

e¢s1(i,A) = cyclic shift left of A by i bits
carry = carry bit function

ALGORITHM #3
Multiplication mod 27
Returns: Y = ¥ * K mod 2°
Input: X,K

Y =20

i=20

do while (i < n)

if {(K(i) = 1) then
Y = Y + 1s1(i,X)

end if
i=14+1
end do
Cutput: ¥

1s1(1i,X) = loglcal shift left of X by i bits



