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1 lntroduction 

Ever since the discovery of public key cryptography in 1975', the search for public key cryp- 
tosystems has been a central theme of cryptographic research. The public key c r y p t o ~ y s t e m s ~ ~ ~ ~ '  
that have been investigated during this period, however, are slower than conventional systems, r e  
quire more storage, and, being based on areas of mathematics that were not previously important in 
cryptography, have not inspired the same degree of trust as conventional systems. It would there  
fore be desirable to develop new techniques based on principles both different from those employed 
in current public key cryptosystems and more closely allied with conventional cryptography. 

Several years ago, after the development of the public key concept, but before any plausable 
examples were known, a suggestion along these lines was made to one of the authors by John 
McCarthy of Stanford University, who said he had gotten the idea from talking with an algebraic 
geometer about birational transformations. The idea was to build inverse pairs of multivariate 
polynomial transformations by a procedure commonly employed in algebraic geometry to construct 
inverse pairs of rational transformations. 

2 The Fundamental Scheme 

Our approach is to  regard the plaintext as an n-vector of elements selected from a suitable 
ring R and build an invertible polynomial transformation P of several variables from Rn to R". 
The coefficients of this transformation will be the public key and the inverse transformation Q the 
secret key. Thus: 

Plaint ex t P Ciphertext 
- 
2 = (q,. . . ,2,) - (Pl(T), . . . ,P"(Z)) 

where 21, . . . , z,, E R and Pi,. . . , P, are multivariate polynomials with coefficients in R. 
Assume, for example, that the plaintext is a vector of three components, 2, y and 2, from a 

ring R and that po and p1 are polynomials each in one variable oYer R. We can now build up a 
polynomial transformation of three variables by acting on the variables one at a time. 

In the Brst round, (z, y. t) is carried to: 

(21, Y l ,  Z I )  = (x, Y, * + P(Z, Y)). 

where p can be either po or p1.  In the second, (21, y l ,  z1) goes to: 

(.2, Y?, 22) = (Zl  $- P ( Y I , Z l ) ,  Y l .  :I) 
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The process continues: 

until after a number of rounds: 
(2.3, Y3723) = (22 ,  YZ + P(zZ, 22) 

P ( 2 ,  y, 2) = (211-1 + P(YI-I, %.d7 Yk-19 a -1)  

is a nonlinear, invertible, polynomial transformation on a module, M ,  of dimension 3 over R. T h e  
secret key is the sequence of choices of  po or P I  and the order in which they are applied to Z, y, 
and 2.  For example: 

( 2 1 , Y l r ~ 1 )  = ( .+Pl(Y,4,Y,4 
(22, Y 2 , 4  = (21, Y l ,  dl + m(r1, YI) )  
( 2 3 ,  Y3, z3) = ( 2 2 ,  YZ f PO(z2, z?), 22) 

(24, Y4, z4) = ( 2 3 ,  Y3r z3 f + P 1 ( 2 3 ~  Y3)) 

p(z, Y, z )  = ( 2 5 ,  YS, 25) == ( 2 4  + PO(Y4, 241, Y4, 24) 

The secret key is ((2, I), (z,O), (y,O), (2, I), (z,O)). The inverse transformation can be found by using 
the key in reverse: ( ( z ,O) ,  ( z ,  l), (y, 0), ( r ,O) ,  [z, l)), i.e.: 

( 2 4 1 y 4 1 t h ) = ( Z 5 - P O ( Y 5 , 2 5 ) , Y S r d j )  
(23, ?&, 23) = ( 2 4 ,  Y4, 24 - Pl(z4, Y4)) 

and so on. 

Naturally the number of polynomials need not be limited to 2 ncr the dimension, d, of M 

This plan offers on its face, not only plausible hope for constructing inverse pairs of transfor- 
mations, but  one with very close ties t o  the shift register mathematics of conventional cryptog- 
raphy. The alternate transformation of variables z and y is closely analogous to  alternate operation 
on the left and right halves in DES3. In general, the notion of modifying some components of a 
vector by adding to them functions of other components underlies all shift registers both linear 
and n ~ n l i n e a r ' , ~ .  

A key difference between the construction of conventional cryptosystem and public key 
cryptosystems lies in t he  way the systems are presented to the user. A shift register cryptosystem 
is a description of the way in which the plaintext is modified incrementally throught a number of 
interations to become the ciphertext. Such a description precludes public key use because it can 
equally readily be read in the other direction as a description of how to derive the plaintext from 
the ciphertext by incremental modifications. In order to develop a public key system along these 
lines, it is necessary to simplify the equations that arise from the incremental substitution process 
in such a way as to conceal the substitutions. 

over R to 3, but there is probably no virtue in using polynomials of degree other than d - 1. 

On first glance, it seems sufficient to carry out the substitutions as the process goes on. 
On second, it becomes obvious that  the number of coefficients in the polynomials will grow to 
astronomical proportiuus after only a few interations. In order to prevent the equations from 
exploding into unusable bulk, some device must be found for eliminating most of the terms; the 
most obvious such devices are  nilpotence and J-rings and these will be examined in the remainder 
of this paper. 

3 

3.1 Nilpotence 

for any elements r1, . . . , Tk 

coefficients in R can only have meaningful terms whose total degree does not exceed k. 

Reducing the Number of Cocficients  

A ring R is nilpotent if there is an integer k 2 1 such that (R)' = { O } .  Tha t  means that 
R the product rlr2.. ' r k  is zero, so a multivariate polynomial with 
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There is a hitch, however, in applying nilpotence in our fundamental scheme. We expect the 
scheme, described in section 2, to  yield a transformation of the form: 

plaintext P ciphertext - 
.T = (21 , .  . .,z,) b-+ (PI(Z), ... ,Pn(Z)) 

H here z1, .. . , z,, E R and PI, .  . . , P,, have coefficients in R. hkte that no transformation of this 
form can be invertible. Suppose that each Fi has constant term C;. Let T;(Z) = P;(Z) - C;. The 
system P is invertible if and only if the system T = (T;, . . . , T,) is invertible but T can never be 
invertible as T@) E (R)'$R. 

What went wrong is that although the iteration in section 2 always produces an invertible 
transformation, if we apply this iteration scheme in a ring without a unit, we do not get a 
transformation of the form (3.1) but rather one of the form: 

plaintext P ciphertext 
z = (21 , .  . . ,z,) H z + (PI(T), . . . )P"(Z)) ( 3 4  

Where 21,. . . , z, E R and PI , .  . . , P,, have coefficients in R. The transformation (3.1) is a 
polynomial transformation but its coefficients are not all in R as R is nilpotent and cannot contain 
a unit element. 

We can still make use of nilpotence, however. We take R to be a finite local ring, that is a 
finite commutative ring with 1 that has a unique maximal ideal iY of nilpotents. (Note R / N  is a 
finite field.) The general form of the encryption transformation again becomes: 

plaintext P ciphertext 
(3.3) 

- 
2 = (21,. .. ,2") (Pl(Z), . . . , P*(Z)) 

where 21,. . .,zn and P,(Z), . .., F,,(Z) all lie in N. That is, P is a multivariate polynomial 
transformation from R" to R" that is invariant and invertible on N". The number of coefficients 
in the polynomials is restricted by the nilpotence because terms of high total degree are identically 
zero on N" and we do not care how they behave on the rest of R". The transformations generated 
by the iteration scheme of section 2 will be of this type if wv choose the polynomials p 1 ,  p z ,  . . . to 
have coefficients in N or to have coefficients in R but constant terms in N. 

3.2 J-Rings 

Let R be a finite commutative ring. R is a J-ring if there is an integer d 2 1 such that ad = a 
for any a E R. A multivariate polynomial over a J-ring can be reduced to a polynomial all of whose 
terms have individual degrees _< d (or total degrees < dn where n is the number of variables). 
This time the transformation will be of the form of equation (3.1). 

3.3 Upper .  Triangular Matrices 

ring R. The encryption translormation will be of the form: 
N'e represent the plaintext by a pair of upper-triangular matrices with entries from a finite 

where X1,Xz are upper-triangular k. x k matrices over R and PI, P2 have coefficients in R. If 
kfi , .  . . , hf,, are upper triangular k X k matrices over R then the  product M ~ . . . b f k  iS zero. This 
means that the polynomials will have terms of total degree at most k - 1. As the matrices do not 
commute, there are more terms to deal with than in the commutative nilpotent case (3.1) but there 
is also hope that non-commutativity will make lower degree polynomial system more dimcult to  
invert. 
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T(n,  k) = t# of terms possible in one polynomial 
[el T(n,  k) = # of bits to represent one polynomial 
n .  . T(n, k) = # of bits in the public key 

Figure 3.1 Bits of Key in Commutative Case (Plaintext = 64 bits) 

I 4 Finding Systems o j  Practical Sire 
The public key in the system we have proposed consists of the coefficients of the polynomials 

making up the transformation P. We do not want a key that is too large and have taken 10,000 
bits to be the upper limit on the size of key that we will consider. 

4.1 The Commutative Case 

We must first count the maximum number of t e r m  in a polynomial of total degree k in n 
variables. This number, T(n,  k) can be computed recursively as follows: 

T(1,k) = k + l  
T(n,  1) = R + 1 
T ( n , k )  = T ( n , k - 1 ) + T ( n - 1 , k )  Vh,n,,. 

(i,e.,1,.Y,. . . ,x') 
( i ,e . , l ,X1, .  . . ,Xn) 
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For ad t iva r i a t e  polynomials of degree k in n variables 

T(n,  k )  = # of terms possible in one polynomial 
191 . T(n, k) = 0 of bits to represent one polynomial 
n . I T(n, k) = t of bits in the public key 

Figure 4.2 Bits of Key i r  Commutative Case (Plaintext = 128 bits) 

The recursion step follows since T(n, k - 1) is the number of terms of total 5 k in which X ,  
appears. Each such term is of the form Xn times a term in n variables with total degree 5 k -  I. 
T(n - I, k )  is the number of terms of total degree 5 k in which X ,  does not appear. 

Now we need the number of bits necessary to  represent the coefficients of a polynomial of 
total degree k in n variables. This clearly depends on the size of the ring but there are restrictions 
on the ring size if we want the plaintext size to conform to present standards. If the plaintext 
(XI,. . . , X,,) is to have 61 bits then each X ;  must represent IF1 bits. If R is a J-ring so that 
encryption method (3.1) is used, then R must have cardinality 2r4;'1. The number of bits needed 
to represent a single polynomial of total degree k in n variables is given by . T(n, k). T h e  
number of bits in the public key polynomial transformation is n .  . T ( n , k ) .  These numbers 
are computed and presented in Figure 4.1. The same computation for a plaintext of 128 bits is 
presented in Figure 4.2. 

If the ring is local and the general encryption meth2d of equation 3.3 is used, then the 
cardinality of the nilpotent ideal, N, must be 21v1 or 2rYl. The cardinality of R is at least 
twice that of N. T h e  number of bits needed to represent the public key is at least double the 
numbers that  appear in Figures 4.1 and 4.2. If the specific iteration described in section 2 is used 
with PI,. . . , P,, having coefficients in N then the number of bits needed to represent the public 
key is exactly as shown in Figures 4.1 and 4.2. 

I t  is striking that  if we are restricted to 10,000 bits of key then the polynomials making up 
the encryption transformation and also those making up its inverse can have no more than 153 
terms (n = 2, k = 16, &bit plaintext). We shall see in the next section that this is too small for 
cryp tograp h ic security. 
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I l O g P  k - I  k-6 k-6 k-7 k-8 k-0 k-10 k n l l  k-12 k-18 k-14 k-16 k - I 0  k-17 

I 1024 I 10 I 60 I 100 I 

16384 

3?168 

65536 16 D6 

I 131072 I 17 1 102 I 
I I 

I I I 

110485751 20 I 120 I 

Figure 4.3 Bits of Plaintext in one Upper-Triangular Matrix over 2, 

4.2 The Upper-Triangular Case 
We consider the special case of k x k upper-triangular matrices over 2,. We have taken p to be  

3 power of 2 so tha t  there is no bit loss in representing the ring. A single matrix carries (Iogp)( p) 
bits. In Figure 4.3 we show the  number of bits of plaintext in a pair of upper-triangular matrices 
over 2,. 

Figure 4.3 also provides information in the  case of a general commutative ring R. T h e  number 
of bits shown for a particular p provides lower (upper) bounds when R is any commutative ring 
\ r i t h  cardinality greater than (less than) p .  
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k 
I !  

P I 1% P 1 

P - 1 =  bits or key = 

# bits per 2 

matrix polynomial polynomial polynomials 

# bits per terms per 0 bits per 

64 Bit Plaintext 

2 

4 

8 

16 

64 

1 9 36 51 I 511 1022 

2 1  7 42 127 7.54 508 

3 1  6 45 63 189 318 

4 i  5 40 31 124 248 

6 1  4 35 15 90 180 

128 Bit Plaintext 

4 

8 

16 

32 

I 2 1  1 1 1 2 1  66 1 4085 I 4095 I 8190 I 
? I  9 '  72 511 1022 2044 

3 1 8  8 1  255 765 1530 

4 1  7 84 12: 508 1016 

5 1  6 75 I 63 315 630 

Figure 4.4 Bits of Key; Upper-triangular Case 

In Figure 4.4 we compute the  number of bits in the public key when the plaintext has 64 and 
128 bits respectively. To do this computatior. we must find the number of terms in a polynomial 
in 2 upper-triangular k X k matrices. Recall tha t  these polynomials will have total degree 3t most 
k - 1. The number of terms of exactly degree j in 2 non-commuting variables is Zi. It is the same 
as making j choices from 2 items with repetition allowed. The  total number of terms is, therefore: 

There appear to  be cases where the  key is not  terribly big and where the  number of t e r m  in each 
polynomial is large enough tha t  we might have cryptographic security. We will see, however, in the  
next section tha t  we can solve for the coefficients of the polynomials in the inverse transformation 
in layers so tha t  we need never face a very large system of equations. 
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k-2 k-1 h=4 k-6 k-8 L-7 

241 

polynomials of degree k in n variables 

n'+' - 1 = t of terms possible in one polynomial 
(nk+' - 1) = 0 of bits to represent one polynomial 

n . [el . (nk+* - 1) = # of bits to represent the public key. 

2365 

Figure 4.5 Bits of Key; Non-commutative Case; &Bit Plaintext 

4.3 The General Non-Commutative Case 

As will be shown, in the next section, the commutative and upper-triangular cases are not 
cryptographically secure so we offer one other suggestion. Let R be a non-commutative finite ring. 
In Egure 4.5 we show the number of bits of key in this case. The number of terms in a polynomial 
of total degree k in n non-commuting variables is given by nk+' - 1. The reasoning is the same 
as that used to compute the number of terms in the polynomials of section 4.1 above. Figure 4.5 
shows that there are very few cases to  investigate. The number of terms in the polynomials is 
small but there is some hope that the complications of non-commutative arithmetic will impede 
cryptanalysis. 

5 Inverting The3e System 

Assume that we know the public key, P = ( P I , .  . . ,P,,), and we want to find a transformation 
Q = ( & I , .  . . ,Qn)  such that Qi(Pl(T], . . . ,Pn(?f)) = X;(i = 1 , .  . . ,n). We know that such a system 
Q of polynomials exists and that the Qi have the same types of terms as the Pj .  That is: 

&; = a; + L;, V1 + . . . + b;,V, + cil, VT + . . -. 
We know which terms are present, we must find the coefficients of 8; (i = 1,. . . ~ n). 

5.1 I IR is a J-ring 

Pick a vector x = (Al, . . . ,A,) in R". Compute Pl(X), . . . , Pn(x). Set (&(Pi@), . . . , pn(x]) = 
Al. This gives a linear equation with coefficients in R whose unknowns are the coefficients of & I .  
Let q by the number of coefficients of Q1. If we can produce vectors x. = (A,, . . . ,A,,,) in R" ( i  = 
1.. . . , q )  such that the resulting linear equations are independent then, hopefully, we can solve 
for the coefficients of & I .  As Q is invertible, we know that such an independent system exists. 
Any Ering R is a direct sum of finite fields*. Hence the system can be solved independently over 
each component field of R using standard techniques of linear algebra over Eelds. A system of 
approximately 150 equations can be solved in a reasonable time by existing techniques and in our 
systems of practical size, &; never has more than 153 coeficients. 

There remains the problem of generating q independent equations. We suggest the following 
simple procedure. I. choose a x f in I?,, and accept the linear equations it produces. 2. After 
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having found k - 1 independent equations, choose a new vector 2 f 0 at random and accept i t  
if it is independent of the k - 1 vectors already found. Otherwise, discard it and repeat this step 
until you succeed. If, a t  each stage, the system is put, componentwise, into reduced row-echelon 
form, then checking the new equation and row-reducing the new system are both easy. We cannot 
prove that this method will produce the necessary q equations in a reasonable amount of time bu t  
believe it does for the following reasons: 

Assume R = Z,, p a prime. If k vectors are chosen at random from (Z,)q then the probability 
that they are independent is given by (1 - $)(I - &). ' . ( l -  &) > 5 so the probability 
that a random q X q determinant over Zp is non-singular is given by: 

Although this gives 0 as a lower bound when P = 2 the products are actually greater than 1/4 in 
this case. 

Unfortunately, the coefficient vectors in these equations are not generated at  random from all 
possible pg vectors over Zp; we can only generate p" vectors but, expect that they will be randomly 
distributed in the larger set. Given this, the  above argument shows that we are likely to generate 
q independent equations without much difficulty. 

5.2 The Nilpotent Case 

The message is a vector in iVn where N is a nilpotent ring embedded as a maximal nilpotent 
ideal in a local ring R. T h e  quotient ring R / N  is a finite field. N" is invariant under t h e  pubtic 
key polynomial map P:R" ++ R". T h a t  is, P:N" ++ N" is one to one and onto. The component 
polynomials P; of P have coefficients in R. To find the coefficients of Q = P-' we first work over 
the field R/N and then raise the solution to R. 

where c is a constant vector in N" and T ( X )  is a polynomial transformation whose components 
have no constant terms. P is invertible on N" if and only if T is. If U = T-I on N" then: 
Q(P) = U ( r -  c) is P-I on N .  

We can assume that  P; ( i  = 1.. .n) has no constant term. Otherwise P(x) = T(X) + 

Let PL and Qr. be the  linear parts of P and Q. Then 

= Q(P(Z)) = QL(PL(Z)) +higher order terms. 

Let ( P ~ m o d  N )  mean the polynomial obtained by replacing each coefficient, c ,  of PL by (C mod N). 
We invert PL to find QL. First find 

QL = (PL mod N)-' overR/N. 

Now form QZ with coefficients in R by replacing each coefficient of QL by a representative in R 
of its class. Then 

QT o Pr. = I + B where B h a  entries in N 

and 
( I  -5  + 0' - . . .  It B"-')Q;PL = I &  Bk = I on N" 

So set 
QL = PL1 = (f - B + B2 - . . .i Bc-')Qi  
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Now go on to the quadratic terms. Let PQ and QQ be the quadratic parts and PH and QH the 
higher order parts of P and Q respectively. Then 

= &(P(z)) = Q L ( P L ( ~ )  + P&) + P H ( ~ ) )  + QQ(PL(E) + PQ@) + PHPN 

= QL(PH(Z)) + Qs(Pg(3)) + QQ(PL(T))  +higher order terms. 
+QH(PL(T) + P&) + P H ( Z ) )  

This gives a system of equations whose unknowns are the coefficients of QQ. We can proceed as 
with the linear parts, finding the coefficients of Q one degree at a time. 

For rings of practical size, these systems are therefore too easily solved to be secure. 

5.3 The Upper-Triangular Case 

The encrypting transformation is (XI, Xz) H P(X1, X2) = (Pl(X1, Xz), Pz(X1, X2)) where 
XI, Xz are upper-triangular matrices over a commutative ring R and P L , P ~  are polynomials 
with coefficients in R. To decrypt, we must find a polynomial system Q = (Q1,Qz) such that 
Qi(P(X1 ,Xz]) = Xi  ( i  = 1,Z). As before, we can use P and Q to produce pairs (V, V), &(V, V )  
and to set up a system of linear equations in the coefficients of Q. This system is particularly easy 
to solve as only the linear and constant terms show up in the entries just above the diagonal of 
Q(V, V) .  The quadratic terms enter into the entries two levels above the diagonal and so on. We 
can, therefore, solve for the coefficients of Q in a layered manner, similar to the nilpotent case. 

6 Conclusions 

We set out to build a public key cryptosystern by repeatedly substituting for variables in 
multivariate polynomials and simplifying the results to conceal the substitution process. There 
seems, however, to be no way to build such a system that is both secure and has a public key of 
practical size when the devices used to limit the number of coe5ceints are nilpotence and J-rings. 
We have only shown, however, that it is impossible to produce such a system if the total degree of 
the encryption polynomial determines the size of the public key. Perhaps, by properly choosing fi 
and P I ,  we can employ the fundamental scheme to produce sparse encrypting polynomials. Then 
the public key could be kept small while the encrypting polynomial bas large total degree and is 
difficult to invert. 
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